Symmetrical Components

The method of symmetrical components is used to simplify fault analysis by converting a three-phase unbalanced system into two sets of three phase balanced phasors (=> same magnitude) and one set of three phase parallel phasors called symmetrical components.

描述: D:\- System Folder\- Sys\Desktop\Symmetrical Components\Symmetrical Components.jpg

Make use of a rotational operator, denoted by a as the 120°and given formally by :

a

=

=

= 1+120°

Negative Sequence one time

a2

= 1+120° x  1+120°

= 1+240° or

= 1-120°

Negative Sequence two time or Positive Sequence one time

a3

= 1+120° x  1+120° x  1+120°

= 1+360° or

= 1

One round circle

Note  :  1 + a + a2  =  1 + 1+120° + 1-120°  =  0

 

By using the operator a, any unbalance three phase system IL1, IL2, IL3 in actual world can be broken down into three theoretical balanced system, I(1) system (positive sequence system), I(2) system (negative sequence system), I(0 )system (zero sequence system).

 

In terms of operator a, in positive sequence system, their relationship is :

IL1(1)   =                                                  IL1(1)

IL2(1)   =                                                 IL1(1) x a2

IL3(1)   = IL1(1) x a2 x a2  or  IL1(1) x a         a3 = 1   a4 = a3x a = 1 x a = a

In terms of operator a, in negative sequence system, their relationship is :

IL1(2)   =                                                 IL1(2)

IL2(2)   =                                                 IL1(2) x a

IL3(2)   = IL1(2) x a x a   or  IL1(2) x a2

In zero sequence system, as there is no rotation, their relationship is :

IL1(0)  =   IL2(0)   =   IL3(0)

 

Since  I = I (Pos) + I (Neg) + I (Zero)

描述: D:\- System Folder\- Sys\Desktop\Symmetrical Components\Positive Sequence System.jpg

IL1 = IL1(1)   +    IL1(2)   +  IL1(0)

描述: D:\- System Folder\- Sys\Desktop\Symmetrical Components\IL2.jpg

IL2 = IL2(1) + IL2(2) + IL2(0)  IL2(1) = a2 IL1(1)  and  IL2(2) = aIL1(2)  and  IL2(0) = IL1(0)

IL2 = a2 IL1(1)  +  aIL1(2)   +  IL1(0)

描述: D:\- System Folder\- Sys\Desktop\Symmetrical Components\IL3.jpg

IL3 = IL3(1) + IL3(2) + IL3(0)  IL3(1) = a IL1(1)  and  IL3(2) = a2IL1(2)  and  IL2(0) = IL1(0)

IL3 = a IL1(1)   +  a2IL1(2)   +   IL1(0)

Now we have

      Pos      Neg     Zero

IL1 =  IL1(1)   +   IL1(2)   +  IL1(0)

IL2 = a2 IL1(1)  +  aIL1(2)   +  IL1(0)

IL3 = a IL1(1)   +  a2IL1(2)   +   IL1(0)

 

For 3 phase 4 wire system, IN = IL1 + IL2 + IL3 .

IN = IL1(1) + IL1(2) + IL1(0)  +  IL2(1) + IL2(2) + IL2(0)  +  IL3(1) + IL3(2) + IL3(0)

= IL1(1) + IL2(1) + IL3(1)  +  IL1(2) + IL2(2) + IL3(2)  +  IL1(0)+ IL2(0) + IL3(0)

Positive and negative sequence system are 3 phase balanced systems,

their vector sum is zero.

= 0 + 0 + IL1(0)+ IL2(0) + IL3(0) 

= 3 IL1(0)

or

IN = IL1(1) + IL1(2) + IL1(0)    +

a2 IL1(1) + aIL1(2) +IL1(0)  +

a IL1(1) + a2IL1(2) + IL1(0)

= IL1(1) x [1+ a2+ a]  +  IL1(2) x [1+ a2+ a]  +  IL1(0) x 3

= IL1(1) x [ 0 ]  +  IL1(2) x [ 0 ]  +  IL1(0) x 3     1 + a + a2 = 0

= 0 + 0 + IL1(0) x 3

= 3 IL1(0)

 

For 3 phase 4 wire un-balanced system, IN is  3 I(0)  and may be with an angle if angle not = 0.