
Copyright © 2011. All rights reserved. Specifications are subject to change without notice. Printed in Europe. ACGM0132V3.0 2/201

Asia Pacific JapanNorth America Europe

Global Network

Europe

  Headquarters Panasonic Electric Works Europe AG Rudolf-Diesel-Ring 2, 83607 Holzkirchen, Tel. +49 (0) 8024 648-0, Fax +49 (0) 8024 648-111,
www.panasonic-electric-works.com

  Austria Panasonic Electric Works Austria GmbH Rep. of PEWDE, Josef Madersperger Str. 2, 2362 Biedermannsdorf, Tel. +43 (0) 2236-26846, Fax +43 (0) 2236-46133,
www.panasonic-electric-works.at

PEW Electronic Materials Europe GmbH Ennshafenstraße 30, 4470 Enns, Tel. +43 (0) 7223 883, Fax +43 (0) 7223 88333, www.panasonic-electronic-materials.
com

  Benelux Panasonic Electric Works
Sales Western Europe B.V.

De Rijn 4, (Postbus 211), 5684 PJ Best, (5680 AE Best), Netherlands, Tel. +31 (0) 499 372727, Fax +31 (0) 499 372185,
www.panasonic-electric-works.nl

  Czech Republic Panasonic Electric Works Czech s.r.o. Prumtyslová 1, 34815 Planá, Tel. (+420-)374799990, Fax (+420-)374799999, www.panasonic-electric-works.cz

  France Panasonic Electric Works
Sales Western Europe B.V.

Succursale française, 10, rue des petits ruisseaux, 91371 Verrières le Buisson, Tél. +33 (0) 1 6013 5757, Fax +33 (0) 1
6013 5758, www.panasonic-electric-works.fr

  Germany Panasonic Electric Works Europe AG Rudolf-Diesel-Ring 2, 83607 Holzkirchen, Tel. +49 (0) 8024 648-0, Fax +49 (0) 8024 648-111
www.panasonic-electric-works.de

  Hungary Panasonic Electric Works Europe AG Magyarországi Közvetlen Kereskedelmi Képviselet, 1117 Budapest, Neumann János u. 1., Tel. +36(0)1482 9258,
Fax +36 (0) 1482 9259, www.panasonic-electric-works.hu

  Ireland Panasonic Electric Works UK Ltd. Dublin, Tel. +353 (0) 14600969, Fax +353 (0) 14601131, www.panasonic-electric-works.co.uk

  Italy Panasonic Electric Works Italia s.r.l. Via del Commercio 3-5 (Z.I. Ferlina), 37012 Bussolengo (VR), Tel. +39 (0) 456752711, Fax +39 (0) 456700444,
www.panasonic-electric-works.it

  Nordic Countries Panasonic Electric Works Nordic AB Sjöängsvägen 10, 19272 Sollentuna, Sweden, Tel. +46 859476680, Fax +46 859476690, www.panasonic-electric-works.se

PEW Fire & Security Technology Europe AB Jungmansgatan 12, 21119 Malmö, Tel. +46 40697-7000, Fax +46 40697-7099, www.panasonic-fi re-security.com

  Poland Panasonic Electric Works Polska sp. z o.o. Al. Krakowska 4/6, 02-284 Warszawa, Tel. +48 (0) 22 338-11-33, Fax +48 (0) 22 338-12-00, www.panasonic-electric-
works.pl

  Portugal Panasonic Electric Works España S.A. Portuguese Branch Offi ce, Avda Adelino Amaro da Costa 728 R/C J, 2750-277 Cascais, Tel. +351 214812520,
Fax +351 214812529

  Spain Panasonic Electric Works España S.A. Barajas Park, San Severo 20, 28042 Madrid, Tel. +34 913293875, Fax +34 913292976,
www.panasonic-electric-works.es

  Switzerland Panasonic Electric Works Schweiz AG Grundstrasse 8, 6343 Rotkreuz, Tel. +41 (0) 417997050, Fax +41 (0) 417997055, www.panasonic-electric-works.ch

  United Kingdom Panasonic Electric Works UK Ltd. Sunrise Parkway, Linford Wood, Milton Keynes, MK14 6 LF, Tel. +44(0) 1908 231555, +44(0) 1908 231599,
www.panasonic-electric-works.co.uk

North & South America

  USA PEW Corporation of America 629 Central Avenue, New Providence, N.J. 07974, Tel. +1-908-464-3550, Fax +1-908-464-8513,
www.pewa.panasonic.com

Asia Pacifi c / China / Japan

  China Panasonic Electric Works (China) Co., Ltd. Level 2, Tower W3, The Tower Oriental Plaza, No. 2, East Chang An Ave., Dong Cheng District, Beijing 100738, Tel.
(010) 5925-5988, Fax (010) 5925-5973, www.pewc.panasonic.cn

  Hong Kong Panasonic Electric Works
(Hong Kong) Co., Ltd.

RM1205-9, 12/F, Tower 2, The Gateway, 25 Canton Road, Tsimshatsui, Kowloon, Hong Kong, Tel. (8520) 2956-3118,
Fax (0852) 2956-0398

  Japan Panasonic Electric Works Co., Ltd. 1048 Kadoma, Kadoma-shi, Osaka 571-8686, Japan, Tel. (06)-6908-1050, Fax (06)-6908-5781
http://panasonic-electric-works.net

  Singapore Panasonic Electric Works Asia Pacifi c Pte. Ltd. 101 Thomson Road, #25-03/05, United Square, Singapore 307591, Tel. (06255)-5473, Fax (06253)-5689

China

Panasonic Electric Works Global Sales Companies

FP Series Program
m

ing M
anual

P
anasonic E

lectric W
orks E

urope A
G

A
C

G
M

0313V2EN
 7/2012

PROGRAΜMABLE CONTROLLER

FP Series
Programming Manual

BEFORE BEGINNING

Liability and Copyright for the Hardware

This manual and everything described in it are copyrighted. You may not copy this manual, in whole or part,
without written consent of Panasonic Electric Works Europe AG (PEWEU).

PEWEU pursues a policy of continuous improvement of the design and performance of its products. Therefore
we reserve the right to change the manual/product without notice. In no event will PEWEU be liable for direct,
special, incidental, or consequential damage resulting from any defect in the product or its documentation,
even if advised of the possibility of such damages.

We invite your comments on this manual. Please e-mail us at:

techdoc.peweu@eu.panasonic.com.

Please direct support matters and technical questions to your local Panasonic representative.

LIMITED WARRANTY
If physical defects caused by distribution are found, PEWEU will replace/repair the product free of charge.
Exceptions include:

 When physical defects are due to different usage/treatment of the product other than described in
the manual.

 When physical defects are due to defective equipment other than the distributed product.

 When physical defects are due to modifications/repairs by someone other than PEWEU.

 When physical defects are due to natural disasters.

2

Important symbols
One or more of the following symbols may be used in this documentation:

!

DANGER!

The warning triangle indicates especially important safety
instructions. If they are not adhered to, the results could be
fatal or critical injury.

CAUTION

Indicates that you should proceed with caution. Failure to do so may result in injury or
significant damage to instruments or their contents, e.g. data.

 � NOTE

Contains important additional information.

 � EXAMPLE

Contains an illustrative example of the previous text section.

 1.
2.
3.

Procedure

Indicates that a step-by-step procedure follows.

REFERENCE

Indicates where you can find additional information on the subject at hand.

3

Table of Contents

Part I Basics

1. Basics.. 26

1.1 Operands .. 27

1.1.1 Inputs/Outputs ...27

1.1.2 Internal Relays...27

1.1.3 Special Internal Relays..27

1.1.4 Timers and Counters...28

1.1.5 Data Registers (DT) ..28

1.1.6 Special Data Registers (DT)..29

1.1.7 File Registers (FL)...29

1.1.8 Link Relays and Registers (L/LD)..29

1.2 Addresses ... 30

1.2.1 FP Addresses..30

1.2.2 IEC Addresses...31

1.2.3 Specifying Relay Addresses..33

1.2.4 Timer Contacts (T) and Counter Contacts (C) ..34

1.2.5 Error alarm relays..34

1.2.5.1 Restrictions of error alarm relays...36
1.2.6 Pulse relays (P) ...36

1.2.6.1 Restrictions of pulse relay (P)..37
1.2.7 External input (X) and output relays (Y) ..37

1.2.8 Word representation of relays (WX, WY, WR, and WL)..37

1.3 Constants.. 39

1.3.1 Decimal Constants ..39

1.3.2 Hexadecimal Constants ..39

1.3.3 BCD Constants..39

Table of Contents

4

1.4 Data types ...40

1.4.1 Elementary data types...40

1.4.1.1 BOOL ...40
1.4.1.2 INT ...41
1.4.1.3 UINT ...41
1.4.1.4 DINT ...41
1.4.1.5 UDINT ...41
1.4.1.6 REAL ...41
1.4.1.7 WORD ...42
1.4.1.8 DWORD ...42
1.4.1.9 TIME ...42
1.4.1.10 DATE_AND_TIME ...43
1.4.1.11 DATE ...44
1.4.1.12 TIME_OF_DAY ..44
1.4.1.13 STRING ...45

1.4.2 Generic data types ..50

1.4.3 DUT ...51

1.4.3.1 Creating DUTs ...51
1.4.3.2 Using DUTs in the global variable list ..51
1.4.3.3 Using DUTs in a POU header..52
1.4.3.4 DUTs with non-overlapping elements..52
1.4.3.5 DUTs with overlapping elements ...53

1.4.4 Array ..53

1.4.5 Special data types only available in conversion functions ..55

1.4.5.1 BOOL16 ...55
1.4.5.2 BOOL32 ...55
1.4.5.3 BCD_WORD ..56
1.4.5.4 WORD_BCD ..56
1.4.5.5 BCD_DWORD..56
1.4.5.6 DWORD_BCD..56
1.4.5.7 IPADDR ...56
1.4.5.8 ETLANADDR ...57
1.4.5.9 ANY_IN_UNITS_OF_WORDS ..57
1.4.5.10 ANY_SIMPLE_NOT_BOOL...58

Table of Contents

5

Part II IEC instructions

2. Data transfer instructions.. 59

MOVE Move value to specified destination 60

3. Arithmetic instructions .. 61

ADD Add 62
SUB Subtract 63
MUL Multiply 64
DIV Divide 65
ABS Absolute Value 67
MOD Modular arithmetic division, remainder stored in output

variable 68
SQRT Square root 69
SIN Sine with Radian Input Data 70
ASIN Arcsine 71
COS Cosine 72
ACOS Arccosine 73
TAN Tangent 75
ATAN Arctangent 76
ATAN2_YX Returns the angle  of the Cartesian coordinates (x,y) 77
LN Natural logarithm 79
LOG Logarithm to the Base 10 80
EXP Exponent of input variable to base e 81
EXPT Raises 1st input variable by the power of the 2nd input

variable 82
CRC16 Cyclic Redundancy Check 84
LIMIT Limit value for input variable 86

4. Bitwise Boolean instructions .. 87

AND Logical AND operation 88
OR Logical OR operation 89
XOR Exclusive OR operation 90
NOT Bit inversion 91

Table of Contents

6

5. Bit-shift instructions ...93

SHR Shift bits to the right 94
SHL Shift bits to the left 96
ROR Rotate N bits the right 98
ROL Rotate N bits to the left 100

6. Comparison instructions..103

GT Greater than 104
GE Greater than or equal to 106
EQ Equal to 108
LE Less than or equal to 109
LT Less than 110
NE Not equal 111
WITHIN_LIMITS Evaluate if a value is within the limits 112

7. Conversion instructions...113

WORD_TO_BOOL WORD in BOOL 114
DWORD_TO_BOOL DOUBLE WORD in BOOL 115
INT_TO_BOOL INTEGER into BOOL 116
DINT_TO_BOOL DOUBLE INTEGER into BOOL 117
UINT_TO_BOOL Unsigned INTEGER into BOOL 118
UDINT_TO_BOOL Unsigned DOUBLE INTEGER into BOOL 119
BOOL_TO_WORD BOOL into WORD 120
BOOL16_TO_WORD BOOL16 to WORD 121
BOOLS_TO_WORD 16 Variables of the data type BOOL to WORD 122
DWORD_TO_WORD DOUBLE WORD in WORD 124
INT_TO_WORD INTEGER into WORD 125
DINT_TO_WORD DOUBLE INTEGER into WORD 126
UINT_TO_WORD Unsigned INTEGER into WORD 127
UDINT_TO_WORD Unsigned DOUBLE INTEGER into WORD 128
TIME_TO_WORD TIME into WORD 129
STRING_TO_WORD STRING (hexadecimal format) to WORD 130
STRING_TO_WORD_STEPSAVE
R

STRING (Hexadecimal Format right-justified) to WORD
131

BOOL_TO_DWORD BOOL into DOUBLE WORD 132
BOOL32_TO_DWORD BOOL32 to DOUBLE WORD 133
BOOLS_TO_DWORD 32 Variables of the data type BOOL to DWORD 134
WORD_TO_DWORD WORD in DOUBLE WORD 136
INT_TO_DWORD INTEGER into DOUBLE WORD 137

Table of Contents

7

DINT_TO_DWORD DOUBLE INTEGER into DOUBLE WORD 138
UINT_TO_DWORD Unsigned INTEGER into DOUBLE WORD 139
UDINT_TO_DWORD Unsigned DOUBLE INTEGER into DOUBLE WORD 140
REAL_TO_DWORD REAL into DOUBLE WORD 141
TIME_TO_DWORD TIME into DOUBLE WORD 142
STRING_TO_DWORD STRING (Hexadecimal Format) to DOUBLE WORD 143
STRING_TO_DWORD_STEPSAV
ER

STRING (Hexadecimal Format right-justified) to DOUBLE
WORD 144

BOOL_TO_INT BOOL into INTEGER 145
WORD_TO_INT WORD value in INTEGER 146
WORD_BCD_TO_INT Binary WORD value into INTEGER 147
DWORD_TO_INT DOUBLE WORD in INTEGER 148
DINT_TO_INT DOUBLE INTEGER into INTEGER 149
UINT_TO_INT Unsigned DOUBLE INTEGER into INTEGER 150
UDINT_TO_INT Unsigned DOUBLE INTEGER into INTEGER 151
REAL_TO_INT REAL into INTEGER 152
TRUNC_TO_INT Truncate (cut off) decimal digits of REAL input variable,

convert to INTEGER 153
TIME_TO_INT TIME into INTEGER 154
STRING_TO_INT STRING (decimal format) to INTEGER 155
STRING_TO_INT_STEPSAVER STRING (Decimal Format right-justified) to INTEGER 156
BOOL_TO_UINT BOOL into Unsigned INTEGER 157
WORD_TO_UINT WORD to Unisgned INTEGER 158
WORD_BCD_TO_UINT Binary coded WORD value in Unsigned INTEGER 159
DWORD_TO_UINT DOUBLE WORD into Unsigned INTEGER 160
INT_TO_UINT INTEGER to Unsigned INTEGER 161
DINT_TO_UINT DOUBLE INTEGER into Unsigned INTEGER 162
UDINT_TO_UINT Unsigned DOUBLE INTEGER into Unsigned INTEGER 163
REAL_TO_UINT REAL into Unsigned INTEGER 164
TRUNC_TO_UINT Truncate (cut off) decimal digits of REAL input variable,

convert to UNSIGNED INTEGER 165
STRING_TO_UINT STRING (decimal format) to Unsigned INTEGER 166
STRING_TO_UINT_STEPSAVER STRING (Decimal Format right-justified) to Unsigned

INTEGER 167
BOOL_TO_DINT BOOL into DOUBLE INTEGER 168
WORD_TO_DINT WORD in DOUBLE INTEGER 169
DWORD_BCD_TO_DINT Binary coded DWORD value into DOUBLE INTEGER 170
DWORD_TO_DINT DOUBLE WORD in DOUBLE INTEGER 171
INT_TO_DINT INTEGER into DOUBLE INTEGER 172
UINT_TO_DINT Unsigned INTEGER into DOUBLE INTEGER 173
UDINT_TO_DINT Unsigned DOUBLE INTEGER into DOUBLE INTEGER 174
REAL_TO_DINT REAL into DOUBLE INTEGER 175
TRUNC_TO_DINT Truncate (cut off) decimal digits of REAL input variable,

convert to DOUBLE INTEGER 176

Table of Contents

8

TIME_TO_DINT TIME into DOUBLE INTEGER 177
STRING_TO_DINT STRING (Decimal Format) to DOUBLE INTEGER 178
STRING_TO_DINT_STEPSAVER STRING (Decimal Format right-justified) to DOUBLE

INTEGER 179
BOOL_TO_UDINT BOOL into Unsigned DOUBLE INTEGER 180
WORD_TO_UDINT WORD in Unsigned DOUBLE INTEGER 181
DWORD_TO_UDINT DOUBLE WORD in Unsigned DOUBLE INTEGER 182
DWORD_BCD_TO_UDINT Binary value of DOUBLE WORD in Unsigned INTEGER 183
INT_TO_UDINT INTEGER into Unsigned DOUBLE INTEGER 184
UINT_TO_UDINT Unsigned INTEGER to Unsigned DOUBLE INTEGER 185
DINT_TO_UDINT DOUBLE INTEGER into Unsigned DOUBLE INTEGER 186
REAL_TO_UDINT REAL into unsigned DOUBLE INTEGER 187
TRUNC_TO_UDINT Truncate (cut off) decimal digits of REAL input variable,

convert to Unsigned DOUBLE INTEGER 188
STRING_TO_UDINT STRING (Decimal Format) into Unsigned DOUBLE INTEGER 189
DATE_TO_UDINT DATE into Unsigned DOUBLE INTEGER 190
DT_TO_UDINT DATE_AND_TIME into Unsigned DOUBLE INTEGER 191
TOD_TO_UDINT TIME_OF_DAY into Unsigned DOUBLE INTEGER 192
DWORD_TO_REAL DWORD into REAL 193
INT_TO_REAL INTEGER into REAL 194
DINT_TO_REAL DOUBLE INTEGER into REAL 195
UINT_TO_REAL Unsigned INTEGER into REAL 196
UDINT_TO_REAL Unsigned DOUBLE INTEGER into REAL 197
TIME_TO_REAL TIME into REAL 198
STRING_TO_REAL STRING to REAL 199
WORD_TO_TIME WORD in TIME 200
DWORD_TO_TIME DOUBLE WORD in TIME 201
INT_TO_TIME INTEGER into TIME 202
DINT_TO_TIME DOUBLE INTEGER into TIME 203
REAL_TO_TIME REAL into TIME 204
UDINT_TO_DT Unsigned DOUBLE INTEGER into DATE_AND_TIME 205
DT_TO_DATE DATE_AND_TIME to DATE 206
UDINT_TO_DATE Unsigned DOUBLE INTEGER into DATE 207
DT_TO_TOD DATE_AND_TIME to TIME_OF_DAY 208
UDINT_TO_TOD Unsigned DOUBLE INTEGER into TIME_OF_DAY 209
BOOL_TO_STRING BOOL into STRING 210
WORD_TO_STRING WORD into STRING 212
DWORD_TO_STRING DOUBLE WORD into STRING 214
DATE_TO_STRING DATE into STRING 216
DT_TO_STRING DATE_AND_TIME into STRING 217
INT_TO_STRING INTEGER into STRING 218
INT_TO_STRING_LEADING_ZER
OS

INTEGER into STRING
220

DINT_TO_STRING DOUBLE INTEGER into STRING 221

Table of Contents

9

UDINT_TO_STRING Unsigned DOUBLE INTEGER into STRING 223
DINT_TO_STRING_LEADING_ZE
ROS

DOUBLE INTEGER into STRING
225

UDINT_TO_STRING_LEADING_Z
EROS

Unsigned DOUBLE INTEGER into STRING
226

UINT_TO_STRING Unsigned INTEGER into STRING 227
UINT_TO_STRING_LEADING_ZE
ROS

Unsigned INTEGER into STRING
228

REAL_TO_STRING REAL into STRING 229
TIME_TO_STRING TIME into STRING 231
IPADDR_TO_STRING IP Address to STRING 233
IPADDR_TO_STRING_NO_LEADI
NG_ZEROS

IP Address to STRING
234

ETLANADDR_TO_STRING ETLAN Address to STRING 235
ETLANADDR_TO_STRING_NO_L
EADING_ZEROS

ETLAN Address to STRING
236

TOD_TO_STRING TIME_OF_DAY into STRING 237
WORD_TO_BOOL16 WORD to BOOL16 238
DWORD_TO_BOOL32 DOUBLE WORD to BOOL32 239
WORD_TO_BOOLS WORD to 16 variables of the data type BOOL 240
DWORD_TO_BOOLS DOUBLE WORD to 32 variables of the data type BOOL 242
INT_TO_BCD_WORD INTEGER into BCD value of WORD 244
DINT_TO_BCD_DWORD DOUBLE INTEGER into BCD DOUBLE WORD 245
UINT_TO_BCD_WORD Unsigned INTEGER into BCD value of WORD 246
UDINT_TO_BCD_DWORD Unsigned DOUBLE INTEGER into BCD DOUBLE WORD 247
STRING_TO_IPADDR STRING to IP Address 248
STRING_TO_IPADDR_STEPSAV
ER

STRING (IP-Address Format 00a.0bb.0cc.ddd) to DWORD
249

STRING_TO_ETLANADDR STRING to ETLAN Address 250
STRING_TO_ETLANADDR_STEP
SAVER

STRING (IP-address format 00a.0bb.0cc.ddd) to ETLAN
Address 251

8. Selection instructions.. 253

MAX Maximum value 254
MIN Minimum value 255
MUX Select value from multiple channels 256
SEL Select value from one of two channels 258

9. String instructions.. 261

LEN String Length 262
LEFT Copy characters from the left 264
RIGHT Copy characters from the right 266
MID Copy characters from a middle position 268

Table of Contents

10

CONCAT Concatenate (attach) a string 270
DELETE Delete characters from a string 272
FIND Find string's position 274
INSERT Insert characters 276
REPLACE Replaces characters 278

10. Date and time instructions ...281

ADD_DT_TIME Add TIME to DATE_AND_TIME 282
ADD_TOD_TIME Add TIME to TIME_OF_DAY 283
CONCAT_DATE_INT Concatenate INT values to form a date 284
CONCAT_DATE_TOD Concatenate date and time of day 285
CONCAT_DT_INT Concatenate INT values to form date and time 286
CONCAT_TOD_INT Concatenate INT values to form the time of day 288
DAY_OF_WEEK1 Return the day of the week 289
GET_RTC_DT Read the Real-Time Clock 290
IS_VALID_DATE_INT Check whether a DATE is valid 291
IS_VALID_DT_INT Check whether DATE_AND_TIME is valid 292
IS_VALID_TOD_INT Check whether the TIME_OF_DAY is valid 294
SET_RTC_DT Set the Real-Time Clock 295
SPLIT_DATE_INT Split a date into INTEGER values 296
SPLIT_DT_INT Split a date and time into INTEGER values 297
SPLIT_TOD_INT Split the time of day into INT values 299
SUB_DATE_DATE Subtracts a date from another date 300
SUB_DT_DT Subtract date and time from date and time 301
SUB_DT_TIME Subtracts time from date and time 302
SUB_TOD_TIME Subtracts a TIME value from the time of day 303
SUB_TOD_TOD Subtract Time of Day from Time of Day 304

11. Bistable instructions...305

SR Set/reset 306
RS Reset/set 308

12. Edge detection instructions...311

R_TRIG Rising edge trigger 312
F_TRIG Falling edge trigger 313

13. Counter instructions...315

CTU Up counter 316

Table of Contents

11

CTD Down counter 318
CTUD Up/down counter 320

14. Timer instructions .. 323

TOF Timer with switch-off delay 324
TON Timer with switch-on delay 326
TP Timer with defined period 328
ADD_TIME Add TIME 330
CONCAT_TIME_INT Concatenate INT values to form a time 331
DIV_TIME_INT Divide TIME by INTEGER 332
DIV_TIME_DINT Divide TIME by DOUBLE INTEGER 333
DIV_TIME_REAL Divide TIME by REAL 334
MUL_TIME_INT Multiply TIME by INTEGER 335
MUL_TIME_DINT Multiply TIME by DOUBLE INTEGER 336
MUL_TIME_REAL Multiply TIME by REAL 337
SPLIT_TIME_INT Split a time into INTEGER values 338
SUB_TIME Subtract TIME 339

Part III FP instructions

15. Arithmetic instructions .. 341

F20_ADD 16-bit addition 342
F21_DADD 32-bit addition 344
F22_ADD2 16-bit addition, destination can be specified 346
F23_DADD2 32-bit addition, destination can be specified 348
F40_BADD 4-digit BCD addition 350
F41_DBADD 8-digit BCD addition 352
F42_BADD2 4-digit BCD addition, destination can be specified 354
F43_DBADD2 8-digit BCD addition, destination can be specified 356
F35_INC 16-bit increment 358
F36_DINC 32-bit increment 360
F55_BINC 4-digit BCD increment 362
F56_DBINC 8-digit BCD increment 364
F25_SUB 16-bit subtraction 366
F26_DSUB 32-bit subtraction 368
F27_SUB2 16-bit subtraction, destination can be specified 370
F28_DSUB2 32-bit subtraction, destination can be specified 372
F45_BSUB 4-digit BCD subtraction 374
F46_DBSUB 8-digit BCD subtraction 376
F47_BSUB2 4-digit BCD subtraction, destination can be specified 378

Table of Contents

12

F48_DBSUB2 8-digit BCD subtraction, destination can be specified 380
F37_DEC 16-bit decrement 382
F38_DDEC 32-bit decrement 384
F57_BDEC 4-digit BCD decrement 386
F58_DBDEC 8-digit BCD decrement 388
F30_MUL 16-bit multiplication, destination can be specified 390
F31_DMUL 32-bit multiplication, destination can be specified 392
F34_MULW 16-bit data multiply (result in 16 bits) 394
F39_DMULD 32-bit data multiply (result in 32 bits) 396
F50_BMUL 4-digit BCD multiplication, destination can be specified 398
F51_DBMUL 8-digit BCD multiplication, destination can be 11 specified 400
F32_DIV 16-bit division, destination can be specified 402
F33_DDIV 32-bit division, destination can be specified 404
F52_BDIV 4-digit BCD division, destination can be specified 406
F53_DBDIV 8-digit BCD division, destination can be specified 408
F313_FDIV Floating Point Data Divide 410
F70_BCC Block check code calculation 412
F160_DSQR 32-bit data square root 415
F300_BSIN BCD type Sine operation 417
F301_BCOS BCD type Cosine operation 419
F302_BTAN BCD type Tangent operation 421
F303_BASIN BCD type Arcsine operation 423
F304_BACOS BCD type Arccosine operation 425
F305_BATAN BCD type Arctangent operation 427
F87_ABS 16-bit data absolute value 429
F88_DABS 32-bit data absolute value 431
F287_BAND 16-bit data deadband control 433
F288_DBAND 32-bit data deadband control 435
F348_FBAND Floating point data deadband control 437
F289_ZONE 16-bit data zone control 440
F290_DZONE 32-bit data (double word data) zone control 442
F349_FZONE Floating point data zone control 444
F85_NEG 16-bit data two's complement 447
F86_DNEG 32-bit data two's complement 449
F270_MAX Maximum value search in 16-bit data table 451
F271_DMAX Maximum value search in 32-bit data table 453
F350_FMAX Maximum value search in real number data table (floating

point data) 455
F272_MIN Minimum value search in 16-bit data table 457
F273_DMIN Minimum value search in 32-bit data table 459
F351_FMIN Minimum value search in real number data table (floating

point data) 461
F275_MEAN Total and mean numbers calculation in 16-bit data table 463
F276_DMEAN Total and mean numbers calculation in 32-bit data table 465

Table of Contents

13

F352_FMEAN Total and mean numbers calculation in floating point data
table 467

F282_SCAL Linearization of 16-bit data 469
F283_DSCAL Linearization of 32-bit data 472
F284_RAMP Inclination output of 16-bit data 475
F354_FSCAL Scaling of Real Number Data 478
F96_SRC Table data search (16-bit search) 479
F97_DSRC 32-bit table data search 481

15.1 Introduction into the FIFO buffer ... 483
F115_FIFT FIFO buffer area definition 484
F116_FIFR Read from FIFO buffer 488
F117_FIFW Write to FIFO buffer 492
F98_CMPR Data table shift-out and compress 496
F99_CMPW Data table shift-in and compress 499
F277_SORT Sort data in 16-bit data table (in smaller or larger number

order) 501
F278_DSORT Sort data in 32-bit data table (in smaller or larger number

order) 503
F353_FSORT Sort data in real number data table (floating point data

table) 505

16. Bistable instructions .. 507

KEEP Serves as a relay with set and reset inputs 508
SET SET, RESET 509

17. Bitwise Boolean instructions .. 511

F5_BTM Bit data move 512
F6_DGT Digit data move 514
F65_WAN 16-bit data AND 518
F66_WOR 16-bit data OR 520
F67_XOR 16-bit data exclusive OR 522
F68_XNR 16-bit data exclusive NOR 524
F69_WUNI 16-bit data unite 526
F215_DAND 32-bit data AND 528
F216_DOR 32-bit data OR 530
F217_DXOR 32-bit data XOR 532
F218_DXNR 32-bit data XNR 534
F219_DUNI 32-bit data unites 12 536
F130_BTS 16-bit data bit set 538
F131_BTR 16-bit data bit reset 539
F132_BTI 16-bit data bit invert 540
F133_BTT 16-bit data test 541
F135_BCU Number of ON bits in 16-bit data 543

Table of Contents

14

F136_DBCU Number of ON bits in 32-bit data 544
F84_INV 16-bit data invert (one's complement) 545
F93_UNIT 16-bit data combine 547
F94_DIST 16-bit data distribution 549
F182_FILTER Time constant processing 551

18. Bit-shift instructions ...555

LSR Left shift register 556
F100_SHR Right shift of 16-bit data in bit units 558
F101_SHL Left shift of 16-bit data in bit units 560
F102_DSHR Right shift of 32-bit data in bit units 562
F103_DSHL Left shift of 32-bit data in bit units 564
F105_BSR Right shift of one hexadecimal digit (4 bits) of 16-bit data 566
F106_BSL Left shift of one hexadecimal digit (4 bits) of 16-bit data 568
F108_BITR Right shift of multiple bits of 16-bit data range 570
F109_BITL Left shift of multiple bits of 16-bit data range 572
F110_WSHR Right shift of one word (16 bits) of 16-bit data range 574
F111_WSHL Left shift of one word (16 bits) of 16-bit data range 576
F112_WBSR Right shift of one hex. digit (4 bits) of 16-bit 5 data range 578
F113_WBSL Left shift of one hex. digit (4 bits) of 16-bit data range 580
F119_LRSR LEFT/RIGHT shift register 582
F120_ROR 16-bit data right rotate 586
F121_ROL 16-bit data left rotate 588
F122_RCR 16-bit data right rotate with carry-flag data 590
F123_RCL 16-bit data left rotate with carry-flag data 592
F125_DROR 32-bit data right rotate 594
F126_DROL 32-bit data left rotate 596
F127_DRCR 32-bit data right rotate with carry flag data 598
F128_DRCL 32-bit data right rotate with carry flag data 600

19. Comparison instructions..603

F60_CMP 16-bit data compare 604
F61_DCMP 32-bit data compare 606
F62_WIN 16-bit data band compare 608
F63_DWIN 32-bit data band compare 610
F64_BCMP Block data compare 612
F346_FWIN Floating point data band compare 614
F373_DTR 16-bit data revision detection 616
F374_DDTR 32-bit data revision detection 618

19.1 Further comparison instructions ..620

Table of Contents

15

20. Conversion instructions .. 621

F71_HEX2A HEX -> ASCII conversion 622
F72_A2HEX ASCII -> HEX conversion 625
F73_BCD2A BCD -> ASCII conversion 628
F74_A2BCD ASCII -> BCD conversion 631
F75_BIN2A 16-bit BIN -> ASCII conversion 635
F76_A2BIN ASCII -> 16-bit BIN conversion 638
F77_DBIN2A 32-bit BIN -> ASCII conversion 641
F78_DA2BIN ASCII -> 32 bit BIN conversion 644
F80_BCD 16-bit BIN -> 4-digit BCD conversion 647
F81_BIN 4-digit BCD -> 16-bit BIN conversion 649
F82_DBCD 32-bit BIN -> 8-digit BCD conversion 651
F83_DBIN 8-digit BCD -> 32-bit BIN conversion 653
F89_EXT 16-bit data sign extension, INT -> DINT 655
F90_DECO Decode hexadecimal -> bit state 657
F91_SEGT 16-bit data 7-segment decode 659
F92_ENCO Encode bit state -> hexadecimal 660
F95_ASC 12 Character -> ASCII transfer 662
F235_GRY 16-bit data -> 16-bit Gray code 665
F236_DGRY 32-bit data -> 32-bit Gray code 666
F237_GBIN 16-bit Gray code -> 16-bit binary data 667
F238_DGBIN 32-bit Gray code -> 32-bit binary data 668
F240_COLM Bit line to bit column conversion 669
F241_LINE Bit column to bit line conversion 671
F250_BTOA Binary -> ASCII conversion 673
F251_ATOB ASCII -> Binary conversion 677
F252_ACHK ASCII data check 682
F325_FLT 16-Bit Integer Data to Floating Point Data Conversion 684
F326_DFLT 32-Bit Integer Data to Floating Point Data Conversion 685
F327_INT Floating point data -> 16-bit integer data (the largest integer

not exceeding the floating point data) 687
F328_DINT Floating point data -> 32-bit integer data (the largest integer

not exceeding the floating point data) 689
F333_FINT Rounding the first decimal point down 691
F334_FRINT Rounding the first decimal point off 693
F335_FSIGN Floating point data sign changes (negative/positive

conversion) 695
F337_RAD Conversion of angle units (Degrees -> Radians) 697
F338_DEG Conversion of angle units (Radians -> Degrees) 699

Table of Contents

16

21. Counter instructions...701

CT_FB Down Counter 702
CT Counter 705
F118_UDC UP/DOWN counter 708

22. Data transfer via communication ports ..711

22.1 Description of the communication modes..712

22.2 Setting the communication parameters ...714

22.2.1.1 Setting the CPU's COM Ports in PROG Mode via System Registers714
22.2.1.2 Setting the CPU's COM Ports in PROG Mode via DIP Switches (FP10SH)715
22.2.1.3 Setting in RUN Mode with SYS instructions (FP-Sigma, FP-X) ..717
22.2.1.4 Changing the communication mode in RUN mode..717

SetCommunicationMode Switch communication mode between 'Program
controlled' and 'MEWTOCOL-COM' 718

22.3 Getting the communication mode..724

22.3.1 Checking for PLC link mode..724
IsPlcLink Evaluation of "PLC Link" flag for all ports 725

22.3.2 Checking for program controlled mode ...725
IsProgramControlled Evaluates the "program controlled" flag 726

22.3.3 Checking for MEWTOCOL-COM master / slave mode...726
F161_MRD_PARA Getting the communication modes in RUN mode from

MCU's COM port 728
F161_MRD_STATUS Getting the statuses in RUN mode from MCU's COM

port 730

22.3.3.1 Getting the communication modes and statuses via the input (X) flags from the MCU's COM
ports in RUN mode ..732

22.4 Data transfer in program controlled mode ...733

22.4.1 Sending data to external devices ..733
SendCharacters Send characters to CPU or MCU port 738
SendCharactersAndClearString Send characters and clesr string 740
F159_MTRN Serial data communication to CPU or MCU port 742

22.4.1.1 Format of send and receive data ...745
22.4.2 Receiving data from external devices ...747

ReceiveData Receive data from CPU or MCU port 751
ReceiveCharacters Receive characters from CPU or MCU port 753
ClearReceiveBuffer Reset the receive buffer 754
F161_MRCV Read serial data from the MCU's COM port 756

22.4.3 Flag operation in program controlled communication ...757

Table of Contents

17

IsReceptionDone Evaluation of "reception done" flag for all ports 761
IsReceptionDoneByTimeout Evaluation of "reception done" condition by time-out

for all ports 762
IsTransmissionDone Evaluation of "transmission done" flag for all ports 764
IsCommunicationError Evaluation of communication error flag for all ports 765

22.5 Data transfer in master/slave mode (MEWTOCOL/Modbus RTU) 766
F145_WRITE_DATA Write Data to Slave 767
F145_WRITE_DATA_TYPE_OFFS Write Data to Slave with Type and Offset 770
F146_READ_DATA Read Data from Slave 773
F146_READ_DATA_TYPE_OFFS Read Data from Slave with Type and Offset 775
F145F146_MODBUS_COMMAND Write data to slave or read data from slave 778
F145F146_MODBUS_MASTER Write data to slave or read data from slave 780

22.5.1 Evaluation of IsF145146NotActive flag ...781
Is145F146NotActive for all ports via a general function 782
IsF145F146Error Returns the value of the "F145F146 Error" flag 783

23. Data transfer via network... 785

23.1 Data transfer via MEWNET link .. 786
F145_SEND Data send (MEWNET link) 787
F146_RECV Data receive (MEWNET link) 789

23.2 Data transfer via shared memory of a MEWNET-F-Slave station .. 791
F152_RMRD Data read from the slave station 792
F153_RMWT Data write into the slave station 795

23.3 Data exchange with flexible network... 798
FNS_InitConfigDataTable Function 799
FNS_InitConfigNameTable Function 802

24. Data transfer within the PLC ... 805

F0_MV 16-bit data move 806
F1_DMV 32-bit data move 808
F2_MVN 16-bit data inversion and move 810
F3_DMVN 32-bit data inversion and move 812
F4_GETS Reading of the Numbers of the First WX and the First WY of

the Specified Slot 814
F7_MV2 Two 16-bit data move 816
F8_DMV2 Two 32-bit data move 818
F10_BKMV Block move 820
F10_BKMV_NUMBER Block move by number 822
F10_BKMV_OFFSET Block move to an offset from source 823

Table of Contents

18

F10_BKMV_NUMBER_OFFSET Block move by number to an offset from source 824
F11_COPY Block copy 825
F12_EPRD EEPROM read from memory 827
F12_ICRD IC card extended memory read 829
F13_ICWT IC card extended memory write 831
F14_PGRD Program Read from IC card 833
P13_EPWT EEPROM write to memory 834
F15_XCH 16-bit data exchange 836
F16_DXCH 32-bit data exchange 837
F17_SWAP Higher/lower byte in 16-bit data exchange 839
F18_BXCH 16-bit blocked data exchange 841
F143_IORF Partial I/O update 843
F147_PR Parallel printout 845
F150_READ Data read from intelligent units 848
F151_WRT Write into memory of intelligent units 851
F190_MV3 Three 16-bit data move 854
F191_DMV3 Three 32-bit data move 856
F309_FMV Floating Point Data Move 858

24.1 Data transfer to and from special data registers..859

24.2 Transferring data to and from file register banks 1 or 2...860
ReadDataFromFileRegisterBank Read Data from File Register Bank 1 or 2 861
WriteDataToFileRegisterBank Write Data to File Register Bank 1 or 2 863

25. Date and time instructions ...865

F138_TIMEBCD_TO_SECBCD h:min:s -> s conversion 866
F139_SECBCD_TO_TIMEBCD s -> h:min:s conversion 867
F157_ADD_DTBCD_TIMEBCD Time addition 868
F158_SUB_DTBCD_TIMEBCD Time subtraction 870
F230_DTBCD_TO_SEC Time Data Conversion into Seconds 872
F231_SEC_TO_DTBCD Conversion of Seconds into Time Data 873
GET_RTC_DTBCD Read the Real-Time Clock 874
SET_RTC_DTBCD Set the Real-Time Clock 875

26. Selection Instructions...877

F285_LIMT 16-bit data upper and lower limit control 878
F286_DLIMT 32-bit data upper and lower limit control 880

Table of Contents

19

27. Edge detection instructions .. 883

DF Rising edge differential 884
DFN Falling edge differential 885
DFI Rising edge differential (initial execution type) 886
ALT Alternative out 888

28. High-speed counter instructions .. 889

28.1 Introduction ... 890

28.2 Writing the high-speed counter control code .. 891

28.3 High-speed counter: writing and reading the elapsed value ... 894
F165_HighSpeedCounter_Cam Cam control 895
F166_HighSpeedCounter_Set Target value match ON (high-speed counter) 901
F167_HighSpeedCounter_Reset Target value match OFF (high-speed counter) 905
F178_HighSpeedCounter_Measure Input pulse measurement 909

29. Timer instructions .. 913

TM_1ms_FB Timer for 1ms intervals (0 to 32.767s) 914
TM_10ms_FB Timer for 10ms intervals (0 to 327.67s) 917
TM_100ms_FB Timer for 100ms intervals (0 to 3276.7s) 920
TM_1s_FB Timer for 1s intervals (0 to 32767s) 923
TM_1ms Timer for 1ms intervals (0 to 32.767s) 926
TM_10ms Timer for 10ms intervals (0 to 327.67s) 928
TM_100ms Timer for 100ms intervals (0 to 3276.7s) 930
TM_1s Timer for 1s intervals (0 to 32767s) 932
F137_STMR Timer 16-bit 934
F183_DSTM Timer 32-bit 935

30. Process control instructions... 937

30.1 Explanation of the operation of the PID instuctions .. 938
F355_PID_DUT PID processing instruction 942
F356_PID_PWM PID processing with optional PWM output 945
PID_FB PID processing instruction 952
PID_FB_DUT PID processing instruction 954
SCALE_INT Scales INTEGER data 956
SCALE_INT_UINT Scale INTEGER data into unsigned INTEGER data 958

Table of Contents

20

SCALE_REAL Scale REAL data 960
SCALE_UINT Scale UINT data 962
SCALE_UINT_INT Scales UINT input data to INT output data 964
SmoothSignal_INT Smooth INT signals 966
SmoothSignal_REAL Smooth REAL signals 967
SmoothSignal_UINT Smooth UINT signals 968

31. FP-e display instructions ...969

F180_SCR Screen display instruction 970
F180_SCR_DUT Configuring the Display of the FP-e 971
F181_DSP Screen change instruction 975

32. System register instructions..979

SYS1 Change PLC system setting 980
SYS2 Change System Register Settings for PC Link Area 994

33. Special instructions ..997

F140_STC Carry-flag set 998
F141_CLC Carry-flag reset 999
F142_WDT Watchdog timer update 1000
F148_ERR Self-diagnostic error set/reset 1001
F149_MSG Message display 1003
F155_SMPL Transfer sampling data 1004
F156_STRG Set sampling trigger 1005

34. Program execution control instructions...1007

MC Master control relay 1008
MCE Master control relay end 1009
JP Jump to label 1010
F19_SJP Indirect jump to label 1011
LOOP Loop to label 1013
LBL Label for the JP- and LOOP-instruction 1014
BRK Break 1016
ICTL Interrupt Control 1017

Table of Contents

21

35. Pulse output instructions .. 1019

35.1 Introduction ... 1020

35.2 Writing the pulse output control code.. 1021

35.3 Pulse output: writing and reading the elapsed value .. 1026
F166_PulseOutput_Set Target value match ON (pulse output) 1027
F167_PulseOutput_Reset Target value match OFF (pulse output) 1030
F168_PulseOutput_Trapezoidal Trapezoidal control 1033
F168_PulseOutput_Home Home return 1036
F169_PulseOutput_Jog JOG operation 1040
F170_PulseOutput_PWM PWM output 1043
F171_PulseOutput_Trapezoidal Trapezoidal control 1046
F171_PulseOutput_Home Home return 1052
F171_PulseOutput_Jog_Positioning JOG operation and positioning 1056
F172_PulseOutput_Jog JOG operation 1061
F173_PulseOutput_PWM PWM output 1067
F174_PulseOutput_DataTable Data table control 1070
F175_PulseOutput_Linear Linear interpolation 1073
F176_PulseOutput_Center Circular interpolation (center position) 1078
F176_PulseOutput_Pass Circular interpolation (pass position) 1082
F177_PulseOutput_Home Home Return 1086

Part IV Tool instructions

36. Analog unit instructions .. 1091

Unit_AnalogInOut_FP0_A21 Reads data from the FP0-A21 unit 1092
Unit_AnalogInput_FP0_A80 Reads data from the FP0-A80 unit 1097
Unit_AnalogInput_FP0_RTD_INT Reads analog data from the FP0-RTD6 unit 1102
Unit_AnalogInput_FP0_RTD_REAL Reads analog data from the FP0-RTD6 unit 1108
Unit_AnalogInput_FP0_TC4_TC8 Reads data from the FP0-TC4/FP0-TC8 unit 1114
Unit_AnalogInOut_FPG_A44 Reads data from the FPG-A44 unit 1119
Unit_AnalogOutput_FP0_A04I Reads data from the FP0-A04 unit 1123
Description
Unit_AnalogOutput_FP0_A04V Reads data from the FP0-A04 unit 1126
ExpansionUnitNumberToIOWordOff
set_FP0

Calculate the IO offset of analog units for FP0
1129

ExpansionUnitNumberToIOWordOff
set_FPX_FP0

Calculates the IO offset of analog units for FP-X
1130

Table of Contents

22

37. GT panel instructions ...1133

GT_ActivateScreen Control the GT panel screen 1134
GT_ChangeBacklightBrightness Changes the backlight brightness of a GT panel 1136

38. High-speed counter instructions...1137

38.1 Introduction..1138

38.2 High-speed counter control instructions ..1139
HscControl_CountingDisable Disables counting on a high-speed counter channel 1140
HscControl_CountingEnable Enables counting on a high-speed counter channel 1142
HscControl_ElapsedValueContinue Continues counting after reset 1144
HscControl_ElapsedValueReset Sets elapsed value to 0 1146
HscControl_HscInstructionClear Clears high-speed counter instruction 1148
HscControl_ResetInputDisable Disables reset input 1150
HscControl_ResetInputEnable Enables reset input 1151
HscControl_SetDefaults Sets defaults for high-speed counter channel 1152
HscControl_WriteElapsedValue Writes elapsed value into high-speed counter channel 1153

38.3 High-speed counter information instructions ...1155
HscInfo_GetControlCode Returns control code of high-speed counter channel 1156
HscInfo_GetCurrentSpeed Returns current speed of high-speed counter channel 1157
HscInfo_IsActive Checks if high-speed counter is active 1158
HscInfo_IsChannelEnabled Checks if high-speed counter channel is enabled 1159
HscInfo_IsCountingDisabled Checks if counting is disabled 1160
HscInfo_IsElapsedValueReset Checks if elapsed value is set to 0 1161
HscInfo_IsResetInputDisabled Checks if reset input is disabled 1162
HscInfo_ReadElapsedValue Reads elapsed value from high-speed counter channel 1164
HscInfo_ReadTargetValue Reads target value from high-speed counter channel 1165

38.4 High-speed counter target value match control ...1166
Hsc_TargetValueMatch_Reset Target value match OFF (high-speed counter) 1167
Hsc_TargetValueMatch_Set Target value match ON (high-speed couter) 1169

39. Pulse output instructions...1171

39.1 Introduction..1172

39.2 Pulse output function blocks..1173
PulseOutput_Center_FB Circular interpolation (center position) 1174
PulseOutput_Home_FB Home return 1177
PulseOutput_Jog_FB JOG operation 1180
PulseOutput_Jog_Positioning0_FB JOG operation and positioning 1182

Table of Contents

23

PulseOutput_Jog_Positioning1_FB JOG operation and positioning 1185
PulseOutput_Jog_TargetValue_FB JOG operation with target value 1187
Description
PulseOutput_Linear_FB Linear interpolation 1189
PulseOutput_Pass_FB Circular interpolation (pass position) 1192
PulseOutput_Trapezoidal_FB Trapezoidal control 1195

39.3 Pulse control instructions .. 1198
PulseControl_CountingDisable Disables counting on a pulse output channel 1199
PulseControl_CountingEnable Enables counting on a pulse output channel 1201
PulseControl_DeceleratedStop Performs a decelerated stop 1203
PulseControl_ElapsedValueContin
ue

Continues pulse counting after reset
1205

PulseControl_ElapsedValueReset Sets elapsed value to 0 1207
PulseControl_JogPositionControl Starts position control 1209
PulseControl_NearHome Starts deceleration when near home 1210
PulseControl_PulseOutputContinu
e

Continues pulse output
1212

PulseControl_PulseOutputStop Stops pulse output 1214
PulseControl_SetDefaults Sets defaults for pulse output channel 1216
PulseControl_WriteElapsedValue Writes elapsed value into a pulse output channel 1217
Pulse_TargetValueMatchClear Clears target value match control 1219

39.4 Pulse information instructions ... 1220
PulseInfo_GetControlCode Returns control code of pulse output channel 1221
PulseInfo_GetCurrentSpeed Returns current speed on pulse output channel 1222
PulseInfo_IsActive Check if pulse output is active 1224
PulseInfo_IsChannelEnabled Checks if pulse output channel is enabled 1225
PulseInfo_IsCountingDisabled Checks if pulse counting is disabled 1226
PulseInfo_IsElapsedValueReset Checks if elapsed value is set to 0 1227
PulseInfo_IsHomeInputTrue Checks if home input is TRUE 1228
PulseInfo_IsPulseOutputStopped Check if pulse output has stopped 1229
PulseInfo_IsTargetValueMatchActi
ve

Checks if target value match control is active
1230

PulseInfo_ReadAccelerationForbid
denAreaStartingPosition

Read acceleration forbidden area starting position
1231

PulseInfo_ReadCorrectedFinalSpe
ed

Reads corrected value of final speed
1232

PulseInfo_ReadCorrectedInitialSpe
ed

Reads corrected value of initial speed
1233

PulseInfo_ReadElapsedValue Reads elapsed value from pulse output channel 1234
PulseInfo_ReadTargetValue Reads target value from pulse output channel 1235
PulseInfo_ReadTargetValueMatch
Value

Reads output control target value from pulse output
channel 1236

Table of Contents

24

39.5 Pulse output target value match control ..1237
Pulse_TargetValueMatch_Reset Target value match OFF (pulse output) 1238
Pulse_TargetValueMatch_Set Target value match ON (pulse output) 1241

40. Appendix Programming Information...1245

40.1 FP TOOL Library ...1246

40.2 Floating Point Instructions ...1248

40.3 Index Registers..1250

40.4 Real Numbers..1251

40.4.1 Floating Point Constant (f)...1251

40.4.2 BCD Type Constant...1251

40.5 Overflow and Underflow ..1252

40.5.1 Values When Overflow/Underflow Occurs ..1252

40.5.2 Decimal to binary/BCD/gray code table ..1253

40.6 Special data registers ..1254

40.7 Relays and memory areas...1255

40.7.1 Relays and memory areas for FP0..1255

40.7.2 Relays and memory areas for FP0R ...1257

40.7.3 Relays and memory areas for FP-Sigma ..1259

40.7.4 Relays and memory areas for FP-X ..1261

40.7.5 Relays and memory areas for FP-e ..1263

40.7.6 Relays and memory areas for FP2..1265

40.7.7 Relays and memory areas for FP2SH...1268

40.7.8 Relays and memory areas for FP10SH...1270

40.8 System registers..1273

40.8.1 Types of system registers..1273

40.8.2 System registers for FP-X ...1274

40.8.3 System registers for FP-Sigma..1283

40.8.4 System registers for FP0R ..1288

40.8.5 System registers for FP0 ...1294

40.8.6 System registers for FP-e..1297

Table of Contents

25

40.8.7 System registers for FP2/FP2SH/FP10SH ...1300

40.9 Error codes ... 1306

40.9.1 Table of syntax check error ...1306

40.9.2 Table of self-Diagnostic errors ..1307

40.9.3 Table of communication check error ...1311

40.10 Error codes .. 1312

40.10.1 Error Codes E1 to E8..1312

40.10.2 Self-Diagnostic Error Codes ...1312

40.10.3 MEWTOCOL-COM Error Codes...1313

40.11 MEWTOCOL-COM Communication Commands... 1315

40.12 Hexadecimal/Binary/BCD .. 1316

40.13 ASCII Codes.. 1317

40.14 Availability of all instructions on all PLC types... 1318

Index... 1335

Record of changes

Chapter 1

 Basics

Basics

27

1.1 Operands

In FPWIN Pro the following operands are available:

 in- and outputs (X/Y) as well as internal memory areas

 internal relays

 special internal relays

 timers and counters

 data registers

 special data registers

 file registers

 link registers and relays

The number of operands which are available depends on the PLC-type and its configuration. To see how many
of the respective operands are available, see your hardware description.

1.1.1 Inputs/Outputs

The amount of inputs/outputs available depends on the PLC and unit type. Each input terminal corresponds to
one input X, each output terminal corresponds to one output Y.

In system register 20 you set whether an output can be used once or more during the program.

 Outputs which do not exist physically can be used like flags. These flags
are non-holding, which means their contents will be lost, e.g. after a
power failure.

1.1.2 Internal Relays

Internal Relays are memory areas where you can store interim results. Internal relays are treated like internal
outputs.

In system register no. 7 you define which internal relays are supposed to be holding/non-holding. Holding
means that its values will be retained even after a power failure.

The number of available internal relays depends on the PLC type (see hardware description of your PLC).

1.1.3 Special Internal Relays

Special internal relays are memory areas which are reserved for special PLC functions. They are automatically
set/reset by the PLC and are used:

 to indicate certain system states, e.g. errors

 as an impulse generator

 to initialize the system

 as ON/OFF control flag under certain conditions

such as when some flags get a certain status if data are ready for transmission in a PLC network.

The number of special internal relays available depends on the PLC type (see hardware description of your
PLC).

Basics

28

 Special internal relays can only be read.

1.1.4 Timers and Counters

Timers and Counters use one common memory and address area.

Define in system registers 5 and 6 how the memory area is to be divided between timers and counters and
which timers/counters are supposed to be holding or non-holding. Holding means that even after a power failure
all data will be saved, which is not the case in non-holding registers.

Entering a number in system register 5 means that the first counter is defined. All smaller numbers define
timers.

For example, if you enter zero, you define counters only. If you enter the highest value possible, you define
timers only.

In the default setting the holding area is defined by the start address of the counter area. This means all timers
are holding and all counters are non-holding. You can of course customize this setting and set a higher value for
the holding area, which means some of the timers, or if you prefer, all of them can be defined as holding.

In addition to the timer/counter area, there is a memory area reserved for the set value (SV) and the elapsed
value (EV) of each timer/counter contact. The size of both areas is 16 bits (WORD). In the SV and EV area one
INTEGER value from 0 to 32,767 can be stored.

Timer/Counter No. SV EV Relay

TM0 SV0 EV0 T0

.

.

.

.

.

.

.

.

.

.

.

.

TM99 SV99 EV99 T99

CT100 SV100 EV100 C100

.

.

.

.

.

.

.

.

.

.

.

.

While a timer or counter is being processed, the respective acual value can be read and under certain
conditions be edited.

 After changing the settings in system register 5, do not forget to adjust
the addresses of the timers/counters in your PLC program because they
correspond to the TM/CT numbers.

1.1.5 Data Registers (DT)

Data registers have a width of 16 bits. You can use them, for example, to write and read constants/parameters.
If an instruction requires 32 bits, two 16-bit data registers are used. If this is the case, enter the address of the
first data register with the prefix DDT instead of DT. The next data register (word) will be used automatically (for
more information, please refer to addresses (see page 30)).

DT2 DT1
2nd word 1st word

32 bit data register

Data registers can be holding or non-holding. Holding means that even after a power failure all data will be

Basics

29

saved. Set the holding/non-holding areas in system register 8 by entering the start address of the holding area.

The amount of data registers available depends on the PLC type (see hardware description).

1.1.6 Special Data Registers (DT)

Special data registers are like the special internal relays reserved for special functions and are in most cases
set/reset by the PLC.

The register has a width of 16 bits (data type = WORD). The amount of special data registers available depends
on the PLC type (see hardware description).

Most special data registers can only be read. Here some exceptions:

 interrupts and scan time (DT9027, DT9023-DT9024; FP0 T32P DT90027, DT90023 to DT90024)...

 actual values of the high-speed counter (DT9044 and DT9045; for FP0-T32CP DT90044 and
DT90045)

 control flag of the high-speed counter DT9052 (DT90053 for FP0-T32CP)

 real-time clock (FP2, FP2SH: DT90054 to DT90058; FP0-T32CP: DT90054 to DT90058)

See also:
Data Transfer to and from Special Data Registers (see page 859)

1.1.7 File Registers (FL)

Some PLC types (see hardware description) provide additional data registers which can be used to increase the
number of data registers. File registers are used in the same way as data registers. Set the holding/non-holding
area in system register 9. Holding means that even after a power failure all data will be saved.

1.1.8 Link Relays and Registers (L/LD)

Link relays have a width of 1 bit (BOOL). In system registers 10-13 and 40-55, set the:

 transmission area

 amount of link relay words to be sent

 holding/non-holding area

Link registers have a width of 16 bits (WORD). In system registers 10-13 and 40-55, set the:

 transmission area

 amount of link relay words to be sent

 holding/non-holding area

Basics

30

1.2 Addresses

In the List of Global Variables, enter the physical address in the field “Address” for each global variable used in
the PLC program.

The operand and the address number are part of the address. In FPWIN Pro you can use either FP and/or IEC
addresses. The following abbreviations are used:

Meaning FP
IE
C

Input X I

Output Y Q

Memory (internal memory area) R M0

Timer relay T M1

Counter relay C M2

Set value SV M3

Elapsed value EV M4

Data register DT/DD
T

M5

Link relay L M6

Link register LD M7

File register FL M8

You find the register numbers (e.g. DT9000/DT90000) in your hardware description. The next two sections
show how FP and IEC addresses are composed.

1.2.1 FP Addresses

An address represents the hardware address of an in-/output, register, or counter.

For example, the hardware address of the 1st input and the 4th output of a PLC is:

 X0 (X = input, 0 = first relay)

 Y3 (Y = output, 3 = fourth relay)

Use the following address abbreviations for the memory areas. You find the register numbers in your hardware
description.

Memory Area Abbr. FP Example

Memory (internal memory area) R R9000: self diagnostic error

Timer relay T T200: timer relay no. 200
(settings in system register 5+6)

Counter relay C C100: counter relay no. 100
(settings in system register 5+6)

Set value SV SV200 (set value for counter relay 200)

Elapsed value EV EV100 (elapsed value for timer relay 100)

Data register DT DT9001/DT90001 (signals power failure)

Link relay L L1270

Link register LD LD255

File register FL FL8188

Basics

31

1.2.2 IEC Addresses

The composition of an IEC-1131 address depends on:

 operand type

 data type

 slot no. of the unit (word address)

 relay no. (bit address)

 PLC type

In- and Outputs are the most important components of a programmable logic controller (PLC). The PLC
receives signals from the input relays and processes them in the PLC program. The results can either be stored
or sent to the output relays, which means the PLC controls the outputs.

A PLC provides special memory areas, in short “M”, to store interim results, for example.

If you want to read the status of the input 1 of the first module and control the output 4 of the second module, for
example, you need the physical address of each in-/output. Physical FPWIN Pro addresses are composed of
the per cent sign, an abbreviation for in-/output, an abbreviation for the data type and of the word and bit
address:

Example IEC address for an input

The per cent sign is the indicator of a physical address. “I” means input, “X” means data type BOOL.
The first zero represents the word address (slot no.) and the second one the bit address. Note that
counting starts with zero and that counting word and bit addresses differs among the PLC types.

Each PLC provides internal memory areas (M) to store interim results, for example. When using internal
memory areas such as data registers, do not forget the additional number (here 5) for the memory type:

Example IEC address for an internal memory area

Bit addresses do not have to be defined for data registers, counters, timers, or the set and actual
values.

According to IEC 1131, abbreviations for in- and output are “I” and “Q”, respectively. Abbreviations for the
memory areas are as follows:

Memory Type No. Example

Internal Relay (R) 0 %MX0.900.0 = internal relay R9000

Timer (T) 1 %MX1.200 = counter no. 200

Counter (C) 2 %MX2.100 = counter no. 100

Set Value counters/timers (SV) 3 %MW3.200 = set value of the counter no. 200

Basics

32

Memory Type No. Example

Elapsed Value counters/timers
(EV)

4 %MW4.100 = elapsed value of the timer no. 100

Data Registers (DT, DDT) 5 %MW5.9001 = data register DT9001
%MD5.90001 = 32-bit data register DDT90001

Link Relay (WL) 7 %MW7.63 = link relay 63

Link Register (LD) 8 %MW8.127 = link register 127

File Register (FL) 9 %MW9.800 = file register 800

 Tables with hardware addresses can be found in the hardware
description of your PLC.

The following data types are available:

Keyword Data type Range Reserved
memory

Initial value

BOOL Boolean 0 (FALSE)

1 (TRUE)

1 bit 0

WORD Bit string of length 16 0–65535 16 bits 0

DWORD Bit string of length 32 0–4294967295 32 bits 0

INT Integer -32768–32,767 16 bits 0

DINT Double integer -2147483648– 2147483647 32 bits 0

UINT Unsigned integer 0–65,535 16 bits 0

UDINT Unsigned double
integer

0–4294967295 32 bits 0

REAL Real number -3.402823466*E38–
-1.175494351*E-38

0.0

+1.175494351*E-38–
+3.402823466*E38

32 bits 0.0

T#0s–T#327.67s 16 bits 1) TIME Duration

T#0s–T#21474836.47s 32 bits 1)
T#0s

DATE_AND_TIME Date and time DT#2001-01-01-00:00:00–
DT#2099-12-31-23:59:59

32 bits DT#2001-01-01-00
:00:00

DATE Date D#2001-01-01–D#2099-12-31 32 bits D#2001-01-01

TIME_OF_DAY Time of day TOD#00:00:00–TOD#23:59:59 32 bits TOD#00:00:00

STRING Variable-length
character string

1–32767 bytes (ASCII) depending
on PLC memory size

2 words for the
head + (n+1)/2
words for the
characters

''

1) Depending on PLC type

 Please take into account that not all data types can be used with each
IEC command.

Numbering of in-/output addresses depends on the type of PLC used (see respective hardware description). For
FP0, FP-Sigma the addresses are not serially numbered. Counting restarts with zero at the first output.
Supposing you have one FP1-C24 with 16 inputs and 8 outputs, the resulting addresses are: for the input:
%IX0.0 - %IX0.15, and for the output: %QX0.0 - %QX0.7. In other words the counting for the word and bit

Basics

33

number begins at zero for the outputs.

In-/Output addresses are numbered serially. Supposing the first slot of your PLC contains an input module with
16 inputs and the second slot of your PLC contains an output module with 32 outputs, the input module
occupies the addresses: %IX0.0 - %IX0.15, the output module: %QX1.0 - %QX2.15. The physical address
depends therefore on the module type (I/Q), the slot number (word address) the module is assigned and the
relay number (bit address).

%QX1.0

%QX3.15

%QX2.0

%QX2.15

%QX3.0

%QX4.15

%QX4.0

%QX1.15

%IX0.0

%IX0.15

4

2

0

COM

COM

NLC

NLC

6

D

B

9

F

5

3

1

7

C

A

8

E

3

6

5

4

7

-

+

-

+

12

11

10

13

16

15

14

17

B

E

D

C

F

-

+

-

+

1A

19

18

1B

1E

1D

1C

1F

Output moduleInput module

This shows how the hexadecimal counting of 0-F for 0-15 is converted. The address assignment can be found
in your hardware description.

 Find the tables with all memory areas in your hardware description.

 When using timers, counters, set/elapsed values, and data registers,
the bit address does not have to be indicated.

 You can also enter the register number (R9000, DT9001/90001) or the
FP address, e.g. “X0” (input 0), instead of the IEC address.

1.2.3 Specifying Relay Addresses

External input relay (X), external output relay (Y), internal relay (R), link relay (L) and pulse relay (P)The lowest
digit for these relay’s adresses is expressed in hexadecimals and the second and higher digits are expressed in
decimals as shown below.

Basics

34

Example Configuration of external input relay (X)

XF, XE, XD, XC, XB, XA, X9, X8, X7, X6, X5, X4, X3, X2, X1, X0
X1F, , X10

, X20

, X5100
, X5110

X2F,

X510F,

X511F,

................

................

1.2.4 Timer Contacts (T) and Counter Contacts (C)

Addresses of timer contacts (T) and counter contacts (C) correspond to the TM and CT instruction numbers and
depend on the PLC type.

0, 1, 2 ...

T0, T1 T2999
C3000, C3001 C3072

Decimal

e.g. for FP2:

 Since addresses for timer contacts (T) and counter contacts (C)
correspond to the TM and CT instruction numbers, if the TM and CT
instruction sharing is changed by system register 5, timer and counter
contact sharing is also changed.

1.2.5 Error alarm relays

 � NOTE

Error alarm relays are only available for FP2SH/FP10SH.

Restrictions of error alarm relays (see page 36)

Error alarm relays are designed to facilitate the analysis of error conditions and to record errors. Therefore in the
special data registers a buffer has been defined so that the user has access to information about errors and
their occurrence, including the actual number of error relays in the TRUE state, the order they were set to TRUE
and the time at which the first error relay was set to TRUE.

When an error relay is set to TRUE by the error alarm program because the corresponding error situation has
arisen, the number of error relays in the TRUE state stored in special data register DT90400 increases by one
each time an error occurs. Relay numbers will be stored in DT90401 through DT90419 in the order that they
were set to TRUE. If at least one of the error alarm relays E0 through E2047 is set to TRUE, R9040
(sys_bIsErrorAlarmRelayOn) will be set to TRUE. The time at which the first error alarm relay was set to TRUE
is stored in DT90420 through DT90422.

Basics

35

The diagram below illustrates the internal structure and address assignment in the special data register area of
this error buffer.

GVL

POU Header

LD

Error alarm diagram

DT90420

3

21

12

5

0

0

4

21

12

5

15

0

DT90421

DT90422

DT90400

DT90401

DT90402

DT90403

DT90404

DT90405

1

2

4

3

1 DT90400 Number of alarms that have occurred

2 DT90401–DT90419 Error alarm relays stored in the order they were set to TRUE

3 Error alarm E15 is set to TRUE

4 Time at which the first error alarm relay was set to TRUE:

 DT90420 Second and minute data

 DT90421 Hour and day data

 DT90422 Month and year data

 R9040 TRUE when one of the error alarm relays E0–E2047 is TRUE

Because in Control FPWIN Pro all write operations on error relays are internally compiled into SET (see page
508) and RST (see page 508) instructions, all write operations to an error relay affect the special internal relay

Basics

36

R9040 and the special data registers DT90400 to DT90422.

When all error alarm relays are set to FALSE, R9040 will be set to FALSE.

To monitor alarm relays using Control FPWIN Pro: Monitor  Special Relays and Registers  Alarm
Relays.

1.2.5.1 Restrictions of error alarm relays

There is no limit to the number of times an error alarm relay can be used in a program. However, if one error
alarm relay is used with different error conditions in more than one error alarm program it will not be possible to
accurately determine the nature of the error. The CPU does not check for multiple use.

When the power is turned OFF or when switching between PROG. and RUN, the error relays as well as the
affected special data registers are held. To reset the error relays and the special data registers, you have to
press up the initialize/test switch in PROG. mode.

However, in system register 4, bit 10 (Error alarm relay) can be set to "Clear not" to ensure that no error alarm
relays are turned OFF when the initialize/test switch is pressed up. Then only the next download of the program
will reset the error relays and the corresponding special data registers.

1.2.6 Pulse relays (P)

A pulse relay (P) goes ON for one scan only. The ON/OFF state is not externally output and only operates in the
program.

A pulse relay only goes on when a rising edge start instruction or a falling edge start instruction is executed.

When used as the trigger, a pulse relay only operates during one scan when a leading edge or trailing edge is
detected.

Example: Declared globally

GVL:

POU Header

Execution with a rising edge:

Basics

37

Execution with a falling edge:

1.2.6.1 Restrictions of pulse relay (P)

A pulse relay can only be used once in a program as an output destination, i.e. duplicate output is prohibited.

There is no limitation on the number of times a pulse relay can used as a contact.

A pulse relay cannot be specified as an output destination for a KP, SET, RST or ALT instruction.

A word unit pulse relay (WP) cannot be specified as a storage location for a high-level instruction.

In Control FPWIN Pro pulse relays can only be used in the above situations or together with a DF or DFN
instruction. Although one reason might be to increase the number of relays, there is no special reason to use
these pulse relays in Control FPWIN Pro.

1.2.7 External input (X) and output relays (Y)

 The external input relays available are those actually allocated for input use.

 The external output relays actually allocated for output can be used for turning ON or OFF external
devices. The other external output relays can be used in the same way as internal relays.

 I/O allocation is based on the combination of I/O and intelligent modules installed.For FP10SH and
FP2SH, 8,192 points can be used, including both input and output. For FP2 and FP3, 2048 points
can be used.

Example

0 1 2 3 4
(Slot No.)

Po
w

er
 s

up
pl

y
un

it

C
PU

In
pu

t u
ni

t
(1

6
po

in
ts

)
O

ut
pu

t u
ni

t
(1

6
po

in
ts

)

Y10 to Y1F
X0 to XF

The X0 to XF 16-point external relay is
allocated to the 16-point input unit in
slot 0, and the Y10 to Y1F 16-point
external output is allocated to the
16-point output unit in slot 1.
The sixteen points X10 to X1F cannot
be used in this combination.

1.2.8 Word representation of relays (WX, WY, WR, and WL)

The external input relay (X), external output relay (Y), internal relay (R) and link relay (L) can also be expressed
in word format. The word format treats 16-bit relay groups as one word. The word expressions for these relays
are word external input relay (WX), word external output relay (WY), word internal relay (WR) and word link
relay (WL), respectively.

Basics

38

Example:

Configuration of word external input relay (WX)

XF XEXDXCXBXA X9X8X7 X6 X5X4 X3X2X1 X0

WX0

X1FX1EX1D X12X11X10

WX1

X12FX12EX12D X122X121X120

WX12

 Since the contents of the word relay correspond to the state of its relays
(components), if some relays are turned ON, the contents of the word
change.

Basics

39

1.3 Constants

A constant represents a fixed value. Depending on the application, a constant can be used as an addend,
multiplier, address, in-/output number, set value, etc.

There are 3 types of constants:

 decimal

 hexadecimal

 BCD

1.3.1 Decimal Constants

Decimal constants can have a width of either 16 or 32 bits.

Range 16 bit: -32,768 to 32,768

Range 32 bit: -2,147,483,648 to 2,147,483,648

Constants are internally changed into 16-bit binary numbers including character bit and are processed as such.
Simply enter the decimal number in your program.

1.3.2 Hexadecimal Constants

Hexadecimal constants occupy fewer digit positions than binary data. 16 bit constants can be represented by
4-digit, 32-bit constants by 8-digit hecadecimal constants.

Range 16 bit: 8000 to 7FFF

Range 32 bit: 80000000 to 7FFFFFFFF

Enter e.g.: 16#7FFF for the hexadecimal value 7FFF in your program.

1.3.3 BCD Constants

BCD is the abbreviation for Binary Coded Decimal.

Range 16 bit: 0 to 9999

Range 32 bit: 0 to 99999999

Enter BCD constants in the program either as:

binary: 2#0001110011100101 or
hexadecimal: 16#9999

Basics

40

1.4 Data types

In Control FPWIN Pro, variable declarations require a data type. All data types conform to IEC61131-3.

For details, please refer to the Programming Manual or to the online help of Control FPWIN Pro.

1.4.1 Elementary data types

Keyword Data type Range Reserved
memory

Initial value

BOOL Boolean 0 (FALSE)

1 (TRUE)

1 bit 0

WORD Bit string of length 16 0–65535 16 bits 0

DWORD Bit string of length 32 0–4294967295 32 bits 0

INT Integer -32768–32,767 16 bits 0

DINT Double integer -2147483648– 2147483647 32 bits 0

UINT Unsigned integer 0–65,535 16 bits 0

UDINT Unsigned double
integer

0–4294967295 32 bits 0

REAL Real number -3.402823466*E38–
-1.175494351*E-38

0.0

+1.175494351*E-38–
+3.402823466*E38

32 bits 0.0

T#0s–T#327.67s 16 bits 1) TIME Duration

T#0s–T#21474836.47s 32 bits 1)
T#0s

DATE_AND_TIME Date and time DT#2001-01-01-00:00:00–
DT#2099-12-31-23:59:59

32 bits DT#2001-01-01-00
:00:00

DATE Date D#2001-01-01–D#2099-12-31 32 bits D#2001-01-01

TIME_OF_DAY Time of day TOD#00:00:00–TOD#23:59:59 32 bits TOD#00:00:00

STRING Variable-length
character string

1–32767 bytes (ASCII) depending
on PLC memory size

2 words for the
head + (n+1)/2
words for the
characters

''

1) Depending on PLC type

1.4.1.1 BOOL

Variables of the data type BOOL are binary variables. They can only have the value 0 or 1, and always have a
width of 1 bit.

The condition 0 corresponds to FALSE (e.g. initial value in the POU header) and means that the variable is
switched off. In this case we also speak of the variable not being set.

The condition 1 corresponds to TRUE (e.g. initial value in the POU header) and means that the variable is
switched on. In this case we also speak of the variable being set.

The default initial value, e.g. for the variable declaration in the POU header or in the global variable list = 0
(FALSE). In this case the variable is not set during the PLC program start. If this is not the case, the initial value
may also be set to TRUE.

Basics

41

1.4.1.2 INT

Variable values of the data type INTEGER are natural numbers without decimal places. The range of values for
INTEGER values is from -32768 to 32767.

The default initial value of a variable of this data type is 0.

Numbers can be entered in decimal, hexadecimal or binary format.

Decimal number Hexadecimal number Binary number

1234 16#4D2 2#10011010010

-1234 16#FB2E 2#1111101100101110

1.4.1.3 UINT

Variable values of the data type unsigned INTEGER are numerical numbers without decimal places. The range
of values for UINT values is from 0–65535.

1.4.1.4 DINT

Variable values of the data type DOUBLE INTEGER are natural numbers without decimal places. The value
range for a DOUBLE INTEGER values is from -2147483648 to 2147483647.

The default initial value of a variable of this data type is 0.

Numbers can be entered in decimal, hexadecimal or binary format.

Decimal number Hexadecimal number Binary number

123456789 16#75BCD15 2#111010110111100110100010101

-123456789 16#F8A432EB 2#1111100010100100001100101110

1.4.1.5 UDINT

Variable values of the data type unsigned DOUBLE INTEGER are numerical numbers without decimal places.
The value range for UDINT values is from 0–4294967295.

1.4.1.6 REAL

Variables of the data type REAL are real 32 bit numbers based on IEEE754. The mantissa is 23 bits and the
exponent is 8 bits.

31 30 29 23 22 16... ... 14 13 12 3 2 1 015 ...
Bit position

Exponents (8-bit) Mantissa (23-bit)

0 positive

1 negative

Sign bit:

The value range for REAL values is between -3.402823466*E38 to -1.175494351*E-38, 0.0,
+1.175494351*E-38 to +3.402823466*E38.

The default for the initial value, e.g. for the variable declaration in the POU header or in the global variable list =
0.0

Basics

42

For FP-e and FP0 only: Do not use REAL instructions in interrupt programs.

You can enter REAL values in the following format:

[+-] Integer.Integer [(Ee) [+-] Integer]

Examples:

5.983e-7

-33.876e12

3.876e3

0.000123

123.0

 The REAL value always has to be entered with a decimal point (e.g. 123.0).

1.4.1.7 WORD

A variable of the data type WORD consists of 16 binary states. The switching states of 16 in/outputs can be
combined as a unity in one word (WORD).

The default initial value of a variable of this data type is 0.

Numbers can be entered in decimal, hexadecimal or binary format.

Decimal number Hexadecimal number Binary number

1234 16#4D2 2#10011010010

64302 16#FB2E 2#1111101100101110

1.4.1.8 DWORD

A variable of the data type DOUBLE WORD consists of 32 binary states. The switching states of 32
inputs/outputs can be combined as a unity in one DOUBLE WORD.

The default initial value of a variable of this data type is 0.

Numbers can be entered in decimal, hexadecimal or binary format.

Decimal number Hexadecimal number Binary number

123456789 16#75BCD15 2#111010110111100110100010101

4171510507 16#F8A432EB 2#1111100010100100001100101110

1.4.1.9 TIME

TIME (16 Bits): FP3, FP-C, FP5, FP10, FP10S

For variables of the data type TIME (16 bits) you can indicate a duration of 0.01 to 327.67 seconds. The
resolution amounts to 10 ms.

TIME (32 Bits): FP-X, FP-Sigma, FP0, FP0R, FP2/2SH, FP10SH

For variables of the data type TIME (32 bits) you can indicate a duration of 0.01 to 21 474 836.47 seconds. The

Basics

43

resolution amounts to 10 ms.

Default for 16 and 32 values = T#0 (corresponds to 0 seconds)

 � NOTE

 Duration data must be delimited on the left by the prefix T# or TIME#.

 The units of duration literals can be separated by the character "_".

 Time units, e.g., seconds, milliseconds, etc., can be represented in upper- or lower- case letters.

 "Overflow" of the most significant unit of a duration literal is permitted, e.g., the notation T#25h_15m
is permitted.

Description Examples

Duration literals without underlines:

short prefix

T#14ms T#-14ms T#14.7s T#14.7m

T#14.7h T#14.7d t#25h15m

t#5d14h12m18s3.5ms

long prefix TIME#14s TIME#-14s time#14.7s

Duration literals with underlines:

short prefix
T#25h_15m

T#5d_14h_12m_18s_3.5ms

long prefix TIME#25h_15m

time#5d_14h_12m_18s_3.5ms

1.4.1.10 DATE_AND_TIME

Variable values of the data type DATE_AND_TIME are date and time literals. The range of values for
DATE_AND_TIME values is from DT#2001-01-01-00:00:00– DT#2099-12-31-23:59:59.

Description Examples

Short prefix DT#2010-06-07-15:36:55

dt#2010-06-07-15:36:55

Long prefix DATE_AND_TIME#2010-06-07-15:36:55

date_and_time#2010-06-07-15:36:55

Internal
representation

Seconds after DT#2001-01-01-00:00:00

Advantages:

 Can be used to set (SET_RTC_DT (see page 294)) or read (GET_RTC_DT (see page 289)) the
PLC's real-time clock, for example

 Facilitates all kinds of calculations for date and time

 Well suited for solar tracking applications

- Sun's position, sunrise, sunset

- Conversions between universal time and local time

 Building automation

 Holidays (e.g. Easter holidays), daylight saving time

 Enables better integration and adaptation of POUs created with other manufacturers' IEC 61131-3
programming software, e.g. OSCAT (Open Source Community for Automation Technology)

Basics

44

1.4.1.11 DATE

Variable values of the data type DATE are date literals. The range of values for DATE values is from
D#2001-01-01–D#2099-12-31.

Description Examples

Short prefix D#2010-06-07

d#2010-06-07

Long prefix DATE#2010-06-07

date#2010-06-07

Internal
representation

Seconds after 2001-01-01

Advantages:

 Facilitates all kinds of calculations for date and time

 Well suited for solar tracking applications

- Sun's position, sunrise, sunset

- Conversions between universal time and local time

 Building automation

 Holidays (e.g. Easter holidays), daylight saving time

1.4.1.12 TIME_OF_DAY

Variable values of the data type TIME_OF_DAY are time of day literals. The range of values for TIME_OF_DAY
values is from TOD#00:00:00–TOD#23:59:59.

Description Examples

Short prefix TOD#15:36:55

tod#15:36:55

Long prefix TIME_OF_DAY#15:36:55

time_of_day#15:36:55

Internal
representation

Seconds after TOD#00:00:00

Advantages:

 Facilitates all kinds of calculations for date and time

 Well suited for solar tracking applications

- Sun's position, sunrise, sunset

- Conversions between universal time and local time

 Building automation

 Holidays (e.g. Easter holidays), daylight saving time

Basics

45

1.4.1.13 STRING

The data type STRING consists of a series (a string) of up to 32767 ASCII characters. The maximum number of
characters depends on the memory size of the PLC. Change the default setting under Extras  Options 
Compile options Code generation.

The default initial value, e.g. for variable declarations in the POU header or global variable list, is '', i.e. an empty
string.

Declaration

To declare STRING type variables in the POU header use the following syntax:

STRING[n], where n = number of characters

The default number of characters for STRING is 32.

Internal memory structure of strings on the PLC

Each character of the string is stored in one byte. A string's memory area consists of a header (two words) and
one word for every two characters.

 The first word contains the number of characters reserved for the string.

 The second word contains the actual number of characters in the string.

 Subsequent words contain the ASCII characters (two per word)

To reserve a certain memory area for the string, specify the string length using the following formula: Memory
size = 2 words (header) + (n+1)/2 words (characters)

The memory is organized in word units. Therefore, word numbers are always rounded up to the next whole
number.

Word x Number of characters reserved for string

Word x+1 Actual number of characters in string

Word x+2 Character 2 Character 1

Word x+3 Character 4 Character 3

Word x+4 Character 6 Character 5

Word x+(n+1)/2+1 Character n Character n-1

 High byte Low byte

See F159_MTRN (see page 741) for a programming example.

String literals (according to IEC 61131-3)

A character string literal is a sequence of zero or more characters prefixed and terminated by the single quote
character (').

Three-character combinations of the dollar sign ($) followed by two hexadecimal digits are to be interpreted as
the hexadecimal representation of the eight-bit character code.

Two-character combinations beginning with the dollar sign are to be interpreted as shown in the table:

Combination Interpretation when printed

$$ Dollar sign ($24)

$' Single quote ($27)

$L or $l Line feed ($0A)

$N or $n New line ($0D$0A)

$P or $p Form feed (page) ($0C)

$R or $r Carriage return ($0D)

Basics

46

Combination Interpretation when printed

$T or $t Tab ($09)

Examples of string literals

Example Explanation

'' Empty string (length 0)

'A' String of length 1 containing the single character A

' ' String of length 1 containing the space character

'$'' String of length 1 containing the single quote character

'RL' String of length 2 containing CR and LF characters

'$$1.00' String of length 5 which would print as "$1.00"

'$02$03' String of length 2 containing STX and ETX characters

Strings as constants

It is possible to enter values of the data type STRING directly as constants into a function or a function block.
The string must be enclosed in single quotes.

Transfer a constant character string 'abc' to the string variable sTarget.

Transferring strings to functions or function blocks

When character strings are transferred, only as many characters that fit into the target string are transferred.
Please refer to the following examples in the online help under the keyword 'STRING':

1. Copy a source string to a target string which is shorter.

2. Copy a constant character string to another which is shorter.

3. Generate a message using a string function.

 � NOTE

The conversion functions INT_TO_STRING (see page 217), DINT_TO_STRING (see page 220),
REAL_TO_STRING (see page 228), TIME_TO_STRING (see page 230), etc. need many system
resources in terms of programming steps and processing time. When you use these functions
frequently, create a user-defined function that embeds the conversion function and use the
user-defined function in your project. For older PLC types (FP0, FP3, FP5, FP10), this is also true
for the CONCAT (see page 269) and FIND (see page 273) instructions.

STRING with EN/ENO

Ladder diagram (LD) and function block diagram (FBD)

STRING instructions with enable input (EN) and enable output (ENO) contacts may NOT be connected to each

Basics

47

other in LD and FBD. First connect the STRING instructions without EN/ENO and then add an instruction with
EN/ENO in the final position. The enable input (EN) then controls the output of the overall result.

 � EXAMPLE

This arrangement is not possible:

This arrangement is possible:

Instruction list (IL)

STRING instructions with EN/ENO may be connected to each other in IL. Nevertheless, in order to avoid
intermediate variables, it is recommended that you use a conditional jump instead of connecting a series of
functions with EN/ENO.

 � EXAMPLE

Program with dummy string

Basics

48

Program with conditional jump

The difficulty of programming with a dummy string lies in correctly choosing its length. When connecting
unconditional string instructions in series, the length is calculated automatically.

2. MakeMessage2

Basics

49

From these commands one gets the following address occupation:

Another use with functions from the FP TOOL Library (Adr_OfVarOffs....):

Basics

50

1.4.2 Generic data types

Generic data types are used internally by system functions and function blocks and cannot be selected in
user-defined POUs. Generic data types are identified by the prefix ANY.

 � NOTE

Generic data types are not available in user-defined POUs.

Hierarchy of generic data types

ANY_NUM REAL, ANY_INT

ANY_INT INT, DINT

UINT, UDINT

ANY16 WORD

INT, UINT

ANY32
DWORD

DINT, UDINT

DATE, TOD, DT

ANY_BIT BOOL

WORD, DWORD

ANY

 ANY_DATE DATE, TOD, DT

Basics

51

1.4.3 DUT

A DUT (data unit type) is composed of several elementary data types which may differ in type.

1.4.3.1 Creating DUTs

1. Object  New  DUT or

2. Enter DUT name

If desired, select the check box for DUTs with overlapping elements (see page 53).

3. [OK]

4. Open the new DUT from the "Project" pane

5. Declare variables for the DUT

6. Object  Check or

1.4.3.2 Using DUTs in the global variable list

1. Open "Global variables" from "Project" pane

2. Enter a new line with or , if necessary

3. Under "Class", select "VAR_GLOBAL"

4. Under "Identifier", enter a symbolic name

5. Enter FP address or IEC address

The first element of the DUT determines the address type: for BOOL type elements, assign a 1-bit
address (e.g. R10), for other data types assign a 16-bit address (e.g. WR1). If you assign an
address, DUTs with non-overlapping elements must consist entirely of BOOL type elements, or
entirely of non-BOOL type elements.

6. Under "Type", select to open the "Type selection" dialog

7. Under "Type Class", select "Data Unit Types"

8. Under "Type", select the desired DUT

9. [OK]

10. Under "Initial", select to open the "Data Unit Initial Values" dialog

This dialog shows how the individual variables have been defined in the DUT. You can only change
the initial values for one single variable (not for the DUT).

11. Change initial value for the desired variable, if necessary

12. [OK]

13. Under "Comment", enter a text, if desired

Basics

52

14. Object  Save

 � NOTE

A DUT defined in the global variable list can be used in a POU body only when copied into the
header of the corresponding POU beforehand.

1.4.3.3 Using DUTs in a POU header

1. Open POU header from "Project" pane

2. Enter a new line with or , if necessary

3. Under Class, select "VAR"

4. Under "Identifier", enter a symbolic name

5. Under "Type", select to open the "Type selection" dialog

6. Under "Type Class", select "Data Unit Types"

7. Under "Type", select the desired DUT

8. [OK]

9. Under "Initial", select to open the "Data Unit Initial Values" dialog

This dialog shows how the individual variables have been defined in the DUT. You can only change
the initial values for one single variable (not for the DUT).

10. Change initial value for the desired variable, if necessary

11. [OK]

12. Under "Comment", enter a text, if desired

13. Object  Save

Now the DUT or a single variable of the DUT can be used in the POU body. The DUT can be
assigned with the help of the "Variables" pane (<F2>).

 � NOTE

A DUT defined in the global variable list can be used in a POU body only when copied into the
header of the corresponding POU beforehand.

1.4.3.4 DUTs with non-overlapping elements

Using the Properties dialog, you can assign a DUT one of two ways of occupying memory:

1. with overlapping elements (see page 53)

2. with non-overlapping elements

How DUTs with non-overlapping elements occupy memory:

All elements of the data type BOOL are lumped together in a block and allocated one after the other in a
memory area reserved for bits, beginning at a 16-bit word address.

Basics

53

All elements of the data type ARRAY OF BOOL are lumped together in a block and allocated in a memory area
reserved for bits, beginning at a 16-bit word address.

All other elements are lumped together and allocated one after the other in a block in a memory area reserved
for 16-bit words.

For details on working with DUTs and predefined system DUTs, please refer to the online help.

1.4.3.5 DUTs with overlapping elements

How DUTs with overlapping elements occupy memory:

All elements of the same data type (BOOL, WORD, INT, DWORD, DINT, REAL and STRINGs with the same,
common string length) are each lumped together and allocated one after the other beginning from a common
starting address. Arrays are also allocated to this common starting address.

The following conditions apply to this starting address: If DUT consists of BOOL or ARRAY OF BOOL type
elements, it is stored in a memory area reserved for bits; otherwise it is stored in a memory area reserved for
16-bit words.

To avoid ambiguity during initialization no initialization is allowed. The following default initializations are

executed:

 BOOL: FALSE

 WORD, INT, DWORD, DINT: 0

 REAL: 0.0

 STRING: '' (i.e. the address occupied by the maximum string length is initialized with the maximum
length of the string that is greater or equal to zero. The rest of the string is initialized with zeros.)

Also, all element variables of the data type STRING must be located at the end of the declaration.

 � NOTE

 In general, you should pay exact attention to how memory area is occupied by the data types used.

 Especially when using STRINGs, note that their particular way of occupying memory allows them to
be repeatedly overwritten with the help of other elements.

 Ensure the maximum string length and the current string length are valid values before using string
commands.

For details on working with DUTs and predefined system DUTs, please refer to the online help.

1.4.4 Array

Arrays

An array is a group of variables which all have the same elementary data type and that are grouped together,
one after the other, in a continuous data block. This variable group itself is a variable and must hence be
declared for this reason. In the program you can either use the whole array or individual array elements.

Basics

54

Declaration

To declare ARRAY type variables in the POU header use the following syntax:

ARRAY[A...B,C...D,E...F] OF <data type> where:

A= first element index

B= last element index

first dimension

C= first element index

D= last element index

second dimension (optional)

E= first element index

F= last element index

third dimension (optional)

Arrays can be 1, 2 or 3-dimensional. In each dimension, an array can have several fields. Element indexes are
positive or negative integers. The first element must be smaller than the last element.

 � NOTE

An array cannot be used as a variable by another array.

When accessing an index of an array, Control FPWIN Pro does not check the index against the bounds
of the array. Make sure the index lies within the range defined in the POU header.

Example: ARRAY [1..5] OF INT

In this example, ai_array[99] is out of range but does not produce an error message.

Data types valid for arrays are:

 BOOL

 DATE

 DATE_AND_TIME

 DINT

 DWORD

 INT

 REAL

 STRING

 TIME

Basics

55

 TIME_OF_DAY

 UDINT

 UINT

 WORD

Data Unit Type

A Data Unit Type (DUT) is a group of variables composed of several different elementary data types (BOOL,
WORD etc.). These groups are used when tables are edited, such as for data table control, e.g.
F174_PulseOutput_DataTable (see page 1069). Define a DUT in the DUT pool first. Then you can use the DUT
in the “Type” field of the global variable list or of a POU header similarly to the integer, BOOL etc. data types. In
the program you can then use either the whole DUT or individual variables of the DUT.

 � NOTE

A DUT cannot be used as a variable by another DUT.

For details on working with ARRAYs or DUTs, please refer to the online help.

1.4.5 Special data types only available in conversion functions

 � NOTE

 Valid data types are: BOOL16, BOOL32, BOOLS, SDT, SDDT, BCD, IPADDR, ETLANADDR

 These data types are valid for conversion functions to special data types (see page 1335) only.

 These data types cannot be declared in POU headers.

1.4.5.1 BOOL16

Allowed are:

 Arrays with exactly 16 elements of the data type BOOL
Note:
These types can lie in the areas X, Y, R, L, T, and C. For failure to make an assignment in the
address field of the global variable list or for local variables, they are automatically placed in area R
by the compiler.

 All DUTs with exactly 16 members of the data type BOOL
Note:
These are automatically placed by the compiler in area R.

1.4.5.2 BOOL32

Allowed are:

 Arrays with exactly 32 elements of the data type BOOL
Note:
These types can lie in the areas X, Y, R, L, T, and C. For failure to make an assignment in the
address field of the global variable list or for local variables, they are automatically placed in area R

Basics

56

by the compiler.

 All DUTs with exactly 32 members of the data type BOOL
Note:
These are automatically placed by the compiler in area R.

1.4.5.3 BCD_WORD

The data type BCD_WORD (binary-coded decimal) only occurs in the conversion functions
INT_TO_BCD_WORD (see page 243) and UINT_TO_BCD_WORD (see page 245). These conversion functions
use variables of the type WORD, which are interpreted as BCD numbers, e.g. the decimal number 654 is
interpreted as the hexadecimal number 16#0654.

1.4.5.4 WORD_BCD

The data type WORD_BCD (binary-coded decimal) only occurs in the conversion functions
WORD_BCD_TO_INT (see page 146) and WORD_BCD_TO_UINT (see page 158). These conversion functions
use variables of the type WORD, which are interpreted as BCD numbers, e.g. the decimal number 654 is
interpreted as the hexadecimal number 16#0654.

1.4.5.5 BCD_DWORD

The data type BCD_DWORD (binary-coded decimal) only occurs in the conversion functions
DINT_TO_BCD_DWORD (see page 244) and UDINT_TO_BCD_DWORD (see page 246). These conversion
functions use variables of the type DWORD, which are interpreted as BCD numbers, e.g. the decimal number
654 is interpreted as the hexadecimal number 16#0654.

1.4.5.6 DWORD_BCD

The data type DWORD_BCD (binary-coded decimal) only occurs in the conversion functions
DWORD_BCD_TO_DINT (see page 169) and DWORD_BCD_TO_UDINT (see page 182). These conversion
functions use variables of the type DWORD, which are interpreted as BCD numbers, e.g. the decimal number
654 is interpreted as the hexadecimal number 16#0654.

1.4.5.7 IPADDR

The data type IPADDR only occurs in the following conversion functions:

 IPADDR_TO_STRING (see page 232)

 IPADDR_TO_STRING_NO_LEADING_ZEROS (see page 233)

 STRING_TO_IPADDR (see page 247)

 STRING_TO_IPADDR_STEPSAVER (see page 248)

These conversion functions interpret variables of the type DWORD as strings in IPADDR format. This format
consists of four octal numbers (with or without leading zeros) separated by periods in opposite order, i.e. the
highest octal number in the IPADDR number will be the lowest octal number in the string.

Basics

57

Example:

Value Conversion function Result

IPADDR_TO_STRING 004.003.002.001 16#01020304

 IPADDR_TO_STRING_NO
_LEADING_ZEROS

4.3.2.1

 � NOTE

If you want an interpretation of the DWORD in direct order, use the conversion functions that
invoke the data type ETLANADDR.

1.4.5.8 ETLANADDR

The data type ETLANADDR only occurs in the following conversion functions:

 ETLANADDR_TO_STRING (see page 234)

 ETLANADDR_TO_STRING_NO_LEADING_ZEROS (see page 235)

 STRING_TO_ETLANADDR (see page 249)

 STRING_TO_ETLANADDR_STEPSAVER

These conversion functions interpret variables of the type DWORD as strings in ETLANADDR format. This
format consists of four octal numbers (with or without leading zeros) seperated by periods in direct order, i.e. the
highest octal number in the ETLANADDR number will be the highest octal number in the string.

Example:

Value Conversion function Result

ETLANADDR_TO_STRING 001.002.003.004 16#01020304

 ETLANADDR_TO_STRING_
NO_LEADING_ZEROS

1.2.3.4

 � NOTE

If you want an interpretation of the DWORD in inverse order, use the conversion functions
invoking the data type IPADDR.

1.4.5.9 ANY_IN_UNITS_OF_WORDS

Allowed are:

 Data types INT, DINT, WORD, DWORD, REAL, STRING, TIME

 Arrays with data types other than BOOL

 All DUTs that contain elements with data types besides BOOL

Note:
These data types can lie in the following areas: WX, DWX, WY, DWY, WR, DWR, WL, DWL, SV,
DSV, EV, DEV, DT, DDT, LD, DLD, FL, DFL. For failure to make an assignment in the address field

Basics

58

of the global variable list or for local variables, they are automatically placed in DT, DDT, FL or DFL
by the compiler.

 Arrays with the data type BOOL under the condition that the total number of elements can be
divided by 16.

Note:
These types can lie in the areas X, Y, R, L, T, and C. For failure to make an assignment in the
address field of the global variable list or for local variables, they are automatically placed in R by
the compiler.

 All DUTs with a number of simple BOOL variables divisible by 16 remain.

Note:
These are automatically placed by the compiler in area R.

1.4.5.10 ANY_SIMPLE_NOT_BOOL

Allowed are:

Data types INT, DINT, WORD, DWORD, REAL, STRING, TIME (but not BOOL)

These data types can lie in the following areas:
WX, DWX, WY, DWY, WR, DWR, WL, DWL, SV, DSV, EV, DEV, DT, DDT, LD, DLD, FL, DFL.
For failure to make an assignment in the address field of the global variable list or for local
variables, they are automatically placed in DT, DDT, FL or DFL by the compiler.

Chapter 2

 Data transfer instructions

Data transfer instructions

60

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

MOVE Move value to specified destination

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC
types

Availability of MOVE (see page 1328)

  When using the data type STRING with small PLCs like FP-e or FP0,
make sure that the length of the result string is equal to or greater than
the length of the source string.

 For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data type I/O Function

all data types input source

all data types output as input destination

In this example the input variable input_value has been declared. Instead, you may enter a
constant directly at the input contact of a function.

Description MOVE assigns the unchanged value of the input variable to the output variable.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body Input_value is assigned to output_value without being modified.

LD

ST When programming with structured text, enter the following:

output_value:= input_value;

Chapter 3

 Arithmetic instructions

Arithmetic instructions

62

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

ADD Add

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of ADD (see page 1335)

  All operands must be of the same data type.

 This function can be expanded to a maximum of 28 input contacts.

Data type I/O Function

INT, DINT, REAL 1st input augend

INT, DINT, REAL 2nd input addend

INT, DINT, REAL output as input sum

In this example the input variables (summand_1, summand_2 and enable) have been declared.
Instead, you may enter constants directly into the function (enable input e.g. for tests).

Description This function adds the input variables IN1 + IN2 +... and writes the addition result into the output
variable.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the
POU header.

Body If enable is set (TRUE), summand_1 is added to summand_2. The result is written into sum.

LD

 Arithmetic instructions

63

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

SUB Subtract

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of SUB (see page 1335)

  All operands must be of the same data type.

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data type I/O Function

INT, DINT, REAL 1st input minuend

INT, DINT, REAL 2nd input subtrahend

INT, DINT, REAL output as input result

In this example the input variables (minuend, subtrahend and enable) have been declared.
Instead, you may enter constants directly into the function (enable input e.g. for tests).

Description The content of the accumulator is subtracted from the operand defined in the operand field.The
result is transferred to the accumulator.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the
POU header.

Body If enable is set, subtrahend (data type INT) is subracted from minuend. The result will be written
into result (data type INT).

LD

Arithmetic instructions

64

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

MUL Multiply

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of MUL (see page 1335)

  All operands must be of the same data type.

 This function can be expanded to a maximum of 28 input contacts.

 Modifying elements

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data type I/O Function

INT, DINT, REAL 1st input multiplicand

INT, DINT, REAL 2nd input multiplicator

INT, DINT, REAL output as input result

In this example the input variables (multiplicand, multiplicator and enable) have been declared.
Instead, you may enter constants directly into the function (enable input e.g. for tests).

Description MUL multiplies the values of the input variables with each other and writes the result into the output
variable.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the
POU header.

Body If enable is set (TRUE), the multiplicant is multiplied with the multiplicator. The result will be
written into result.

LD

 Arithmetic instructions

65

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DIV Divide

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DIV (see page 1335)

  Input and output variables must be of one of the noted data types. All
operands must be of the same data type.

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data type I/O Function

INT, DINT, REAL 1st input dividend

INT, DINT, REAL 2nd input divisor

INT, DINT, REAL output as input result

Description DIV divides the value of the first input variable by the value of the second.

Data types

Arithmetic instructions

66

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the
POU header.

In this example the input variables (dividend, divisor and enable) have been declared. Instead,
you may enter constants directly into the function (enable input e.g. for tests).

Body If enable is set (TRUE), dividend is divided by divisor. The result is written into result.

LD

 Arithmetic instructions

67

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

ABS Absolute Value

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of ABS (see page 1318)

Data type I/O Function

INT, DINT,
REAL

input input data type

INT, DINT,
REAL

output as input absolute value

This example uses variables. You can also use a constant for the input variable.

Description ABS calculates the value in the accumulator into an absolute value. The result is saved in the
output variable.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body Input_value of the data type INTEGER is converted into an absolute value of the data type
INTEGER. The converted value is written into absolute_value.

LD

ST When programming with structured text, enter the following:

absolute_value:=ABS(input_value);

Arithmetic instructions

68

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

MOD Modular arithmetic division, remainder stored in output variable

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of MOD (see page 1328)

Data type I/O Function

INT, DINT 1st input dividend

INT, DINT 2nd input divisor

INT, DINT output as input remainder

Description MOD divides the value of the first input variable by the value of the second. The rest of the integral
division (5 : 2 : 2 + rest = 1) is written into the output variable.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body This example uses variables. You may also use constants for the input variables. Dividend (11) is
divided by divisor (4). The remainder (3) of the division is written in remainder.

LD

ST When programming with structured text, enter the following:

remainder:= dividend MOD divisor;

 Arithmetic instructions

69

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

SQRT Square root

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of SQRT (see page 1331)

 The number of steps may vary depending on the PLC and parameters used, see
also Table of Code Intensive Instructions in the online help.

Data type I/O Function

REAL input input value

REAL output as input square root of input value

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 input variable does not have the data
type REAL or input variable is not 
0.0

R900B %MX0.900.11 permanently  output variable is zero

R9009 %MX0.900.9 for an instant  processing result overflows the output
variable

This example uses variables. You can also use a constant for the input variable.

Description SQRT calculates the square root of an input variable of the data type REAL (value  0.0). The
result is written into the output variable.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The square root of input_value is calculated and written into output_value.

LD

ST When programming with structured text, enter the following:

output_value:= SQRT(input_value);

Arithmetic instructions

70

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

SIN Sine with Radian Input Data

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

  The accuracy of the calculation decreases as the angle data specified
in the input variable increases. Therefore, we recommend to enter
angle data in radians  -2 and  2.

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

PLC types Availability of SIN (see page 1330)

Data type I/O Function

REAL input input value, angle data in radians

REAL output as input SINE of input value

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 input variable does not have the data
type REAL or
input variable  52707176

R900B %MX0.900.11 permanently  output variable is zero

R9009 %MX0.900.9 for an instant  processing result overflows the output
variable

This example uses variables. You can also use a constant for the input variable.

Description SIN calculates the sine of the input variable and writes the result into the output variable. The angle
data has to be specified in radians (value < 52707176).

Data types

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the
POU header.

Body The sine of input_value is calculated and written into output_value.

LD

 Arithmetic instructions

71

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

ASIN Arcsine

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

 The number of steps may vary depending on the PLC and parameters used, see
also Table of Code Intensive Instructions in the online help.

PLC types Availability of ASIN (see page 1318)

Data type I/O Function

REAL input input value between -1 and +1

REAL output as input arcsine of input value in radians

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 input variable does not have the data
type REAL or
input variable is not  -1.0 and  1.0

R900B %MX0.900.11 permanently  output variable is zero

R9009 %MX0.900.9 for an instant  processing result overflows the output
variable

This example uses variables. You can also use a constant for the input variable.

Description ASIN calculates the arcsine of the input variable and writes the angle data in radians into the output
variable. The function returns a value from - /2 to /2.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The arc sine of input_value is calculated and written into output_value.

LD

ST When programming with structured text, enter the following:

output_value:=ASIN(input_value);

Arithmetic instructions

72

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

COS Cosine

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

  The accuracy of the calculation decreases as the angle data specified
in the input variable increases. Therefore, we recommend to enter
angle data in radians  -2 and  2.

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

PLC types Availability of COS (see page 1318)

Data type I/O Function

REAL input input value, angle data in radians

REAL output as input cosine of input value

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 input variable does not have the data
type REAL or input variable  52707176

R900B %MX0.900.11 permanently  output variable is zero

R9009 %MX0.900.9 for an instant  processing result overflows the output
variable

This example uses variables. You can also use a constant for the input variable.

Description COS calculates the cosine of the input variable and writes the result into the output variable. The
angle data has to be specified in radians (value < 52707176).

Data types

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The cosine of input_value is calculated and written into output_value.

LD

ST When programming with structured text, enter the following:

output_value:=COS(input_value);

 Arithmetic instructions

73

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

ACOS Arccosine

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

 The number of steps may vary depending on the PLC and parameters used, see
also Table of Code Intensive Instructions in the online help.

PLC types Availability of ACOS (see page 1318)

Data type I/O Function

REAL input input value between -1 and +1

REAL output as input arccosine of input value in radians

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 input variable does not have the data
type REAL or input variable is not  -1.0
and  1.0

R900B %MX0.900.11 permanently  output variable is zero

R9009 %MX0.900.9 for an instant  processing result overflows the output
variable

This example uses variables. You can also use a constant for the input variable.

Description ACOS calculates the arccosine of the input variable and writes the angle data in radians into the
output variable. The function returns a value from 0.0 to .

Data types

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The arc cosine of input_value is calculated and written into output_value.

LD

ST

Arithmetic instructions

74

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

When programming with structured text, enter the following:

output_value:=ACOS(input_value);

 Arithmetic instructions

75

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

TAN Tangent

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

  The accuracy of the calculation decreases as the angle data specified
in the input variable increases. Therefore, we recommend to enter
angle data in radians -2 and 2.

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

PLC types Availability of TAN (see page 1331)

Data type I/O Function

REAL input input value in radians

REAL output as input tangent of input value

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant
 input variable does not have the data

type REAL or input variable  52707176

R900B %MX0.900.11 permanently  output variable is zero

R9009 %MX0.900.9 for an instant  processing result overflows the output
variable

Description TAN calculates the tangent of the input variable and writes the result into the output variable. The
angle data has to be specified in radians (value < 52707176).

Data types

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the
POU header.

This example uses variables. You can also use a constant for the input variable.

Body The tangent of input_value is calculated and written into output_value.

LD

Arithmetic instructions

76

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

ATAN Arctangent

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

 The number of steps may vary depending on the PLC and parameters used, see
also Table of Code Intensive Instructions in the online help.

PLC types Availability of ATAN (see page 1318)

Data type I/O Function

REAL input input value between -52707176 and +52707176

REAL output as input arctangent of input value in radians

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 input variable does not have the data
type REAL or input variable  52707176

R900B %MX0.900.11 permanently  output variable is zero

R9009 %MX0.900.9 for an instant  processing result overflows the output
variable

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

This example uses variables. You can also use a constant for the input variable.

Description ATAN calculates the arctangent of the input variable (value  52707176) and writes the angle data
in radians into the output variable. The function returns a value greater than -/2 and smaller than
/2.

Data types

Error flags

Example

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The arc tangent of input_value is calculated and written into output_value.

LD

ST When programming with structured text, enter the following:

output_value:=ATAN(input_value);

 Arithmetic instructions

77

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

ATAN2_YX Returns the angle  of the Cartesian coordinates (x,y)

Each position P of the two-dimensional coordinates can be defined by Cartesian coordinates P(x,y)
or by polar coordinates P(r,) (r = radius,  = angle).

X

P

r

Y

0°

90°

180°

270°

φ

Define ATAN2_YX as follows:

ATAN2_YX(y,x) x y

x > 0

y  0

x < 0
y < 0

y > 0

y < 0

0

x = 0

y = 0

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of ATAN2_YX (see page 1318)

Description ATAN2_YX returns the angle  of the Cartesian coordinates (x,y) within the range of -to.

Arithmetic instructions

78

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Data type I/O Function

REAL y Cartesian y coordinate

REAL x Cartesian x coordinate

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

(* Angle value of point in quadrant 2 *)

rPhi1Rad:=ATAN2_YX(y := 10.0, x := -10.0); (* Result: 2.3561947 *)

rPhi1Degree := rPhi1Rad * DEGR_OF_RAD; (* Result: 135.00002 *)

(* Angle value of point in quadrant 4 *)

rPhi2Rad:=ATAN2_YX(y := -5.0, x := 5.0); (* Result: -0.78539819 *)

rPhi2Degree := rPhi2Rad * DEGR_OF_RAD; (* Result: -45.0 *)

 Arithmetic instructions

79

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

LN Natural logarithm

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

 The number of steps may vary depending on the PLC and parameters used, see
also Table of Code Intensive Instructions in the online help.

PLC types Availability of LN (see page 1328)

Data type I/O Function

REAL input input value

REAL output as input natural logarithm of input value

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 input variable does not have the data
type REAL or input variable is not > 0.0

R900B %MX0.900.11 permanently  output variable is zero

R9009 %MX0.900.9 for an instant  processing result overflows the output
variable

This example uses variables. You can also use a constant for the input variable.

Description LN calculates the logarithm of the input variable (value > 0.0) to the base e (Euler’s number =
2.7182818) and writes the result into the output variable. This function is the reversion of the EXP
(see page 80) function.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The logarithm of input_value is calculated to the base e and written into output_value.

LD

ST When programming with structured text, enter the following:

output_value:=LN(input_value);

Arithmetic instructions

80

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

LOG Logarithm to the Base 10

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

 The number of steps may vary depending on the PLC and parameters used, see
also Table of Code Intensive Instructions in the online help.

PLC types Availability of LOG (see page 1328)

Data type I/O Function

REAL input input value

REAL output as input logarithm of input value

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant
 input variable does not have the data

type REAL or input variable is not > 0.0

R900B %MX0.900.11 permanently  output variable is zero

R9009 %MX0.900.9 for an instant  processing result overflows the output
variable

Description LOG calculates the logarithm of the input variable (value > 0.0) to the base 10 and writes the result
into the output variable.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body The logarithm of input_value is calculated to the base 10 and written into output_value.

LD

ST When programming with structured text, enter the following:

output_value:=LOG(input_value);

 Arithmetic instructions

81

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

EXP Exponent of input variable to base e

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

 The number of steps may vary depending on the PLC and parameters used, see
also Table of Code Intensive Instructions in the online help.

PLC types Availability of EXP (see page 1320)

Data type I/O Function

REAL input input value between -87.33 and +88.72

REAL output as input exponent of input variable to base e

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 input variable does not have the data
type REAL or input variable is not >
-87.33 and < 88.72

R900B %MX0.900.11 permanently  output variable is zero

R9009 %MX0.900.9 for an instant  processing result overflows the output
variable

Description EXP calculates the power of the input variable to the base e (Euler’s number = 2.7182818) and
writes the result into the output variable. The input variable has to be greater than -87.33 and
smaller than 88.72. This function is the reversion of the LN (see page 78) function.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body The power of input_value is calculated to the base e and written into output_value.

LD

ST When programming with structured text, enter the following:

output_value:=EXP(input_value);

Arithmetic instructions

82

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

EXPT Raises 1st input variable by the power of the 2nd input variable

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of EXPT (see page 1320)

Data type I/O Function

REAL 1st input input value

REAL 2nd input exponent of the input value

REAL output as 1st input result

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 first and the second input variable do not
have the data type REAL

R900B %MX0.900.11 permanently  output variable is zero

R9009 %MX0.900.9 for an instant  processing result overflows the output
variable

Description EXPT raises the first input variable to the power of the second input variable (OUT = IN1IN2) and
writes the result into the output variable. Input variables have to be within the range -1.70141 x 10
E38 to 1.70141 x 10 E38.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

In this example the input variables (input_value_1 and input_value_2) have been declared.
Instead, you may enter constants directly at the input contacts of a function.

Body Input_value_1 is raised to the power of input_value_2. The result is written into output_value.

LD

ST

 Arithmetic instructions

83

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

When programming with structured text, enter the following:

output_value:=input_value_1**input_value_2;

Arithmetic instructions

84

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

CRC16 Cyclic Redundancy Check

Depending on the PLC type, one of the following two implementations of the function will be used:

 PLCs which support the instruction F70_BCC (see page 411) with the parameter
s1=10 to calculate CRC16 (FP-e, FP-Sigma, FP2, FP2SH, FP10SH) use
F70_BCC (see page 411) directly.

 For the other PLCs (FP0, FP0R, FP3, FP5, FP10), a sub-program making an
explicit CRC16 calculation is called. The following restrictions apply to this
sub-program:

  During the first eight execution scans an internal table is built. During this time, no
check sum is calculated, and the output IsValid remains FALSE. Starting with the fifth
scan, the check sum is calculated, and the output IsValid is set to TRUE.

 StartAddress requires an address in the DT or FL area.

 The number of steps can increase up to approx. 200 when CRC16 is used as
a sub-program.

 When programming, please be aware that a certain amount of time is
needed to build the internal table and to calculate the check sum, especially
for large data volumes.

PLC types Availability of CRC16 (see page 1318)

Description This function calculates the CRC16 (Cyclic Redundancy Check) for all PLC types by using 8 bytes
(8 bits) specified with the parameter NumberOfBytes and the starting address StartAddress.

 Arithmetic instructions

85

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Input variables (VAR_INPUT):

Variable Data
type

Function

StartAddress ANY Starting address for the calculation of the check sum. For PLCs
which do not support the instruction F70_BCC (see page 411)
with CRC16 calculation (FP0, FP5, FP10), the starting address
must be in the DT or FL area.

NumberOfBytes INT The number of bytes (8 bits), beginning with AdrStart, on which
the CRC16 calculation is performed.

Output variables (VAR_OUTPUT):

CRC ANY16 The calculated check sum, which is only valid if the flag IsValid
is set to TRUE.

IsValid BOOL Flag indicating whether the calculated check sum is valid or not.

For PLCs which do not support the instruction F70_BCC (see
page 411) with CRC16 calculation (FP0, FP5, FP10) the CRC is
not valid:

 during the first eight execution scans when an internal
table is built

 if the address area of the variable StartAddress is not in
the DT or FL area.

For PLCs that support the instruction F70_BCC with CRC16
calculation, the CRC is always valid.

Data types

Example In this example, the same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

CRC16(StartAddress := Array1,

 NumberOfBytes := ARRAY1_BYTES,

 CRC => Array1Crc,

 IsValid => CrcIsvalid);

Arithmetic instructions

86

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

LIMIT Limit value for input variable

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of LIMIT (see page 1328)

Data type I/O Function

all data types 1st input upper limit

all data types 2nd input value compared to upper and lower limit

all data types 3rd input lower limit

all data types output as input result, 2nd input value if between upper and lower limit,
otherwise the upper or lower limit

Description In LIMIT the 1st input variable forms the lower and the 3rd input variable the upper limit value. If the
2nd input variable is within this limit, it will be transferred to the output variable. If it is above this
limit, the upper limit value will be transferred; if it is below this limit the lower limit value will be
transferred.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

In this example the input variables (lower_limit_val, comparison_value and upper_val) have
been declared. Instead, you may enter a constant directly at the input contact of a function.

Body Lower_limit_val and upper_limit_val form the range where the comparison_value has to be, if it
has to be transferred to result. If the comparison_value is above the upper_limit_val, the value
of upper_limit_val will be transferred to result. If it is below the lower_limit_val, the value of
lower_limit_val will be transferred to result.

LD

ST When programming with structured text, enter the following:

result:=LIMIT(MN:=lower_limit_val, IN:=comparison_value,
MX:=upper_limit_val);

Chapter 4

 Bitwise Boolean instructions

Bitwise Boolean instructions

88

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

AND Logical AND operation

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of AND (see page 1335)

  All operands must be of the same data type.

 This function can be expanded to a maximum of 28 input contacts.

 Modifying elements

Data type I/O Function

BOOL, WORD, DWORD 1st input element 1 of logical AND operation

BOOL, WORD, DWORD 2nd input element compared to input 1

BOOL, WORD, DWORD output as input result

 Input 1 Input 2 Output

0 0 0

0 1 0

1 0 0

Signal

1 1 1

Description The content of the accumulator is connected with the operand defined in the operand field by a
logical AND operation. The result is transferred to the accumulator.

Data types

Truth table:

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body bvar_1 will be logically AND-linked with bvar_2. The result will be written into the output variable
bvar_3.

LD

ST When programming with structured text, enter the following:

bvar_3:= bvar_1&bvar_2;

 Bitwise Boolean instructions

89

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

OR Logical OR operation

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of OR (see page 1335)

  All operands must be of the same data type.

 This function can be expanded to a maximum of 28 input contacts.

 Modifying elements

Data type I/O Function

BOOL, WORD, DWORD 1st input element 1 of logical OR operation

BOOL, WORD, DWORD 2nd input element compared to input 1

BOOL, WORD, DWORD output as input result

Input 1 Input 2 Output

0 0 0

1 0 1

0 1 1

Signal

1 1 1

Description The content of the accumulator is connected with the operand defined in the operand field by a
logical OR operation. The result is transferred to the accumulator.

Data types

Truth table:

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body bvar_1 and bvar_2 are linked with a logical OR. The result will be written in bvar_3. This example
uses variables. You may also use constants for the input variables.

LD

ST When programming with structured text, enter the following:

bvar_3:= var_1 OR bvar_2;

Bitwise Boolean instructions

90

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

XOR Exclusive OR operation

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of XOR (see page 1335)

  All operands must be of the same data type.

 This function can be expanded to a maximum of 28 input contacts.

 Modifying elements

Data type I/O Function

BOOL, WORD, DWORD 1st input element 1 of logical XOR operation

BOOL, WORD, DWORD 2nd input element compared to input 1

BOOL, WORD, DWORD output as input result

Input 1 Input 2 Output

0 0 0

1 0 1

0 1 1

Signal

1 1 0

Description The content of the accumulator is connected with the operand defined in the operand field by a
logical XOR operation. The result is transferred to the accumulator.

Data types

Truth table:

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The Boolean variables bvar_1 and bvar_2 are logically EXCLUSIVE-OR linked and the result is
written in bvar_3.

LD

ST When programming with structured text, enter the following:

var_3:= var_1 XOR var_2;

 Bitwise Boolean instructions

91

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

NOT Bit inversion

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of NOT (see page 1328)

 All operands must be of the same data type.

Data type I/O Function

BOOL, WORD,
DWORD

input input for NOT operation

BOOL, WORD,
DWORD

output as input result

This example uses variables. You can also use a constant for the input variable.

Description NOT performs a bit inversion of input variables. The result will be written into the output variable.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The bits of input_value are inversed (0 is inversed to 1 and vice versa). The inversed result is
written into negation.

LD

ST When programming with structured text, enter the following:

negation:= NOT(input_value);

Chapter 5

 Bit-shift instructions

Bit-shift instructions

94

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

SHR Shift bits to the right

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Bit shift to the right, zero-filled on left:

15 . . 12 11 . . 8 7 . . 4 3 . . 0

DT0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 1

15 . . 12 11 . . 8 7 . . 4 3 . . 0

DT0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 0

Bit

Bit

Source register

Target register

(n = 4 bits)

The 4 most significant bits are filled with 0s.

PLC types Availability of SHR (see page 1330)

Data type I/O Function

1st input input value

2nd input number of bits by which the input value is shifted to the right ANY_BIT

output as input result

  If the second input variable N (the number of bits to be shifted) is of
the data type DWORD, then only the lower 16 bits are taken into
account.

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Description SHR shifts a bit value by a defined number of positions (N) to the right and fills the vacant positions
with zeros.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

 Bit-shift instructions

95

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Body The last N bits (here 4) of source_register are right-shifted. The vacant positions on the left are
filled with zeros. The result is written into target_register.

LD

Bit-shift instructions

96

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

SHL Shift bits to the left

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Bit shift to the left, zero-filled on right:

0 0

· ·· · · · · · ·
D

15 1211 8 7 4 3 0

· · · · · · · ·
D

15 1211 8 7 4 3

0

0

0

Source register

Target register

(n = 4 bits)
Bit position

Bit position

n bits starting from bit position

0 are filled with 0s.

PLC types Availability of SHL (see page 1330)

Data type I/O Function

1st input input value

2nd input number of bits by which the input value is shifted to the left ANY_BIT

output as input result

  If the second input variable N (the number of bits to be shifted) is of
the data type DWORD, then only the lower 16 bits are taken into
account.

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Description SHL shifts a bit value by a defined number of positions (N) to the left and fills the vacant positions
with zeros.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

 Bit-shift instructions

97

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Body The first N bits (here 4) of source_register are left-shifted, the vacant positions on the right are
filled with zeros. The result is written into target_register.

LD

Bit-shift instructions

98

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

ROR Rotate N bits the right

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

0

00

3

DT0 0 0 0 1 0 0 1 0

11 8

0 0 1 1 1 0

015 . . 127 4. .

DT0 0 1 0 0 0 0 1

11 8

0 0 1 0 0 0 1 1

3 015 . . 127 4. .

(n = 4 bits)Source register

Target register

Bit

Bit

PLC types Availability of ROR (see page 1330)

Data type I/O Function

1st input input value

2nd input number of bits by which the input value is rotated to the right ANY_BIT

output as input result

 The number of steps may vary depending on the PLC and parameters used, see
also Table of Code Intensive Instructions in the online help.

Description ROR rotates a defined number (N) of bits to the right.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body The first N bits (here N = 4) of source_register are right-rotated. The result will be written into
target_register.

 Bit-shift instructions

99

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

LD

Bit-shift instructions

100

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

ROL Rotate N bits to the left

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

15

0

0

10 0 0 0 1 0

11 8

0 0 1 1 0 1 0 0

3 0. . 127 4. .

DT0 0 0 1 0 0 0 1 1

11 8

0 1 0 0 0 0 1

3 015 . . 127 4. .

DT0

Source register

Target register

(n = 4 bits)

Bit

Bit

PLC types Availability of ROL (see page 1330)

Data type I/O Function

1st input input value

2nd input number of bits by which the input value is rotated to the left ANY_BIT

output as input result

 The number of steps may vary depending on the PLC and parameters used, see
also Table of Code Intensive Instructions in the online help.

Description ROL rotates a defined number (N) of bits to the left.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body The last N bits (here 4) of source_register are left-rotated. The result will be written in
target_register.

 Bit-shift instructions

101

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

LD

Chapter 6

 Comparison instructions

Comparison instructions

104

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

GT Greater than

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of GT (see page 1335)

  Inputs can be of any data type; all input variables must be of the same
data type though. Output must be of type BOOL.

 The number of input contacts lies in the range of 2 to 28.

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data type I/O Function

all data types 1st input value for comparison

all data types 2nd input reference value

BOOL output result, TRUE if value for comparison is greater than the reference value

The variables that are compared to each other must be of the same data type.

When using more inputs, the first input is compared with the second, the second input is compared
with the third input etc. If the first value is greater than the second value AND the second value
greater than third etc., TRUE will be written into result, otherwise FALSE.

In this example the input variables (comparison_value, reference_value and enable) have been
declared. Instead, you may enter constants directly into the function (enable input e.g. for tests).

Description The content of the accumulator is compared with the operand defined in the operand field. If the
accumulator is greater than the reference value, "TRUE" is stored in the accumulator, otherwise
"FALSE".

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body If enable is set (TRUE), the comparison_value is compared with the reference_value. If the
comparison_value is greater than the reference_value, the value TRUE will be written into
result, otherwise FALSE.

 Comparison instructions

105

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

LD

Comparison instructions

106

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

GE Greater than or equal to

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of GE (see page 1335)

  Inputs can be of any data type; all input variables must be of the same
data type though. Output must be of type BOOL.

 The number of input contacts lies in the range of 2 to 28.

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data type I/O Function

all data types 1st input value for comparison

all data types 2nd input reference value

BOOL output result, TRUE if value for comparison is greater than or equal to the
reference value

The variables that are compared to each other must be of the same data type.

When using more inputs, the first input is compared with the second, the second input is compared
with the third input etc. If the first value is greater than or equal to the second value AND the
second value is greater than or equal to the third value etc., TRUE will be written into result,
otherwise FALSE.

In this example the input variables (comparison_value, reference_value and enable) have been
declared. Instead, you may enter constants directly into the function (enable input e.g. for tests).

Description The content of the accumulator is compared with the operand defined in the operand field. If the
accumulator is greater or equal to the reference value, "TRUE" is stored in the accumulator,
otherwise "FALSE".

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the
POU header.

Body If enable is set (TRUE), the comparison_value is compared with the reference_value. If the
comparison_value is greater than or equal to the reference_value, the value TRUE will be written
into result, otherwise FALSE.

 Comparison instructions

107

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

LD

Comparison instructions

108

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

EQ Equal to

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of EQ (see page 1335)

  Inputs can be of any data type; all input variables must be of the same
data type though. Output must be of type BOOL.

 The number of input contacts lies in the range of 2 to 28.

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data type I/O Function

all data types 1st input value for comparison

all data types 2nd input reference value

BOOL output result, TRUE if value for comparison is equal to the
reference value

The variables that are compared to each other must be of the same data type.

When using more inputs, the first input is compared with the second, the second input is compared
with the third input etc. If the first value is equal to the second value AND the second value is equal
to the third value etc., TRUE will be written into result, otherwise FALSE.

In this example the input variables (comparison_value, reference_value and enable) have been
declared. Instead, you may enter constants directly into the function (enable input e.g. for tests).

Description The content of the accumulator is compared with the operand defined in the operand field. If both
values are equal, "TRUE" is stored in the accumulator, otherwise "FALSE".

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the
POU header.

Body If enable is set (TRUE), the variable comparison_value is compared with the variable
reference_value. If the values of the two variables are identical, the value TRUE will be written into
result, otherwise FALSE.

LD

 Comparison instructions

109

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

LE Less than or equal to

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of LE (see page 1335)

  Inputs can be of any data type; all input variables must be of the same
data type though. Output must be of type BOOL.

 The number of input contacts lies in the range of 2 to 28.

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data type I/O Function

all data types 1st input value for comparison

all data types 2nd input reference value

BOOL output result, TRUE if value for comparison is less than or equal to the reference value

The variables that are compared to each other must be of the same data type.

When using more inputs, the first input is compared with the second, the second input is compared
with the third input etc. If the first value is less than or equal to the second value AND the second
value is less than or equal to the third value etc., TRUE will be written into result, otherwise FALSE.

In this example the input variables (comparison_value, reference_value and enable) have been
declared. Instead, you may enter constants directly into the function (enable input e.g. for tests).

Description The content of the accumulator is compared with the operand defined in the operand field. If the
accumulator is less or equal to the reference value, "TRUE" is stored in the accumulator, otherwise
"FALSE".

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the
POU header.

Body If enable is set (TRUE), the comparison_value is compared with the variable reference_value. If
the comparison_value is less than or equal to the reference_value, TRUE will be written into
result, otherwise FALSE.

LD

Comparison instructions

110

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

LT Less than

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of LT (see page 1335)

  Inputs can be of any data type; all input variables must be of the same
data type though. Output must be of type BOOL.

 The number of input contacts lies in the range of 2 to 28.

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data type I/O Function

all data types 1st input value for comparison

all data types 2nd input reference value

BOOL output result, TRUE if value for comparison is less than the
reference value

The variables that are compared to each other must be of the same data type.

When using more inputs, the first input is compared with the second, the second input is compared
with the third input etc. If the first value is less than the second value AND the second value is less
than the third value etc., TRUE will be written into result, otherwise FALSE.

Description The content of the accumulator is compared with the operand defined in the operand field. If the
accumulator is less than the reference value, "TRUE" is stored in the accumulator, otherwise
"FALSE".

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the
POU header.

In this example the input variables (comparison_value, reference_value and enable) have been
declared. Instead, you may enter constants directly into the function (enable input e.g. for tests).

Body If enable is set (TRUE), the comparison_value is compared with the reference_value. If the
comparison_value is less than the reference_value, TRUE will be written into result, otherwise
FALSE.

LD

 Comparison instructions

111

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

NE Not equal

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of NE (see page 1335)

  Inputs can be of any data type; all input variables must be of the same
data type though. Output must be of type BOOL.

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data type I/O Function

all data types 1st input value for comparison

all data types 2nd input reference value

BOOL output result, TRUE if value for comparison is unequal to
the reference value, otherwise FALSE

The variables that are compared to each other must be of the same data type.

When using more inputs, the first input is compared with the second, the second input is compared
with the third input etc. If the first value is not equal to the second value AND the second value is
not equal to the third value etc., TRUE will be written into result, otherwise FALSE.

In this example the input variables (comparison_value, reference_value and enable) have been
declared. Instead, you may enter constants directly into the function (enable input e.g. for tests).

Description The content of the accumulator is compared with the operand defined in the operand field. If both
values are not equal, "TRUE" is stored in the accumulator, otherwise "FALSE".

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the
POU header.

Body If enable is set (TRUE), the comparison_value is compared with the reference_value. If the two
values are unequal, TRUE will be written into result, otherwise FALSE.

LD

Comparison instructions

112

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

WITHIN_LIMITS Evaluate if a value is within the limits

PLC types see see page 1333

Variable Data type Function

MN Minimum limit

IN Value compared to the limits

MX

ANY_SIMPLE

Maximum limit

Output variable BOOL TRUE if the input value at IN falls within the lower and upper limits

Description This instruction evaluates whether the value at the input IN is within the limits set at minimum (MN)
and maximum MX.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST bResult := WITHIN_LIMITS(MN := iMinValue, IN := iValidateValue, MX :=
iMaxValue);

Chapter 7

 Conversion instructions

Conversion instructions

114

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

WORD_TO_BOOL WORD in BOOL

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of WORD_TO_BOOL (see page 1333)

 If the input value = 0 (16#0000), the conversion result will be = 0 (FALSE); in any
other case, it will be = 1 (TRUE).

Data type I/O Function

WORD input input data type

BOOL output conversion result

Description WORD_TO_BOOL converts a value of the data type WORD into a value of the data type BOOL.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body WORD_value of the data type WORD (16-bit) is converted into a Boolean value (1-bit). The result
will be written into Boolean_value.

LD

ST When programming with structured text, enter the following:

Boolean_value:=WORD_TO_BOOL(WORD_value);

 Conversion instructions

115

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DWORD_TO_BOOL DOUBLE WORD in BOOL

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DWORD_TO_BOOL (see page 1319)

 If the input value = 0 (16#0000), the conversion result will be = 0 (FALSE); in any
other case, it will be = 1 (TRUE).

Data type I/O Function

DWORD input input data type

BOOL output conversion result

Description DWORD_TO_BOOL converts a value of the data type DOUBLE WORD into a value of the data
type BOOL.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body DWORD_value of the data type DOUBLE WORD is converted into a Boolean value (1-bit). the
converted value is written into Boolean_value.

LD

ST When programming with structured text, enter the following:

Boolean_value:=DWORD_TO_BOOL(DWORD_value);

Conversion instructions

116

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

INT_TO_BOOL INTEGER into BOOL

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of INT_TO_BOOL (see page 1327)

 If the input value = 0 (16#0000), the conversion result will be = 0 (FALSE); in any
other case, it will be = 1 (TRUE).

Data type I/O Function

INT input input data type

BOOL output conversion result

 If INT_value has the value 0, the conversion result will be 0 (FALSE), in any other
case it will be 1 (TRUE).

Description INT_TO_BOOL converts a value of the data type INT into a value of the data type BOOL.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body INT_value (16-bit) of the data type INTEGER is converted into a Boolean value. The result is
written into Boolean_value.

LD

ST When programming with structured text, enter the following:

Boolean_value:=INT_TO_BOOL(INT_value);

 Conversion instructions

117

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DINT_TO_BOOL DOUBLE INTEGER into BOOL

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DINT_TO_BOOL (see page 1319)

 If the input value = 0 (16#0000), the conversion result will be = 0 (FALSE); in any
other case, it will be = 1 (TRUE).

Data type I/O Function

DINT input input data type

BOOL output conversion result

 If the variable DINT_value has the value 0, the conversion result is FALSE, in any
other case TRUE.

Description DINT_TO_BOOL converts a value of the data type DINT into a value of the data type BOOL.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

In this example the input variable (DINT_value) has been declared. Instead, you may enter a
constant directly at the input contact of a function.

Body DINT_value of the data type DOUBLE INTEGER is converted into a value of the data type BOOL.
The converted value in written into Boolean_value.

LD

ST When programming with structured text, enter the following:

Boolean_value:=DINT_TO_BOOL(DINT_value);

Conversion instructions

118

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UINT_TO_BOOL Unsigned INTEGER into BOOL

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UINT_TO_BOOL (see page 1332)

 If the input value = 0 (16#0000), the conversion result will be = 0 (FALSE); in any
other case, it will be = 1 (TRUE).

Data type I/O Function

UINT Input input data type

BOOL Output conversion result

Description UINT_TO_BOOL converts a value of the data type Unsigned INTEGER into a value of the data
type BOOL.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST Boolean_value:= UINT_TO_BOOL(UINT_value);

 Conversion instructions

119

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UDINT_TO_BOOL Unsigned DOUBLE INTEGER into BOOL

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_BOOL (see page 1332)

 If the input value = 0 (16#0000), the conversion result will be = 0 (FALSE); in any
other case, it will be = 1 (TRUE).

Data type I/O Function

UDINT Input input data type

BOOL Output conversion result

Description UDINT_TO_BOOL converts a value of the data type Unsigned DOUBLE INTEGER into a value of
the data type BOOL.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

Boolean_value := UDINT_TO_BOOL(UDINT_value);

Conversion instructions

120

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

BOOL_TO_WORD BOOL into WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of BOOL_TO_WORD (see page 1318)

Data type I/O Function

BOOL input input data type

WORD output conversion result

In this example the input variable (Boolean_value) has been declared. Instead, you may enter a
constant directly at the input contact of a function.

Description BOOL_TO_WORD converts a value of the data type BOOL into a value of the data type WORD.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The Boolean_value of the data type BOOL is converted into a value of the data type WORD. The
converted value is written into WORD_value.

LD

ST When programming with structured text, enter the following:

IF Boolean_value THEN

 WORD_value:=BOOL_TO_WORD(Boolean_value);

END_IF;

 Conversion instructions

121

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

BOOL16_TO_WORD BOOL16 to WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of BOOL16_TO_WORD (see page 1318)

Data type Comment

ARRAY of BOOL ARRAY with 16 elements

WORD output variable

POU header:

Body with and without EN/ENO:

Description This function copies a variable of the special data type BOOL16 (see page 55) (an array with 16
elements of the data type BOOL or a DUT of 16 members of the data type BOOL) at the input to
the data type WORD at the output.

Data types

Conversion instructions

122

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

BOOLS_TO_WORD 16 Variables of the data type BOOL to WORD

The inputs Bool0 to Bool15 need not be allocated in LD or FBD, or used explicitly in the ST editor's
formal list of parameters. Such unused inputs are assumed to be FALSE. No program code is
generated for these inputs (or for any input allocated with the constants TRUE or FALSE). Program
code is only generated for inputs to which a variable is allocated.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of BOOLS_TO_WORD (see page 1318)

Description This function converts 16 values of the data type BOOL bit-wise to a value of the data type WORD.

 Conversion instructions

123

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Variable Data type Function

BOOL0 ...
BOOL15

BOOL 16 input variables of the data type BOOL

 WORD output variable

POU header:

Body with and without EN/ENO:

Data types

Conversion instructions

124

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DWORD_TO_WORD DOUBLE WORD in WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DWORD_TO_WORD (see page 1319)

 The first 16 bits of the input variable are assigned to the output variable.

Data type I/O Function

DWORD input input data type

WORD output conversion result

Description DWORD_TO_WORD converts a value of the data type DOUBLE WORD into a value of the data
type WORD.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body DWORD_value of the data type DOUBLE WORD (32-bit) is converted into a value of the data type
WORD (16-bit). The converted value is written into WORD_value.

LD

ST When programming with structured text, enter the following:

WORD_value:=DWORD_TO_WORD(DWORD_value);

 Conversion instructions

125

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

INT_TO_WORD INTEGER into WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of INT_TO_WORD (see page 1327)

 The bit combination of the input variable is assigned to the output variable.

Data type I/O Function

INT input input data type

WORD output conversion result

Description INT_TO_WORD converts a value of the data type INT into a value of the data type WORD.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body INT_value of the data type INTEGER is converted into a value of the data type WORD. The result
is written into WORD_value.

LD

ST When programming with structured text, enter the following:

WORD_value:=INT_TO_WORD(INT_value);

Conversion instructions

126

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DINT_TO_WORD DOUBLE INTEGER into WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DINT_TO_WORD (see page 1319)

 The first 16 bits of the input variable are assigned to the output variable.

Data type I/O Function

DINT input input data type

WORD output conversion result

Description DINT_TO_WORD converts a value of the data type DINT into a value of the data type WORD.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body DINT_value of the data type DOUBLE INTEGER (32-bit) is converted into a value of the data type
WORD (16-bit). The converted value is written into WORD_value.

LD

ST When programming with structured text, enter the following:

WORD_value:=DINT_TO_WORD(DINT_value);

 Conversion instructions

127

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UINT_TO_WORD Unsigned INTEGER into WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UINT_TO_WORD (see page 1332)

 The first 16 bits of the input variable are assigned to the output variable.

Data type I/O Function

UINT Input input data type

WORD Output conversion result

Description UINT_TO_WORD converts a value of the data type Unsigned INTEGER into a value of the data
type WORD.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST WORD_value:= UINT_TO_WORD(UINT_value);

Conversion instructions

128

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UDINT_TO_WORD Unsigned DOUBLE INTEGER into WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_WORD (see page 1332)

 The first 16 bits of the input variable are assigned to the output variable.

Data type I/O Function

UDINT Input input data type

WORD Output conversion result

Description UDINT_TO_WORD converts a value of the data type Unsigned DOUBLE INTEGER into a value of
the data type WORD.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

WORD_value := UDINT_TO_WORD(UDINT_value);

 Conversion instructions

129

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

TIME_TO_WORD TIME into WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TIME_TO_WORD (see page 1332)

Data type I/O Function

TIME input input data type

WORD output conversion result

Examples: Input variable Output variable

 T#123.4s 1234

 T#1.00s 16#0064

Description TIME_TO_WORD converts a value of the data type TIME into a value of the data type WORD.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body Time_value of the data type TIME is converted into a value of the data type WORD. The result will
be written into the output variable WORD_value.

LD

ST When programming with structured text, enter the following:

WORD_value:=TIME_TO_WORD(time_value);

Conversion instructions

130

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

STRING_TO_WORD STRING (hexadecimal format) to WORD

Thereby the attached string is first converted to a value of the data type STRING[32]. Finally this is
converted to a value of the data type WORD via a sub-program of approx. 270 steps that is also
used in the functions STRING_TO_INT, STRING_TO_WORD, STRING_TO_DINT and
STRING_TO_DWORD.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Example with and without EN/ENO:

Permissible format:

'[Space][Hexadecimal numbers][Space]' e.g. ' afFE '

Permissible characters:

Space All characters except for "+“ (plus), "-" (minus) and all hexadecimal
numbers

Hexadecimal
numbers

Hexadecimal numbers in the ranges "0 - 9“, "A - F“ or "a - f“.

The analysis ends with the first non-hexadecimal number.

PLC types Availability of STRING_TO_WORD (see page 1331)

Data type Comment

STRING input variable

WORD output variable

Description This function converts a STRING in hexadecimal format to a value of the data type WORD.

Data types

 Conversion instructions

131

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

STRING_TO_WORD
_STEPSAVER

STRING (Hexadecimal Format right-justified) to WORD

Input Defined as Results in

'D' STRING[1] 16#D

'CD' STRING[2] 16#CD

'BCD' STRING[3] 16#BCD

'ABCD' STRING[4] 16#ABCD

'0ABCD' STRING[5] 16#ABCD

'00ABCD' STRING[6] 16#ABCD

The basic instruction F72_A2HEX (see page 624) is used. The PLC delivers an operation error
especially when a character appears that is not a hexadecimal number “0 - 9" or "A-F”.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Data type Comment

STRING Input variable

WORD Output variable

Acceptable Format for STRING[4]:

'Hex1Hex2Hex3Hex4' e.g. perhaps 'AFFE'

Acceptable characters:

Hex1 to Hex4 Hexadecimal numbers in the range "0 - 9“ or "A - F“ (not "a - f").

PLC types Availability of STRING_TO_WORD_STEPSAVER (see page 1331)

Description This function converts the string with the maximum possible number of characters that are right
aligned in hexadecimal format to a value of the data type WORD.

Examples

Example

Data types

Conversion instructions

132

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

BOOL_TO_DWORD BOOL into DOUBLE WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of BOOL_TO_DWORD (see page 1318)

Data type I/O Function

BOOL input input data type

DWORD output conversion result

In this example the input variable (Boolean_value) has been declared. Instead, you may enter a
constant directly at the input contact of a function.

Description BOOL_TO_DWORD converts a value of the data type BOOL into a value of the data type
DWORD.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The Boolean_value of the data type BOOL is converted into a value of the data type DOUBLE
INTEGER. The converted value is written into DWORD_value.

LD

ST When programming with structured text, enter the following:

IF Boolean_value THEN

 DWORD_value:=BOOL_TO_DWORD(Boolean_value);

END_IF;

 Conversion instructions

133

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

BOOL32_TO_DWORD BOOL32 to DOUBLE WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of BOOL32_TO_DWORD (see page 1318)

Data type Comment

ARRAY of BOOL ARRAY with 32 elements

DWORD output variable

POU header:

Body with and without EN/ENO:

Description This function copies a variable of the special data type BOOL32 (see page 55) (an array with 32
elements of the data type BOOL or a DUT of 32 members of the data type BOOL) at the input to
the data type DWORD at the output.

Data types

Conversion instructions

134

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

BOOLS_TO_DWORD 32 Variables of the data type BOOL to DWORD

The inputs Bool0 to Bool31 need not be allocated in LD or FBD, or used explicitly in the ST editor's
formal list of parameters. Such unused inputs are assumed to be FALSE. No program code is
generated for these inputs (or for any input allocated with the constants TRUE or FALSE). Program
code is only generated for inputs to which a variable is allocated.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of BOOLS_TO_DWORD (see page 1318)

Variable Data type Function

BOOL0 ...
BOOL31

BOOL 32 input variables of the data type BOOL

 DWORD output variable

POU header:

etc. to Bool31

Description This function converts 32 values of the data type BOOL bit-wise to a value of the data type
DWORD.

Data types

 Conversion instructions

135

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Body with and without EN/ENO:

Conversion instructions

136

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

WORD_TO_DWORD WORD in DOUBLE WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of WORD_TO_DWORD (see page 1333)

 The bit combination of WORD_value is assigned to DWORD_value.

Data type I/O Function

WORD input input data type

DWORD output conversion result

Description WORD_TO_DWORD converts a value of the data type WORD into a value of the data type
DWORD.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body WORD_value of the data type WORD is converted into a value of the data type DOUBLE WORD.
The result will be written into DWORD_value.

LD

ST When programming with structured text, enter the following:

DWORD_value:=WORD_TO_DWORD(WORD_value);

 Conversion instructions

137

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

INT_TO_DWORD INTEGER into DOUBLE WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of INT_TO_DWORD (see page 1327)

Data type I/O Function

INT input input data type

DWORD output conversion result

Description INT_TO_DWORD converts a value of the data type INT into a value of the data type DWORD.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body INT_value of the data type INTEGER is converted into a value of the data type DOUBLE WORD
(32-bit). The result is written into DWORD_value.

LD

ST When programming with structured text, enter the following:

DWORD_value:=INT_TO_DWORD(INT_value);

Conversion instructions

138

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DINT_TO_DWORD DOUBLE INTEGER into DOUBLE WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DINT_TO_DWORD (see page 1319)

 The bit combination of the input variable is assigned to the output variable.

Data type I/O Function

DINT input input data type

DWORD output conversion result

Description DINT_TO_DWORD converts a value of the data type DINT into a value of the data type DWORD.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body DINT_value of the data type DOUBLE INTEGER is converted into a value of the data type
DOUBLE WORD. The converted value is written into DWORD_value.

LD

ST When programming with structured text, enter the following:

DWORD_value:=DINT_TO_DWORD(DINT_value);

 Conversion instructions

139

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UINT_TO_DWORD Unsigned INTEGER into DOUBLE WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UINT_TO_DWORD (see page 1332)

Data type I/O Function

UINT Input input data type

DWORD Output conversion result

Description UINT_TO_DWORD converts a value of the data type Unsigned INTEGER into a value of the data
type DWORD.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST DWORD_value:= UINT_TO_DWORD(UINT_value);

Conversion instructions

140

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UDINT_TO_DWORD Unsigned DOUBLE INTEGER into DOUBLE WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_DWORD (see page 1332)

Data type I/O Function

UDINT Input input data type

DWORD Output conversion result

Description UDINT_TO_DWORD converts a value of the data type Unsigned DOUBLE INTEGER into a value
of the data type DWORD.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

DWORD_value := UDINT_TO_DWORD(UDINT_value);

 Conversion instructions

141

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

REAL_TO_DWORD REAL into DOUBLE WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of REAL_TO_DWORD (see page 1330)

Data type I/O Function

REAL Input input data type

DWORD Output conversion result

Description REAL_TO_DWORD moves bitset information of a REAL variable to a DWORD variable. The same
functionality can be obtained using DWORD_OVERLAPPING_DUT.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

DWORD_value := REAL_TO_DWORD(REAL_value);

Conversion instructions

142

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

TIME_TO_DWORD TIME into DOUBLE WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TIME_TO_DWORD (see page 1331)

Data type I/O Function

TIME input input data type

DWORD output conversion result

Description TIME_TO_DWORD converts a value of the data type TIME into a value of the data type DWORD.
The time 10ms corresponds to the value 1, e.g. an input value of T#1s is converted to the value
100 (16#64).

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body time_value of the data type TIME is converted to value of the data type DWORD and written into
the output variable DWORD_value.

LD

ST When programming with structured text, enter the following:

DWORD_value:=TIME_TO_DWORD(time_value);

 Conversion instructions

143

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

STRING_TO_DWORD STRING (Hexadecimal Format) to DOUBLE WORD

At first the string is converted to a value of the data type STRING[32]. Finally this is converted to a
value of the data type DWORD in a subprogram of approximately 270 steps, which is also used by
the functions STRING_TO_INT, STRING_TO_WORD, STRING_TO_DINT and
STRING_TO_DWORD.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

See also: STRING_TO_DWORD_STEPSAVER

Example with and without EN/ENO:

Acceptable Format:

_'[Space][Hexadecimal number][Space]' e.g. perhaps ' afFE '

Acceptable characters:

Space Space “ “

Signs Plus "+“ and minus "-"

Hexadecimal
numbers

Hexadecimal numbers in the range "0 - 9“ or "A - F“ or "a - f".

The analysis ends with the first non-hexadecimal number.

PLC types Availability of STRING_TO_DWORD (see page 1331)

Data type Comment

STRING Input variable

DWORD Output variable

Description This function converts a string in hexadecimal formal to a value of the data type DWORD.

Data types

Conversion instructions

144

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

STRING_TO_DWORD
_STEPSAVER

STRING (Hexadecimal Format right-justified) to DOUBLE WORD

Input Defined as Results in

 'FE' STRING[2] 16#FE

'EFFE' STRING[4] 16#EFFE

'CDEFFE' STRING[6] 16#CDEFFE

'ABCDEFFE' STRING[8] 16#ABCDEFFE

'00ABCDEFFE' STRING[10] 16#ABCDEFFE

The basic instruction F72_A2HEX (see page 624) is used. The PLC delivers an operation error
especially when a character appears that is not a hexadecimal number “0 - 9" or "A - F”.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Data type Comment

STRING Input variable

DWORD Output variable

Acceptable Format for STRING[8]:

'Hex1Hex2Hex3Hex4Hex5Hex6Hex7Hex8' e.g. perhaps '001AAFFE'

Acceptable characters:

Hex1 to Hex8 Hexadecimal numbers in the range "0 - 9“ or "A - F“ (not "a - f").

PLC types Availability of STRING_TO_DWORD_STEPSAVER (see page 1331)

Description This function converts the string with the maximum possible number of characters that are right
aligned in hexadecimal format to a value of the data type DWORD.

Explanation

Example

Data types

 Conversion instructions

145

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

BOOL_TO_INT BOOL into INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of BOOL_TO_INT (see page 1318)

Data type I/O Function

BOOL input input data type

INT output conversion result

In this example the input variable (Boolean_value) has been declared. Instead, you may enter a
constant directly at the input contact of a function.

Description BOOL_TO_INT converts a value of the data type BOOL into a value of the data type INT.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The Boolean_value of the data type BOOL is converted into a value of the data type INTEGER.
The converted value is written into INT_value.

LD

ST When programming with structured text, enter the following:

IF Boolean_value THEN

 INT_value:=BOOL_TO_INT(Boolean_value);

END_IF;

Conversion instructions

146

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

WORD_TO_INT WORD value in INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of WORD_TO_INT (see page 1333)

 The bit combination of WORD_value is assigned to INT_value.

Data type I/O Function

WORD input input data type

INT output conversion result

Description WORD_TO_INT converts a value of the data type WORD into a value of the data type INT.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body WORD_value of the data type WORD is converted into a value of the data type INTEGER. The
result will be written into INT_value.

LD

ST When programming with structured text, enter the following:

INT_value:=WORD_TO_INT(WORD_value);

 Conversion instructions

147

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

WORD_BCD_TO_INT Binary WORD value into INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of WORD_BCD_TO_INT (see page 1333)

Data type I/O Function

WORD_BCD Input input data type

INT Output conversion result

This example uses variables. You can also use a constant for the input variable.

BCD constants can be expressed in Control FPWIN Pro as follows:

2#0001100110010101 or
16#1995

Description WORD_BCD_TO_INT converts a binary coded BCD value of WORD into binary values of type
INT.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body BCD_value_16bit of the data type WORD is converted into an INTEGER value. The converted
value is written into output variable INT_value.

LD

ST When programming with structured text, enter the following:

INT_value:=WORD_BCD_TO_INT(BCD_value_16bit);

Conversion instructions

148

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DWORD_TO_INT DOUBLE WORD in INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DWORD_TO_INT (see page 1319)

 The first 16 bits of the input variable are assigned to the output variable.

Data type I/O Function

DWORD input input data type

INT output conversion result

Description DWORD_TO_INT converts a value of the data type DWORD into a value of the data type INT.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

In this example the input variable (DWORD _value) has been declared. Instead, you may enter a
constant directly at the input contact of a function.

Body DWORD_value of the data type DOUBLE WORD (32-bit) is converted into an INTEGER value
(16-bit). The converted value is written into INT_value.

LD

ST When programming with structured text, enter the following:

INT_value:=DWORD_TO_INT(DWORD_value);

 Conversion instructions

149

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DINT_TO_INT DOUBLE INTEGER into INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DINT_TO_INT (see page 1319)

 The value of the input variable should be between -32768 and 32767.

Data type I/O Function

DINT input input data type

INT output conversion result

Description DINT_TO_INT converts a value of the data type DINT into a value of the data type INT.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body DINT_value of the data type DOUBLE INTEGER (32-bit) is converted into a value of the data type
INTEGER (16-bit). The converted value is written into INT_value.

LD

ST When programming with structured text, enter the following:

INT_value:=DINT_TO_INT(DINT_value);

Conversion instructions

150

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UINT_TO_INT Unsigned DOUBLE INTEGER into INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UINT_TO_INT (see page 1332)

Data type I/O Function

UINT Input input data type

INT Output conversion result

Description UINT_TO_INT converts a value of the data type Unsigned INTEGER into a value of the data type
INT.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST INT_value:= UINT_TO_INT(UINT_value);

 Conversion instructions

151

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UDINT_TO_INT Unsigned DOUBLE INTEGER into INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_INT (see page 1332)

Data type I/O Function

UDINT Input input data type

INT Output conversion result

Description UDINT_TO_INT converts a value of the data type Unsigned DOUBLE INTEGER into a value of the
data type INT.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

INT_value := UDINT_TO_INT(UDINT_value);

Conversion instructions

152

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

REAL_TO_INT REAL into INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of REAL_TO_INT (see page 1330)

Data type I/O Function

REAL input input data type

INT output conversion result

This example uses variables. You can also use a constant for the input variable.

Description REAL_TO_INT converts a value of the data type REAL into a value of the data type INTEGER.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body REAL_value of the data type REAL is converted into a value of the data type INTEGER. The
converted value is stored in INT_value.

LD

ST When programming with structured text, enter the following:

INT_value:= REAL_TO_INT(REAL_value);

 Conversion instructions

153

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

TRUNC_TO_INT Truncate (cut off) decimal digits of REAL input variable, convert to
INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TRUNC_TO_INT (see page 1332)

  If the decimal digits are cut off, positive numbers will be decreased
towards zero and negative numbers will be increased towards zero.

 The first 16 bits of the input variable are assigned to the output
variable.

Data type I/O Function

REAL input input data type

INT output conversion result

No. IEC address Set If

R9007 %MX0.900.7 permanently  input variable does not have the data
type REAL

R9008 %MX0.900.8 for an instant  output variable is greater than a 16-bit
INTEGER

R9009 %MX0.900.9 for an instant  output variable is zero

Description TRUNC_TO_INT cuts off the decimal digits of a REAL number and delivers an output variable of
the data type INTEGER.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body The decimal digits of REAL_value are cut off. The result is stored as a 16-bit INTEGER in
INT_value.

LD

ST When programming with structured text, enter the following:

INT_value:=TRUNC_TO_INT(REAL_value);

Conversion instructions

154

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

TIME_TO_INT TIME into INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TIME_TO_INT (see page 1331)

Data type I/O Function

TIME input input data type

INT output conversion result

Description TIME_TO_INT converts a value of the data type TIME into a value of the data type INT.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body Time_value of the data type TIME is converted into a value of the data type INTEGER. The result
will be written into the output variable INT_value.

LD

ST When programming with structured text, enter the following:

INT_value:=TIME_TO_INT(time_value);

 Conversion instructions

155

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

STRING_TO_INT STRING (decimal format) to INTEGER

Thereby the attached string is first converted to a value of the data type STRING[32]. Finally this is
converted to a value of the data type INT via a sub-programm of approx. 270 steps that is also
used in the functions STRING_TO_INT, STRING_TO_WORD, STRING_TO_DINT and
STRING_TO_DWORD.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Permissible format:

'[Space][Sign][Decimal numbers][Space]' e.g. ' 123456 '

Permissible characters:

Space All characters except for "+“ (plus), "-" (minus) and all decimal numbers

Sign "+“ (plus), "-" (minus)

Decimal
numbers

Decimal numbers "0 - 9“

The analysis ends with the first non-decimal number.

PLC types Availability of STRING_TO_INT (see page 1331)

Data type Comment

STRING input variable

INT output variable

Description This function converts a STRING in decimal format to a value of the data type INT.

Example

Data types

Conversion instructions

156

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

STRING_TO_INT_
STEPSAVER

STRING (Decimal Format right-justified) to INTEGER

The basic instruction F76_A2BIN (see page 637) with approx. 7 steps is used. The PLC delivers an
operation error especially when a character appears that is not a decimal number “0 - 9”, not a “+”
or “-“ or not a space.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Acceptable Format:

'[Space][Sign][Decimal number]' e.g. ' 123456'

Acceptable characters:

Space Space “ “

Signs Plus "+“ and minus "-"

Decimal
Number

Decimal numbers "0“ - "9“

PLC types Availability of STRING_TO_INT_STEPSAVER (see page 1331)

Data type Comment

STRING Input variable

INT Output variable

Description This function converts a right-justifed decimal number in a string to a value of the data type INT.

Example

Data types

 Conversion instructions

157

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

BOOL_TO_UINT BOOL into Unsigned INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of BOOL_TO_UINT (see page 1318)

Data type I/O Function

BOOL Input input data type

UINT Output conversion result

Description BOOL_TO_UINT converts a value of the data type BOOL into a value of the data type Unsigned
INTEGER.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST UINT_value:= BOOL_TO_UINT(Boolean_value);

Conversion instructions

158

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

WORD_TO_UINT WORD to Unisgned INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of WORD_TO_UINT (see page 1333)

Data type I/O Function

WORD Input input data type

UDINT Output conversion result

Description WORD_TO_UINT converts a value of the data type WORD into a value of the data type Unsigned
INTEGER.

Data types

Example In this example the function is programmed in ladder diagram (LD).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

 Conversion instructions

159

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

WORD_BCD_TO_UINT Binary coded WORD value in Unsigned INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of WORD_BCD_TO_UINT (see page 1333)

Data type I/O Function

WORD_BCD Input input data type

UINT Output conversion result

Description WORD_BCD_TO_UINT converts a binary coded value of the data type WORD into a value of the
data type Unsigned INTEGER.

Data types

Example In this example the function is programmed in ladder diagram (LD).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

Conversion instructions

160

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DWORD_TO_UINT DOUBLE WORD into Unsigned INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DWORD_TO_UINT (see page 1319)

Data type I/O Function

DWORD Input input data type

UINT Output conversion result

Description DWORD_TO_UINT converts a value of the data type DWORD into a value of the data type
Unsigned INTEGER.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST UINT_value:= DWORD_TO_UINT(DWORD_value);

 Conversion instructions

161

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

INT_TO_UINT INTEGER to Unsigned INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of INT_TO_UINT (see page 1327)

Data type I/O Function

INT Input input data type

UINT Output conversion result

Description INT_TO_UINT converts a value of the data type INT into a value of the data type Unsigned
INTEGER.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST UINT_value:= INT_TO_UINT(INT_value);

Conversion instructions

162

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DINT_TO_UINT DOUBLE INTEGER into Unsigned INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DINT_TO_UINT (see page 1319)

Data type I/O Function

DINT Input input data type

UINT Output conversion result

Description DINT_TO_UINT converts a value of the data type DINT into a value of the data type Unsigned
INTEGER.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST UINT_value:= DINT_TO_UINT(DINT_value);

 Conversion instructions

163

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UDINT_TO_UINT Unsigned DOUBLE INTEGER into Unsigned INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_UINT (see page 1332)

Data type I/O Function

UDINT Input input data type

UINT Output conversion result

Description UDINT_TO_UINT converts a value of the data type Unsigned DOUBLE INTEGER into a value of
the data type Unsigned INTEGER.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST UINT_value:= UDINT_TO_UINT(UDINT_value);

Conversion instructions

164

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

REAL_TO_UINT REAL into Unsigned INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

See also: TRUNC_TO_UINT (see page 164)

PLC types Availability of REAL_TO_UINT (see page 1330)

Data type I/O Function

REAL Input input data type

UINT Output conversion result

Description REAL_TO_UINT converts a value of the data type REAL into a value of the data type Unsigned
INTEGER.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST UINT_value:= REAL_TO_UINT(REAL_value);

 Conversion instructions

165

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

TRUNC_TO_UINT Truncate (cut off) decimal digits of REAL input variable, convert to
UNSIGNED INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TRUNC_TO_UINT (see page 1332)

  If the decimal digits are cut off, positive numbers will be decreased
towards zero and negative numbers will be increased towards zero.

Data type I/O Function

REAL Input input data type

INT Output conversion result

No. IEC address Set If

R9007 %MX0.900.7 permanently  the input variable is not of the data type
REAL

R9008 %MX0.900.8 for an instant  the output variable is greater than a
16-bit INTEGER

R9009 %MX0.900.9 for an instant  the output variable is zero

Description TRUNC_TO_UINT cuts off any digits following the decimal of a REAL number and delivers an
output variable of the data type Unsigned INTEGER.

Data types

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST UINT_value:= TRUNC_TO_UINT(REAL_value);

Conversion instructions

166

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

STRING_TO_UINT STRING (decimal format) to Unsigned INTEGER

See also: STRING_TO_UINT_STEPSAVER (see page 166)

First, the string is converted to a value of the data type STRING[32], which is subsequently
converted to a value of the data type UINT in a subprogram with approximately 270 steps. The
subprogram is also used by the functions STRING_TO_INT, STRING_TO_WORD,
STRING_TO_UDINT and STRING_TO_DWORD.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Acceptable Format:

'[Space][Sign][Decimal number][Space]', e.g. ' 123456 '

Acceptable characters:

Space Space “ “

Signs Plus “+” and minus “-“

Decimal
numbers

Decimal numbers "0“ - "9“

The analysis ends with the first non-decimal number.

PLC types Availability of STRING_TO_UINT (see page 1331)

Data type Comment

STRING Input

UINT Output

Description STRING_TO_UINT converts a string in decimal formal to a value of the data type Unsigned
INTEGER.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST UINT_value:= STRING_TO_UINT(STRING_value);

 Conversion instructions

167

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

STRING_TO_UINT_
STEPSAVER

STRING (Decimal Format right-justified) to Unsigned INTEGER

The basic instruction F76_A2BIN (see page 637) with approx. 7 steps is used. The PLC issues an
operation error especially if anything other than acceptable characters are used (see the following
table "Acceptable characters").

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Acceptable Format:

'[Space][Sign][Decimal number]', e.g. ' 123456'

Acceptable characters:

Space Space “ “

Signs Plus "+“ and minus "-"

Decimal
Number

Decimal numbers "0“ - "9“

PLC types Availability of STRING_TO_UINT_STEPSAVER (see page 1331)

Data type Comment

STRING Input

UINT Output

Description STRING_TO_UINT_STEPSAVER converts a right-justifed decimal number in a string to a value of
the data type Unsigned INTEGER.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST UINT_value:= STRING_TO_UINT_STEPSAVER(STRING_value);

Conversion instructions

168

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

BOOL_TO_DINT BOOL into DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of BOOL_TO_DINT (see page 1318)

Data type I/O Function

BOOL input input data type

DINT output conversion result

In this example the input variable (Boolean_value) has been declared. Instead, you may enter a
constant directly at the input contact of a function.

Description BOOL_TO_DINT converts a value of the data type BOOL into a value of the data type DINT.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The Boolean_value of the data type BOOL is converted into a DOUBLE INTEGER value. The
converted value is written into DINT_value.

LD

ST When programming with structured text, enter the following:

IF Boolean_value THEN

 DINT_value:=BOOL_TO_DINT(Boolean_value);

END_IF;

 Conversion instructions

169

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

WORD_TO_DINT WORD in DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of WORD_TO_DINT (see page 1333)

Data type I/O Function

WORD input input data type

DINT output conversion result

Description WORD_TO_DINT converts a value of the data type WORD into a value of the data type DINT.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body WORD_value of the data type WORD is converted into a value of the data type INTEGER. The
result will be written into DINT_value.

LD

ST When programming with structured text, enter the following:

DINT_value:=WORD_TO_DINT(WORD_value);

Conversion instructions

170

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DWORD_BCD_TO_
DINT

Binary coded DWORD value into DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DWORD_BCD_TO_DINT (see page 1319)

Data type I/O Function

DWORD_BCD Input input data type

DINT Output conversion result

This example uses variables. You can also use a constant for the input variable.

BCD constants can be indicated in Control FPWIN Pro as follows:
2#00011001100101010001100110010101 or
16#19951995

Description DWORD_BCD_TO_DINT converts a binary coded value of the data type DWORD into a binary
value of the data type DINT in order to be able to process a BCD value in double word format.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body BCD_value_32bit of the data type DOUBLE WORD is converted into a DOUBLE INTEGER value.
The converted value is written into DINT_value.

LD

ST When programming with structured text, enter the following:

DINT_value:=DWORD_BCD_TO_DINT(BCD_value_32bit);

 Conversion instructions

171

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DWORD_TO_DINT DOUBLE WORD in DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DWORD_TO_DINT (see page 1319)

 The bit combination of the input variable is assigned to the output variable.

Data type I/O Function

DWORD input input data type

DINT output conversion result

Description DWORD_TO_DINT converts a value of the data type DOUBLE WORD into a value of the data type
DOUBLE INTEGER.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body DWORD_value of the data type DOUBLE WORD is converted into a DOUBLE INTEGER value.
The converted value is written into DINT_value.

LD

ST When programming with structured text, enter the following:

DINT_value:=DWORD_TO_DINT(DWORD_value);

Conversion instructions

172

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

INT_TO_DINT INTEGER into DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of INT_TO_DINT (see page 1327)

Data type I/O Function

INT input input data type

DINT output conversion result

Description INT_TO_DINT converts a value of the data type INT into a value of the data type DINT.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body INT_value of the data type INTEGER is converted into a value of the data type DOUBLE
INTEGER. The result will be written into DINT_value.

LD

ST When programming with structured text, enter the following:

DINT_value:=INT_TO_DINT(INT_value);

 Conversion instructions

173

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UINT_TO_DINT Unsigned INTEGER into DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UINT_TO_DINT (see page 1332)

Data type I/O Function

UINT Input input data type

DINT Output conversion result

Description UINT_TO_DINT converts a value of the data type Unsigned INTEGER into a value of the data type
DINT.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST DINT_value:= UINT_TO_DINT(UINT_value);

Conversion instructions

174

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UDINT_TO_DINT Unsigned DOUBLE INTEGER into DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_DINT (see page 1332)

Data type I/O Function

UDINT Input input data type

DINT Output conversion result

Description UDINT_TO_DINT converts a value of the data type Unsigned DOUBLE INTEGER into a value of
the data type DINT.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

DINT_value := UDINT_TO_DINT(UDINT_value);

 Conversion instructions

175

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

REAL_TO_DINT REAL into DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of REAL_TO_DINT (see page 1330)

 Since REAL numbers only have a resolution of about 7 digits, information for
large numbers will be lost.

Data type I/O Function

REAL input input data type

DINT output conversion result

Description REAL_TO_DINT converts a value of the data type REAL into a value of the data type DOUBLE
INTEGER. The result is rounded off to the nearest whole number for the conversion.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body REAL_value of the data type REAL is converted into a value of the data type DOUBLE INTEGER.
The converted value is stored in DINT_value.

LD

ST When programming with structured text, enter the following:

DINT_value:= REAL_TO_DINT(REAL_value);

Conversion instructions

176

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

TRUNC_TO_DINT Truncate (cut off) decimal digits of REAL input variable, convert to
DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TRUNC_TO_DINT (see page 1332)

 If the decimal digits are cut off, positive numbers will be decreased towards zero and

negative numbers will be increased towards zero.

 Since REAL numbers only have a resolution of about 7 digits, information for large numbers
will be lost.

Data type I/O Function

REAL input input data type

DINT output conversion result

No. IEC address Set If

R9007 %MX0.900.7 permanently  input variable does not have the data
type REAL

R9008 %MX0.900.8 for an instant  output variable is greater than a 32-bit
DOUBLE INTEGER

R9009 %MX0.900.9 for an instant  output variable is zero

Description TRUNC_TO_DINT cuts off the decimal digits of a REAL number and delivers an output variable of
the data type DOUBLE INTEGER.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body The decimal digits of REAL_value are cut off. The result is stored as a 32-bit DOUBLE INTEGER
in DINT_value.

LD

ST When programming with structured text, enter the following:

DINT_value:=TRUNC_TO_DINT(REAL_value);

 Conversion instructions

177

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

TIME_TO_DINT TIME into DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TIME_TO_DINT (see page 1331)

Data type I/O Function

TIME input input data type

DINT output conversion result

Description TIME_TO_DINT converts a value of the data type TIME into a value of the data type DINT. The
time 10ms corresponds to the value 1, e.g. an input value of T#1m0s is converted to the value
6000.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body time_value of the data type TIME is converted to value of the data type DOUBLE INTEGER. The
result is written into the output variable DINT_value.

LD

ST When programming with structured text, enter the following:

DINT_value:=TIME_TO_DINT(time_value);

Conversion instructions

178

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

STRING_TO_DINT STRING (Decimal Format) to DOUBLE INTEGER

At first the string is converted to a value of the data type STRING[32]. Finally this is converted to a
value of the data type DINT in a subprogram of approximately 270 steps, which is also used by the
functions STRING_TO_INT, STRING_TO_WORD, STRING_TO_DINT and
STRING_TO_DWORD.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Example with and without EN/ENO:

Acceptable Format:

'[Space][Sign][Decimal number][Space]' e.g. ' 123456 '

Acceptable characters:

Space Space “ “

Signs Plus “+” and minus “-“

Decimal
Numbers

Decimal numbers "0“ - "9“

The analysis ends with the first non-decimal number.

PLC types Availability of STRING_TO_DINT (see page 1331)

Data type Comment

STRING Input variable

DINT Output variable

Description This function converts a string in decimal formal to a value of the data type DINT.

Data types

 Conversion instructions

179

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

STRING_TO_DINT_
STEPSAVER

STRING (Decimal Format right-justified) to DOUBLE INTEGER

The basic instruction F78_DA2BIN (see page 643) with approx. 11 steps is used. The PLC delivers
an operation error especially when a character appears that is not a decimal number “0 - 9”, not a
“+” or “-“ or not a space.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Acceptable Format:

'[Space][Sign][Decimal number]' e.g. ' 123456'

Acceptable characters:

Space Space “ “

Signs Plus "+“ and minus "-"

Decimal
Numbers

Decimal numbers "0“ - "9“

PLC types Availability of STRING_TO_DINT_STEPSAVER (see page 1331)

Data type Comment

STRING Input variable

DINT Output variable

Description This function converts a right-justifed decimal number in a string to a value of the data type DINT.

Example

Data types

Conversion instructions

180

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

BOOL_TO_UDINT BOOL into Unsigned DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of BOOL_TO_UDINT (see page 1318)

Data type I/O Function

BOOL Input input data type

UDINT Output conversion result

Description BOOL_TO_UDINT converts a value of the data type BOOL into a value of the data type Unsigned
DOUBLE INTEGER.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

UDINT_value := BOOL_TO_UDINT(Boolean_value);

 Conversion instructions

181

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

WORD_TO_UDINT WORD in Unsigned DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of WORD_TO_UDINT (see page 1333)

Data type I/O Function

WORD Input input data type

UDINT Output conversion result

Description WORD_TO_UDINT converts a value of the data type WORD into a value of the data type
Unsigned DOUBLE INTEGER.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

UDINT_value :=WORD_TO_UDINT(WORD_value);

Conversion instructions

182

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DWORD_TO_UDINT DOUBLE WORD in Unsigned DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DWORD_TO_UDINT (see page 1319)

Data type I/O Function

DWORD Input input data type

UDINT Output conversion result

Description DWORD_TO_UDINT converts a value of the data type DWORD into a value of the data type
Unsigned DOUBLE INTEGER.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

UDINT_value := DWORD_TO_UDINT(DWORD_value);

 Conversion instructions

183

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DWORD_BCD_TO_
UDINT

Binary value of DOUBLE WORD in Unsigned INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DWORD_BCD_TO_UDINT (see page 1319)

Data type I/O Function

DWORD_BCD Input input data type

UDINT Output conversion result

Description DWORD_BCD_TO_UDINT converts a binary value of the data type DWORD into a value of the
data type Unsigned DOUBLE INTEGER.

Data types

Example In this example the function is programmed in ladder diagram (LD).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

Conversion instructions

184

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

INT_TO_UDINT INTEGER into Unsigned DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of INT_TO_UDINT (see page 1327)

Data type I/O Function

INT Input input data type

UDINT Output conversion result

Description INT_TO_UDINT converts a value of the data type INT into a value of the data type Unsigned
DOUBLE INTEGER.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

UDINT_value := INT_TO_UDINT(INT_value);

 Conversion instructions

185

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UINT_TO_UDINT Unsigned INTEGER to Unsigned DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UINT_TO_UDINT (see page 1332)

Data type I/O Function

UINT Input input data type

UDINT Output conversion result

Description UINT_TO_UDINT converts a value of the data type Unsigned INTEGER into a value of the data
type Unsigned DOUBLE INTEGER.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST UDINT_value:= UINT_TO_UDINT(UINT_value);

Conversion instructions

186

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DINT_TO_UDINT DOUBLE INTEGER into Unsigned DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DINT_TO_UDINT (see page 1319)

Data type I/O Function

DINT Input input data type

UDINT Output conversion result

Description DINT_TO_UDINT converts a value of the data type DINT into a value of the data type Unsigned
DOUBLE INTEGER.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

UDINT_value := DINT_TO_UDINT(DINT_value);

 Conversion instructions

187

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

REAL_TO_UDINT REAL into unsigned DOUBLE INTEGER

See also: TRUNC_TO_UDINT (see page 187)

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of REAL_TO_UDINT (see page 1330)

 Since REAL numbers only have a resolution of about 7 digits, information for
large numbers will be lost.

Data type I/O Function

REAL Input input data type

UDINT Output conversion result

Description REAL_TO_UDINT converts a value of the data type REAL into a value of the data type Unsigned
DOUBLE INTEGER. The result is rounded off to the nearest whole number for the conversion.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

UDINT_value := REAL_TO_UDINT(REAL_value);

Conversion instructions

188

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

TRUNC_TO_UDINT Truncate (cut off) decimal digits of REAL input variable, convert to
Unsigned DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TRUNC_TO_UDINT (see page 1332)

 If the decimal digits are cut off, positive numbers will be decreased towards zero and

negative numbers will be increased towards zero.

 Since REAL numbers only have a resolution of about 7 digits, information for large numbers
will be lost.

Data type I/O Function

REAL Input input data type

UDINT Output conversion result

No. IEC address Set If

R9007 %MX0.900.7 permanently  the input variable is not of the data type
REAL

R9008 %MX0.900.8 for an instant  the output variable is greater than a
32-bit DOUBLE INTEGER

R9009 %MX0.900.9 for an instant  the output variable is zero

Description TRUNC_TO_UDINT cuts off the digits following the decimal of a REAL number and delivers an
output variable of the data type Unsigned DOUBLE INTEGER.

Data types

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

UDINT_value := TRUNC_TO_UDINT(REAL_value);

 Conversion instructions

189

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

STRING_TO_UDINT STRING (Decimal Format) into Unsigned DOUBLE INTEGER

First, the string is converted to a value of the data type STRING[32], which is subsequently
converted to a value of the data type UDINT in a subprogram with approximately 270 steps. This
subprogram is also used by the functions STRING_TO_INT, STRING_TO_WORD,
STRING_TO_UDINT and STRING_TO_DWORD.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Acceptable Format:

'[Space][Sign][Decimal number][Space]', e.g. ' 123456 '

Acceptable characters:

Space Space “ “

Signs Plus “+” and minus “-“

Decimal
numbers

Decimal numbers "0“ - "9“

The analysis ends with the first non-decimal number.

PLC types Availability of STRING_TO_UDINT (see page 1331)

Data type Comment

STRING Input

UDINT Output

Description STRING_TO_UDINT converts a string in decimal format to a value of the data type Unsigned
DOUBLE INTEGER.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

UDINT_value := STRING_TO_UDINT(STRING_value);

Conversion instructions

190

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DATE_TO_UDINT DATE into Unsigned DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DATE_TO_UDINT (see page 1319)

Data type I/O Function

DATE Input input data type

UDINT Output conversion result

Description DATE_TO_UDINT converts a value of the data type DATE into a value of the data type Unsigned
DOUBLE INTEGER according to its internal format, which is seconds elapsed since "2001-01-01".

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

UDINT_value := DATE_TO_UDINT(DATE_value);

 Conversion instructions

191

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DT_TO_UDINT DATE_AND_TIME into Unsigned DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DT_TO_UDINT (see page 1319)

Data type I/O Function

DT Input input data type

UDINT Output conversion result

Description DT_TO_UDINT converts a value of the data type DATE_AND_TIME into a value of the data type
Unsigned DOUBLE INTEGER according to its internal format, which is seconds elapsed since
"2001-01-01-00:00:00".

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

UDINT_value := DT_TO_UDINT(DT_value);

Conversion instructions

192

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

TOD_TO_UDINT TIME_OF_DAY into Unsigned DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TOD_TO_UDINT (see page 1332)

Data type I/O Function

TOD Input input data type

UDINT Output conversion result

Description TOD_TO_UDINT converts a value of the data type TIME_OF_DAY into a value of the data type
Unsigned DOUBLE INTEGER according to its internal format, which is seconds elapsed since
"00:00:00".

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

UDINT_value := TOD_TO_UDINT(TOD_value);

 Conversion instructions

193

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DWORD_TO_REAL DWORD into REAL

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DWORD_TO_REAL (see page 1319)

Data type I/O Function

DWORD Input input data type

REAL Output conversion result

Description DWORD_TO_REAL moves the bitset information of a DWORD variable to a REAL variable. The
same functionality can be obtained using DWORD_OVERLAPPING_DUT.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

REAL_value := DWORD_TO_REAL(DWORD_value);

Conversion instructions

194

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

INT_TO_REAL INTEGER into REAL

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of INT_TO_REAL (see page 1327)

Data type I/O Function

INT input input data type

REAL output conversion result

Description INT_TO_REAL converts a value of the data type INTEGER into a value of the data type REAL.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

In this example the input variable (INT_value) has been declared. Instead, you may enter a
constant directly at the input contact of a function.

Body INT_value of the data type INTEGER is converted into a value of the data type REAL.The
converted value is stored in REAL_value.

LD

ST When programming with structured text, enter the following:

REAL_value:=INT_TO_REAL(INT_value);

 Conversion instructions

195

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DINT_TO_REAL DOUBLE INTEGER into REAL

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DINT_TO_REAL (see page 1319)

Data type I/O Function

DINT input input data type

REAL output conversion result

Description DINT_TO_REAL converts a value of the data type DOUBLE INTEGER into a value of the data type
REAL.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You may also use a constant for the input variable

Body DINT_value of the data type DOUBLE INTEGER is converted into a value of the data type REAL.
The converted value is stored in REAL_value.

LD

ST When programming with structured text, enter the following:

REAL_value:=DINT_TO_REAL(DINT_value);

Conversion instructions

196

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UINT_TO_REAL Unsigned INTEGER into REAL

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UINT_TO_REAL (see page 1332)

 Since REAL numbers only have a resolution of about 7 digits, information for
large numbers will be lost.

Data type I/O Function

UINT Input input data type

REAL Output conversion result

Description UINT_TO_REAL converts a value of the data type Unsigned INTEGER into a value of the data
type REAL.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST REAL_value:= UINT_TO_REAL(UINT_value);

 Conversion instructions

197

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UDINT_TO_REAL Unsigned DOUBLE INTEGER into REAL

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_REAL (see page 1332)

 Since REAL numbers only have a resolution of about 7 digits, information for
large numbers will be lost.

Data type I/O Function

UDINT Input input data type

REAL Output conversion result

Description UDINT_TO_REAL converts a value of the data type Unsigned DOUBLE INTEGER into a value of
the data type REAL.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

REAL_value := UDINT_TO_REAL(UDINT_value);

Conversion instructions

198

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

TIME_TO_REAL TIME into REAL

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TIME_TO_REAL (see page 1331)

Data type I/O Function

TIME input input data type

REAL output conversion result

Description TIME_TO_REAL converts a value of the data type TIME to a value of the data type REAL. 10ms of
the data type TIME correspond to 1.0 REAL unit, e.g. when TIME = 10ms, REAL = 1.0; when TIME
= 1s, REAL = 100.0. The resolution amounts to 10ms.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

LD

ST When programming with structured text, enter the following:

result_real:=TIME_TO_REAL(input_time);

 Conversion instructions

199

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

STRING_TO_REAL STRING to REAL

Thereby the attached string is first converted to a value of the data type STRING[32]. Finally this is
converted to a value of the data type REAL via a sub-program that requires approximately 290
steps.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Example with and without EN/ENO:

Permissible format:

'[Space][Sign][Decimal numbers].[Decimal numbers][Space]' e.g. ' -123.456 '

Permissible characters:

Space All characters except for "+“ (plus), "-" (minus) and all decimal numbers

Decimal
numbers

Decimal numbers "0“-"9“

The analysis ends with the first non-decimal number.

PLC types Availability of STRING_TO_REAL (see page 1331)

Data type Comment

STRING input variable

REAL output variable

Description function converts a STRING in floating-point format into a value of the data type REAL.

Data types

Conversion instructions

200

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

WORD_TO_TIME WORD in TIME

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of WORD_TO_TIME (see page 1333)

Data type I/O Function

WORD input input data type

TIME output conversion result

Examples: Input variable Output variable

 12345 T#123.45s

 16#0012 T#180.00ms

Description WORD_TO_TIME converts a value of the data type WORD into a value of the data type TIME.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body WORD_value of the data type WORD (16-bit) is converted into a value of the data type TIME
(16-bit). The result will be written into the output variable time_value.

LD

ST When programming with structured text, enter the following:

time_value:=WORD_TO_TIME(WORD_value);

 Conversion instructions

201

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DWORD_TO_TIME DOUBLE WORD in TIME

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DWORD_TO_TIME (see page 1319)

Data type I/O Function

DWORD input input data type

TIME output conversion result

Description DWORD_TO_TIME converts a value of the data type DWORD into a value of the data type TIME.
A value of 1 corresponds to a time of 10ms, e.g. the input value 12345 (16#3039) is converted to a
TIME T#2m3s450.00ms.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body DWORD_value of the data type DWORD (32-bit) is converted to value of the data type TIME
(16-bit). The result is written into the output variable time_value.

LD

ST When programming with structured text, enter the following:

time_value:=DWORD_TO_TIME(DWORD_value);

Conversion instructions

202

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

INT_TO_TIME INTEGER into TIME

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of INT_TO_TIME (see page 1327)

Data type I/O Function

INT input input data type

TIME output conversion result

Description INT_TO_TIME converts a value of the data type INT into a value of the data type TIME. The
resolution is 10ms, e.g. when the INT value = 350, the TIME value = 3s500ms.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body INT_value of the data type INTEGER is converted into a value of the data type TIME. The result
will be written into the output variable time_value.

LD

ST When programming with structured text, enter the following:

time_value:=INT_TO_TIME(INT_value);

 Conversion instructions

203

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DINT_TO_TIME DOUBLE INTEGER into TIME

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DINT_TO_TIME (see page 1319)

Data type I/O Function

DINT input input data type

TIME output conversion result

Description DINT_TO_TIME converts a value of the data type DINT into a value of the data type TIME. A value
of 1 corresponds to a time of 10ms, e.g. an input value of 123 is converted to a TIME
T#1s230.00ms.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body DINT_value of the data type DOUBLE INTEGER is converted to value of the data type TIME. The
result is written into the output variable time_value.

LD

ST When programming with structured text, enter the following:

time_value:=DINT_TO_TIME(DINT_value);

Conversion instructions

204

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

REAL_TO_TIME REAL into TIME

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of REAL_TO_TIME (see page 1330)

Data type I/O Function

REAL input input data type

TIME output conversion result

Description REAL_TO_TIME converts a value of the data type REAL to a value of the data time TIME. 10ms of
the data type TIME correspond to 1.0 REAL unit, e.g. when REAL = 1.0, TIME = 10ms; when
REAL = 100.0, TIME = 1s. The value of the data type real is rounded off to the nearest whole
number for the conversion.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help. Since constants are entered directly at the
function's input contact pins, only the output variable need be declared in the header.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body
By clicking on the monitor icon while in the online mode, you can see the result 0.00ms
immediately. Since the value at the REAL input contact is less than 0.5, it is rounded down to 0.0.

LD

ST When programming with structured text, enter the following:

result_time:= REAL_TO_TIME(0.499);

 Conversion instructions

205

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UDINT_TO_DT Unsigned DOUBLE INTEGER into DATE_AND_TIME

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_DT (see page 1332)

Data type I/O Function

UDINT Input input data type

DATE_AND_TIME Output conversion result

Description UDINT_TO_DT converts a value of the data type Unsigned DOUBLE INTEGER into a value of the
data type DATE_AND_TIME.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

DT_value := UDINT_TO_DT(UDINT_value);

Conversion instructions

206

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DT_TO_DATE DATE_AND_TIME to DATE

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DT_TO_DATE (see page 1319)

Data type I/O Function

DATE_AND_TIME input date and time

DATE output date

Description DT_TO_DATE converts a value of the data type DATE_AND_TIME to a value of the data type
DATE.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

DATE_value := DT_TO_DATE(DT_value);

 Conversion instructions

207

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UDINT_TO_DATE Unsigned DOUBLE INTEGER into DATE

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_DATE (see page 1332)

Data type I/O Function

UDINT Input input data type

DATE Output conversion result

Description UDINT_TO_DATE converts a value of the data type Unsigned DOUBLE INTEGER into a value of
the data type DATE.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

DATE_value := UDINT_TO_DATE(UDINT_value);

Conversion instructions

208

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DT_TO_TOD DATE_AND_TIME to TIME_OF_DAY

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DT_TO_TOD (see page 1319)

Data type I/O Function

DATE_AND_TIME input input data type

TIME_OF_DAY output conversion result

Description DT_TO_TOD converts a value of the data type DATE_AND_TIME to a value of the data type
TIME_OF_DAY.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

TOD_value := DT_TO_TOD(DT_value);

 Conversion instructions

209

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UDINT_TO_TOD Unsigned DOUBLE INTEGER into TIME_OF_DAY

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_TOD (see page 1332)

Data type I/O Function

UDINT Input input data type

TIME_OF_DAY Output conversion result

Description UDINT_TO_TOD converts a value of the data type Unsigned DOUBLE INTEGER into a value of
the data type TIME_OF_DAY.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

TOD_value := UDINT_TO_TOD(UDINT_value);

Conversion instructions

210

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

BOOL_TO_STRING BOOL into STRING

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of BOOL_TO_STRING (see page 1318)

  When using the data type STRING with small PLCs like FP-e or FP0,
make sure that the length of the result string is equal to or greater than
the length of the source string.

 For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data type I/O Function

BOOL input input data type

STRING output conversion result

The input variable input_value of the data type BOOL is intialized by the value TRUE. The output
variable result_string is of the data type STRING[2]. It can store a maximum of two characters.
You can declare a character string that has more than one character, e.g. STRING[5]. From the 5
characters reserved, only 2 are used.
Instead of using the variable input_value, you can write the constants TRUE or FALSE directly to
the function’s input contact in the body.

Description The function BOOL_TO_STRING converts a value of the data type BOOL to a value of the data
type STRING[2]. The resulting string is represented by ' 0' or ' 1'.

Data types

Example 1
Result string

= ' 1' or ' 0'

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The input_value of the data type BOOL is converted into STRING[2]. The converted value is
written to result_string. When the variable input_value = TRUE, result_string shows ' 1'.

LD

ST When programming with structured text, enter the following:

IF Boolean_value THEN

 output_value:=BOOL_TO_STRING(input_value);

END_IF;

 Conversion instructions

211

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

In this example, both an input variable input_value of the data type BOOL and an output variable
result_string of the data type STRING[5] are declared.

Example 2
Result string
= 'TRUE' or

'FALSE'

If you wish to have the result 'TRUE' or 'FALSE' instead of ' 0' or ' 1', you cannot use the function
BOOL_TO_STRING. This example illustrates how you create a STRING[5] that contains the
characters 'TRUE' or 'FALSE' from an input value of the data type BOOL.

The same POU header is used for all programming languages.

POU header

Body In order to realize the intended operation, the standard function MOVE is used. It assigns the value
of its input to its output unchanged. At the input, the STRING constant 'TRUE' or 'FALSE' is
attached. In essence a "BOOL to STRING" conversion occurs, since the Boolian variable
input_variable at the enable input (EN) contact decides the output of STRING.

LD

Conversion instructions

212

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

WORD_TO_STRING WORD into STRING

Generates a result string in right-aligned decimal representation, filled with leading spaces up to
the predefined maximum number of characters.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Input Output defined as Results in

STRING[1] 'D'

STRING[2] 'CD'

STRING[3] 'BCD'

STRING[4] 'ABCD'

STRING[5] '0ABCD'

STRING[6] '00ABCD'

16#ABCD

and so on...

PLC types Availability of WORD_TO_STRING (see page 1333)

  When using the data type STRING with small PLCs like FP-e or FP0,
make sure that the length of the result string is equal to or greater than
the length of the source string.

 For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data type I/O Function

WORD input input data type

STRING output conversion result

Description The function WORD_TO_STRING converts a value of the data type WORD to a value of the data
type STRING.

Explanation

Data types

Example 1 In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

The input variable input_value of the data type WORD is intialized by the value 16#ABCD. The
output variable result_string is of the data type STRING[6]. It can store a maximum of 6
characters. Instead of using the variable input_value, you can enter a constant directly at the
function’s input contact in the body.

Body The input_value of the data type WORD is converted into STRING[6]. The converted value is
written to result_string. When the variable input_value = 16#ABCD, result_string shows
'00ABCD'.

 Conversion instructions

213

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

result_string:=WORD_TO_STRING(input_value);

Example 2 This example illustrates how you create STRING[4] out of the data type WORD in which the

leading part of the string '16#' is cut out.
The example is programmed in LD and IL. The same POU header is used for both programming
languages.

POU header

In this example, both an input variable input_value of the data type WORD and an output variable
result_string of the data type STRING[4] are declared.

Body In carrying out the operation in question, the standard function RIGHT is attached to the function
WORD_TO_STRING. RIGHT creates a right-justified character string of length L.

In the example, the output string of WORD_TO_STRING function is added at the input of the
RIGHT function. At the L input of RIGHT, the INT constant 4 determines the length of the STRING
to be replaced. Out of the variable input_value = 0001234, the result_string 1234 results from the
data type conversion and the RIGHT function.

LD

Conversion instructions

214

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DWORD_TO_STRING DOUBLE WORD into STRING

Generates a result string in right-aligned decimal representation, filled with leading spaces up to
the predefined maximum number of characters.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Input Output defined as Results in

STRING[2] 'FE'

STRING[4] 'EFFE'

STRING[6] 'CDEFFE'

STRING[8] 'ABCDEFFE'

STRING[10] '00ABCDEFFE'

STRING[12] '0000ABCDEFFE'

16#ABCDEFFE

and so on...

PLC types Availability of DWORD_TO_STRING (see page 1319)

  When using the data type STRING with small PLCs like FP-e or FP0,
make sure that the length of the result string is equal to or greater than
the length of the source string.

 For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data type I/O Function

DWORD input input data type

STRING output conversion result

Description The function DWORD_TO_STRING converts a value of the data type DWORD to a value of the
data type STRING.

Explanation

Data types

Example 1 In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

The input variable DWORD_value of the data type DWORD is intialized by the value

16#ABCDEFFE. The output variable result_string is of the data type STRING[10]. It can store a
maximum of 10 characters. Instead of using the variable DWORD_value, you can enter a constant
directly at the function’s input contact in the body.

Body The DWORD_value of the data type DWORD is converted into STRING[10]. The converted value
is written to result_string. When the variable DWORD_value = 16#ABCDEFFE, result_string
shows '00ABCDEFFE'.

 Conversion instructions

215

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

result_string:=DWORD_TO_STRING(input_value);

Example 2 This example illustrates how you create STRING[10] out of the data type DWORD in which the
leading part of the string '16#' is replaced by the string '0x'.
The example is programmed in LD and IL. The same POU header is used for both programming
languages.

POU header

In this example the input variables input_value of the data type DWORD and an output variable
result_string of the data type STRING[10] are declared.

Body In carrying out the operation in question, the standard function REPLACE is attached to the
function DWORD_TO_STRING. REPLACE replaces one section of a character string with another.

In the example, the output string of DWORD_TO_STRING function is added at input IN1 of the
REPLACE function. At input IN2, the STRING constant '0x' is added as the replacement STRING.
At the L input of REPLACE, the INT constant 3 determines the length of the STRING to be
replaced. The P input determines the position at which the replacement begins. In this case it is the
INT number 1. From the variable input_value = 16#12345678, the result_string = '0x12345678'
results after undergoing the data type conversion and REPLACE function.

LD

Conversion instructions

216

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DATE_TO_STRING DATE into STRING

The range for the input date is from D#2001-01-01 to D#2099-12-31.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DATE_TO_STRING (see page 1319)

 All character spaces in the result string will be filled.

Data type I/O Function

DATE input input data type

STRING output conversion result STRING[10]

Description DATE_TO_STRING converts a value of the data type DATE into a value of the data type
STRING[10].

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

STRING_value := DATE_TO_STRING(DATE_value);

 Conversion instructions

217

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DT_TO_STRING DATE_AND_TIME into STRING

The range for the input date is from DT#2001-01-01-00:00:00 to DT#2099-12-31-23:59:59.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DT_TO_STRING (see page 1319)

 All character spaces in the result string will be filled.

Data type I/O Function

DATE_AND_TIME input input data type

STRING output conversion result STRING[19]

Description DT_TO_STRING converts a value of the data type DATE_AND_TIME into a value of the data type
STRING[19].

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

STRING_value := DT_TO_STRING(DT_value);

Conversion instructions

218

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

INT_TO_STRING INTEGER into STRING

Generates a result string in right-aligned decimal representation, filled with leading spaces up to
the predefined maximum number of characters.

Function used String1
defined as

Result

STRING[1] '5'

STRING[2] '45'

STRING[3] '345'

STRING[4] '2345'

STRING[5] '12345'

STRING[6] '-12345'

STRING[7] ' -12345'

STRING[8] ' -12345'

String1:=INT_TO_STRING(-12345)

and so on...

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of INT_TO_STRING (see page 1327)

  When using the data type STRING with small PLCs like FP-e or FP0,
make sure that the length of the result string is equal to or greater than
the length of the source string.

 For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data type I/O Function

INT input input data type

STRING output conversion result

Description The function INT_TO_STRING converts a value of the data type INT to a value of the data type
STRING.

Explanation

Data types

Example 1 In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header In the POU header, input and output variables are declared that are used in the function.

The input variable INT_value of the data type INT is intialized by the value -12345. The output
variable result_string is of the data type STRING[8]. It can store a maximum of 8 characters.
Instead of using the variable INT_value, you can enter a constant directly at the function’s input
contact in the body.

 Conversion instructions

219

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Body The INT_value of the data type INT is converted into STRING[8]. The converted value is written to
result_string. When the variable INT_value = -12345, result_string shows ' -12345'.

LD

ST When programming with structured text, enter the following:

result_string:= INT_TO_STRING(input_value);

Example 2 This example illustrates how you create a STRING[2] that appears right justified out of the data
type INT.

POU header

In this example, both an input variable INT_value of the data type INT and an output variable
result_string of the data type STRING[2] are declared.

Body In carrying out the operation in question, the standard function RIGHT (see page 265) is attached
to the function INT_TO_STRING. RIGHT creates a right-justified character string with the length L.
In the example, the variable INT_variable = 12 is converted by INT_TO_STRING to the dummy
string ' 12'. The function RIGHT then creates the result_string '12'.

LD

ST When programming with structured text, enter the following:

result_string:=RIGHT(IN:=INT_TO_STRING(input_value), L:=2);

Conversion instructions

220

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

INT_TO_STRING_
LEADING_ZEROS

INTEGER into STRING

Generates a result string in right-aligned decimal representation, filled with leading spaces up to
the predefined maximum number of characters.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Data type I/O Function

INT input input data type

STRING output conversion result

Function used String1
defined as

Result

STRING[1] '5'

STRING[2] '25'

STRING[3] '025'

STRING[4] '0025'

STRING[5] '00025'

STRING[6] '000025'

STRING[7] '0000025'

STRING[8] '00000025'

String1:=INT_TO_STRING(25)

and so on...

PLC types Availability of INT_TO_STRING_LEADING_ZEROS (see page 1327)

  When using the data type STRING with small PLCs like FP-e or FP0,
make sure that the length of the result string is equal to or greater than
the length of the source string.

 For further information refer to the online help: Upgrade Problems with
Data Type STRING

Description The function INT_TO_STRING_LEADING_ZEROS converts a value of the data type INT (positive
values) to a value of the data type STRING.

Example:

Data types

Explanation

 Conversion instructions

221

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DINT_TO_STRING DOUBLE INTEGER into STRING

Generates a result string in right-aligned decimal representation, filled with leading spaces up to
the predefined maximum number of characters.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Function used String1
defined as

Result

STRING[2] '78'

STRING[4] '5678'

STRING[6] '345678'

STRING[8] '12345678'

STRING[10] ' -12345678'

STRING[12] ' -12345678'

String1:=DINT_TO_STRING(-12345678)

and so on...

PLC types Availability of DINT_TO_STRING (see page 1319)

  When using the data type STRING with small PLCs like FP-e or FP0,
make sure that the length of the result string is equal to or greater than
the length of the source string.

 For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data type I/O Function

DINT input input data type

STRING output conversion result

Description The function DINT_TO_STRING converts a value of the data type DINT to a value of the data type
STRING.

Explanation

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header In the POU header, input and output variables are declared that are used in the function.

The input variable input_value of the data type DINT is intialized by the value 12345678. The
output variable result_string is of the data type STRING[11]. It can store a maximum of 11
characters. Instead of using the variable input_value, you can enter a constant directly at the
function’s input contact in the body.

Conversion instructions

222

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Body The input_value of the data type DINT is converted into STRING[11]. The converted value is
written to result_string. When the variable input_value = 12345678, result_string shows '
12345678'.

LD

ST When programming with structured text, enter the following:

result_string:=DINT_TO_STRING(input_value);

Example 2 This example illustrates how you create, from an input value of the data type DINT, a STRING[14]
that contains a DINT number representation with commas after every three significant figures.

The example is programmed in LD and IL. The same POU header is used for both programming
languages.

POU header

In this example, both an input variable input_value of the data type DINT and an output variable
result_string of the data type STRING[14] are declared.

Body In carrying out the operation in question, three standard functions INSERT are attached
successively to the function DINT_TO_STRING. Each INSERT function inserts the attached
character string at input IN2 into the character string at input IN1. The position at which the
character string is to be introduced is determined by INT value at input P.

In the example all three INSERT functions insert the assigned STRING constant ',' after each three
significant figures at input IN2. The correct position of each comma is determined by an INT
constant at each respective P input. Out of the variable input_value = 1234567890, the
result_string 1,234,567,890 results from the data type conversion and the three INSERT
functions.

LD

 Conversion instructions

223

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UDINT_TO_STRING Unsigned DOUBLE INTEGER into STRING

Generates a result string in right-aligned decimal representation, filled with leading spaces up to
the predefined maximum number of characters.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Function used String1
defined as

Result

STRING[2] '78'

STRING[4] '5678'

STRING[6] '345678'

STRING[8] '12345678'

STRING[10] ' -12345678'

STRING[12] ' -12345678'

String1:=UDINT_TO_STRING(-1234567
8)

and so on...

PLC types Availability of UDINT_TO_STRING

  When using the data type STRING with small PLCs like FP-e or FP0,
make sure that the length of the result string is equal to or greater than
the length of the source string.

 For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data type I/O Function

UDINT Input Input data type

STRING Output Conversion result

Description The function UDINT_TO_STRING converts a value of the data type UDINT to a value of the data
type STRING.

Explanation

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

The input variable input_value of the data type UDINT is intialized by the value 12345678. The
output variable result_string is of the data type STRING[11]. It can store a maximum of 11
characters. Instead of using the variable input_value, you can enter a constant directly at the
function’s input contact in the body.

Conversion instructions

224

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Body The input_value of the data type DINT is converted into STRING[11]. The converted value is
written to result_string. When the variable input_value = 12345678, result_string shows '
12345678'.

LD

ST When programming with structured text, enter the following:

result_string:=UDINT_TO_STRING(input_value);

 Conversion instructions

225

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DINT_TO_STRING_
LEADING_ZEROS

DOUBLE INTEGER into STRING

Function used String1
defined as

Result

STRING[2] '78'

STRING[4] '5678'

STRING[6] '345678'

STRING[8] '12345678'

STRING[10] '0012345678'

STRING[12] '000012345678'

String1:=DINT_TO_STRING(12345678)

and so on...

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DINT_TO_STRING_LEADING_ZEROS (see page 1319)

 When using the data type STRING with small PLCs like FP-e or FP0,

make sure that the length of the result string is equal to or greater than
the length of the source string.

 For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data type I/O Function

DINT input input data type

STRING output conversion result

Description This function converts a value of the data type DINT (positive value) to a value of the data type
STRING. It generates a result string in decimal representation that is right aligned. It is filled with
leading zeros up to the maximum number of characters defined for the string.

Example

Explanation

Data types

Conversion instructions

226

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UDINT_TO_STRING
_LEADING_ZEROS

Unsigned DOUBLE INTEGER into STRING

Function used String1
defined as

Result

STRING[2] '78'

STRING[4] '5678'

STRING[6] '345678'

STRING[8] '12345678'

STRING[10] '0012345678'

STRING[12] '000012345678'

String1:=UDINT_TO_STRING(12345678)

and so on...

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_STRING_LEADING_ZEROS (see page 1319)

 When using the data type STRING with small PLCs like FP-e or FP0,

make sure that the length of the result string is equal to or greater than
the length of the source string.

 For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data type I/O Function

UDINT input input data type

STRING output conversion result

Description This function converts a value of the data type UDINT (positive value) to a value of the data type
STRING. It generates a result string in decimal representation that is right aligned. It is filled with
leading zeros up to the maximum number of characters defined for the string.

Example

Explanation

Data types

 Conversion instructions

227

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UINT_TO_STRING Unsigned INTEGER into STRING

Generates a result string in right-aligned decimal representation, filled with leading spaces up to
the predefined maximum number of characters.

See also: UINT_TO_STRING_LEADING_ZEROS (see page 227)

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UINT_TO_STRING (see page 1332)

 The result is not specified when the range of the input values does not match the
range of the output values.

Data type I/O Function

UINT Input input data type

STRING Output conversion result

Description UINT_TO_STRING converts a value of the data type Unsigned INTEGER into a value of the data
type STRING.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST STRING_value:= UINT_TO_STRING(UINT_value);

Conversion instructions

228

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UINT_TO_STRING_
LEADING_ZEROS

Unsigned INTEGER into STRING

Generates a result string in right-aligned decimal representation, filled with leading spaces up to
the predefined maximum number of characters.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UINT_TO_STRING_LEADING_ZEROS (see page 1332)

 The result is not specified when the range of the input values does not match the
range of the output values.

Data type I/O Function

UINT Input input data type

STRING Output conversion result

Description UINT_TO_STRING_LEADING_ZEROS converts a value of the data type Unsigned INTEGER into
a value of the data type STRING.

Data types

Example In this example the function is programmed in ladder diagram (LD).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST STRING_value:= UINT_TO_STRING_LEADING_ZEROS(UINT_value);

 Conversion instructions

229

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

REAL_TO_STRING REAL into STRING

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

  The function requires approximately 160 steps of program memory.
For repeated use you should integrate it into a user function that is
only stored once in the memory.

  When using the data type STRING with small PLCs like FP-e or FP0,
make sure that the length of the result string is equal to or greater than
the length of the source string.

 For further information refer to the online help: Upgrade Problems with
Data Type STRING

PLC types Availability of REAL_TO_STRING (see page 1330)

Data type I/O Function

REAL input input data type

STRING output conversion result

Description The function REAL_TO_STRING converts a value from the data type REAL into a value of the data
type STRING[15], which has 7 spaces both before and after the decimal point. The resulting string
is right justified within the range '-999999.0000000' to '9999999.0000000'. The plus sign is omitted
in the positive range. Leading zeros are filled with empty spaces (e.g. out of -12.0 the STRING '
-12.0').

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header In the POU header, input and output variables are declared that are used in the function.

The input variable input_value of the data type REAL is intialized by the value -123.4560166. The
output variable result_string is of the data type STRING[15]. It can store a maximum of 15
characters. Instead of using the variable input_value, you can enter a constant directly at the
function’s input contact in the body.

Body The input_value of the data type REAL is converted into STRING[15]. The converted value is
written to result_string. When the variable input_value = 123.4560166, result_string shows '
-123.4560165'.

LD

Conversion instructions

230

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Example 2 This example illustrates how you create a STRING[7] with 4 positions before and 2 positions after
the decimal point out of the data type REAL.
The example is programmed in LD and IL. The same POU header is used for both programming
languages.

POU header

In this example, both an input variable input_value of the data type REAL and an output variable
result_string of the data type STRING[7] are declared.

Body In carrying out the operation in question, the standard function MID is attached to the function
REAL_TO_STRING. MID creates a central sector in the character string from position P (INT
value) with L (INT value) characters.

In the example, the INT constant 7 is entered at the L input of MID, which determines the length of
the result string. The INT constant 4 at input P determines the position at which the central sector
begins. Out of the variable input_value = -123.4560166, the STRING ' -123.4560166' results
from the data type conversion. The MID function cuts off the STRING at position 4 and yields the
result_string '-123.45'.

LD

 Conversion instructions

231

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

TIME_TO_STRING TIME into STRING

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

 When using the data type STRING with small PLCs like FP1 or FP-M, make
sure that the length of the result string is equal to or greater than the length of
the source string.

PLC types Availability of TIME_TO_STRING (see page 1331)

Data type I/O Function

TIME input input data type

STRING output conversion result

Description The function TIME_TO_STRING converts a value of the data type TIME to a value of the data type
STRING[20]. In accordance with IEC-1131, the result string is displayed with a short time prefix
and without underlines. Possible values for the result string’s range are from
'T#000d00h00m00s000ms' to 'T#248d13h13m56s470ms'.

Data types

Example 1 In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header In the POU header, input and output variables are declared that are used in the function.

The input variable input_value of the data type TIME is intialized by the value T#1h30m45s. The
output variable result_string is of the data type STRING[20]. It can store a maximum of 20
characters. Instead of using the variable input_value, you can enter a constant directly at the
function’s input contact in the body.

Body The input_value of the data type TIME is converted into STRING[20]. The converted value is
written to result_string. When the variable input_value = T#1h30m45s, result_string shows
'T#000d01h30m45s000ms'.

LD

ST When programming with structured text, enter the following:

result_string:=TIME_TO_STRING(input_value);

Conversion instructions

232

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Example 2 This example shows how, from an input value of the data type TIME, a TIME STRING[9] with the
format 'xxhxxmxxs' is created (only hours, minutes and seconds are output).
The example is programmed in LD and IL. The same POU header is used for both programming
languages.

POU header

In this example, both an input variable input_value of the data type TIME and an output variable
result_string of the data type STRING[9] are declared.

Body In carrying out the operation in question, the standard function MID is attached to the function
TIME_TO_STRING. MID creates a central sector in the character string from position P (INT value)
with L (INT value) characters.

In the example, the INT constant 9 is entered at the L input of MID, which determines the length of
the result string. The INT constant 7 at input P determines the position at which the central sector
begins. Out of the variable input_value = T#1h30m45s, the STRING 'T#000d01h30m45s000ms'
results from the data type conversion. The MID function cuts off the STRING at position 7 and
yields the result_string '01h30m45s'.

LD

 Conversion instructions

233

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

IPADDR_TO_STRING IP Address to STRING

Permissible format:

'Octet1.Octet2.Octet3.Octet4', e.g.: '192.168.206.004'

Permissible characters:

Octets 1-4 Decimal numbers "0“-"9“, maximal 3 positions, without leading zeros in
the range 0-255

The conversion is such that the highest byte of the ET-LAN address represents the fourth octet and
lowest byte of the IP address the first octet. The format of the IP address corresponds to the
standard format as used in "Standard Socket Application Interfaces", for example.

Description This function converts a binary IP address of the data type DWORD into a STRING in IP address
format.

Example

Conversion instructions

234

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

IPADDR_TO_STRING_
NO_LEADING_ZEROS

IP Address to STRING

Permissible format:

'Octet1.Octet2.Octet3.Octet4', e.g.: '192.168.206.4'

Permissible characters:

Octets 1-4 Decimal numbers "0“-"9“, maximal 3 positions, without leading zeros in
the range 0-255

The conversion is such that the highest byte of the ET-LAN address represents the fourth octet and
lowest byte of the IP address the first octet. The format of the IP address corresponds to the
standard format as used in "Standard Socket Application Interfaces", for example.

Description This function converts a binary IP address of the data type DWORD into a STRING in IP address
format.

Example

 Conversion instructions

235

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

ETLANADDR_TO_
STRING

ETLAN Address to STRING

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Permissible format:

'Octet1.Octet2.Octet3.Octet4', e.g.: '192.168.206.004'

Permissible characters:

Octets 1-4 Decimal numbers "0“-"9“, maximal 3 positions, with leading zeros in the
range 0-255

The conversion is such that the highest byte of the ET-LAN address represents the first octet and
lowest byte of the IP address the fourth octet. This format for ET-LAN addresses is used, for
example, by the FP Serie's ET-LAN modules.

Description This function converts a binary ETLAN address of the data type DWORD into a STRING in ETLAN
address format.

Example

Conversion instructions

236

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

ETLANADDR_TO_STRING
_NO_LEADING_ZEROS

ETLAN Address to STRING

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Permissible format:

'Octet1.Octet2.Octet3.Octet4', e.g.: '192.168.206.4'

Permissible characters:

Octets 1-4 Decimal numbers "0“-"9“, maximal 3 positions, without leading zeros in
the range 0-255

The conversion is such that the highest byte of the ET-LAN address represents the first octet and
lowest byte of the IP address the fourth octet. This format for ET-LAN addresses is used, for
example, by the FP Serie's ET-LAN modules.

Description This function converts a binary ETLAN address of the data type DWORD into a STRING in ETLAN
address format.

Example

 Conversion instructions

237

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

TOD_TO_STRING TIME_OF_DAY into STRING

TOD_TO_STRING converts a value of the data type TIME_OF_DAY into a value of the data type
STRING[8].

The range for the input time of day is from TOD#00:00:00 to TOD#23:59:59.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TOD_TO_STRING (see page 1332)

 All character spaces in the result string will be filled.

Data type I/O Function

TIME_OF_DAY input input data type

STRING output conversion result
STRING[8]

Description

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

STRING_value := TOD_TO_STRING(TOD_value);

Conversion instructions

238

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

WORD_TO_BOOL16 WORD to BOOL16

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of WORD_TO_BOOL16 (see page 1333)

Data type Comment

WORD input variable

ARRAY of BOOL ARRAY with 16 elements

POU header:

Body with and without EN/ENO:

Description This function copies data of the data type WORD at the input to an array with 16 elements of the
data type BOOL at the output.

Data types

 Conversion instructions

239

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DWORD_TO_BOOL32 DOUBLE WORD to BOOL32

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DWORD_TO_BOOL32 (see page 1319)

Data type Comment

DWORD input variable

ARRAY of BOOL ARRAY with 32 elements

POU header:

Body with and without EN/ENO:

Description This function copies data of the data type DWORD at the input to an array with 32 elements of the
data type BOOL at the output.

Data types

Conversion instructions

240

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

WORD_TO_BOOLS WORD to 16 variables of the data type BOOL

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

The outputs Bool0 to Bool15 need not be allocated in LD or FBD, or used explicitly in the ST
editor's formal list of parameters. Program code is only generated for those outputs that are truly
used.

PLC types Availability of WORD_TO_BOOLS (see page 1333)

Variable Data type Function

In WORD input variable

BOOL0 ...
BOOL15

BOOL 16 output variables of the data type BOOL

Description This function converts a value of the data type WORD bit-wise to 16 values of the data type BOOL.

Data types

POU
header:

 Conversion instructions

241

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Body:

Conversion instructions

242

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DWORD_TO_BOOLS DOUBLE WORD to 32 variables of the data type BOOL

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

The outputs Bool0 to Bool31 need not be allocated in LD or FBD, or used explicitly in the ST
editor's formal list of parameters. Program code is only generated for those outputs that are truly
used.

PLC types Availability of DWORD_TO_BOOLS (see page 1319)

Variable Data type Function

In DWORD input variable

BOOL0 ...
BOOL31

BOOL 32 output variables of the data type BOOL

POU header:

etc. to Bool31

Description This function converts a values of the data type DWORD bit-wise to 32 values of the data type
BOOL.

Data types

 Conversion instructions

243

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Body:

Conversion instructions

244

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

INT_TO_BCD_WORD INTEGER into BCD value of WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of INT_TO_BCD_WORD (see page 1327)

 Since the output variable is of the type WORD and is therefore comprised of 16
bits, the value for the input variable is limited to 4 digits and must be between 0
and 9999.

Data type I/O Function

INT Input input data type

BCD_WORD Output conversion result

Description INT_TO_BCD_WORD converts a binary value of the data type INT into a binary coded decimal
integer (BCD) value of the type WORD in order to be able to output BCD values in word format.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body INT_value of the data type INTEGER is converted into a BCD value of the data type WORD. The
converted value is written into BCD_value_16bit.

LD

ST When programming with structured text, enter the following:

BCD_value_16bit:=INT_TO_BCD_WORD(INT_value);

 Conversion instructions

245

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DINT_TO_BCD_DWORD DOUBLE INTEGER into BCD DOUBLE WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DINT_TO_BCD_DWORD (see page 1319)

 The value for the input variable should be between 0 and 999,999,999.

Data type I/O Function

DINT Input input data type

BCD_DWORD Output conversion result

Description DINT_TO_BCD_DWORD converts a value of the data type DINT into a BCD value of the data type
DWORD.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

This example uses variables. You can also use a constant for the input variable.

Body DINT_value of the data type DOUBLE INTEGER is converted into a BCD value of the data type
DOUBLE WORD. The converted value is written to BCD_value_32bit.

LD

ST When programming with structured text, enter the following:

BCD_value_32bit:=DINT_TO_BCD_DWORD(DINT_value);

Conversion instructions

246

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UINT_TO_BCD_WORD Unsigned INTEGER into BCD value of WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UINT_TO_BCD_WORD (see page 1332)

Data type I/O Function

UINT Input input data type

BCD_WORD Output conversion result

Description UINT_TO_BCD_WORD converts a value of the data type Unsigned INTEGER into a BCD value of
the data type WORD.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST BCD_value_16bit:=UINT_TO_BCD_WORD(UINT_value);

 Conversion instructions

247

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

UDINT_TO_BCD_
DWORD

Unsigned DOUBLE INTEGER into BCD DOUBLE WORD

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_BCD_DWORD (see page 1332)

Data type I/O Function

UDINT Input input data type

BCD_DWORD Output conversion result

Description UDINT_TO_BCD_DWORD converts a value of the data type Unsigned DOUBLE INTEGER into a
BCD value of the data type D WORD.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

BCD_value_32bit := UDINT_TO_BCD_DWORD(UDINT_value);

Conversion instructions

248

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

STRING_TO_IPADDR STRING to IP Address

Thereby the attached string is first converted to a value of the data type STRING[32]. Finally this is
converted to a value of the data type DWORD via a sub-programm of approx. 330 steps that is also
used in the functions STRING_TO_IPADDR and STRING_TO_ETLANADDR.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

See also: STRING_TO_IPADDR_STEPSAVER (see page 248)

Permissible format:

'[Space]Octet1.Octet2.Octet3.Octet4[Space]', e.g.: ' [192.168.206.4] '

Permissible characters:

Space All characters except for decimal numbers

Octets 1-4 Decimal numbers "0“-"9“, maximal 3 positions, with or without leading
zeros in the range 0-255

PLC types Availability of STRING_TO_IPADDR (see page 1331)

  The analysis ends with the first non-decimal number after the 4th octet
or in case of a format error.

 If the format is wrong the result is 0.

 The conversion is such that the first octet represents the lowest byte
of the IP address and the fourth octet the highest byte of the ET-LAN
address. The format corresponds to the standard format as used in
"Standard Socket Application Interfaces", for example.

Data type Comment

STRING input variable

DWORD output variable

Description This function converts a STRING in IP address format into a value of the data type DWORD.

Example:

Data types

 Conversion instructions

249

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

STRING_TO_IPADDR
_STEPSAVER

STRING (IP-Address Format 00a.0bb.0cc.ddd) to DWORD

The function uses for approx. 50 steps of generated code the basic instruction F76_A2BIN (see
page 637). The instruction expects that each octet consists of three characters with leading zeros.
Otherwise the PLC delivers an operation error.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Example:

Permissible format:

'Octet1.Octet2.Octet3.Octet4[Space]', e.g.: ' [192.168.206.4] '

Permissible characters:

Octets 1-4 Decimal numbers "0“-"9“, maximal 3 positions, with or without leading
zeros in the range 0-255

PLC types Availability of STRING_TO_IPADDR_STEPSAVER (see page 1331)

  If the format is wrong the result is 0.

 The conversion is such that the first octet represents the lowest byte
of the IP address and the fourth octet the highest byte of the ET-LAN
address. The format corresponds to the standard format as used in
"Standard Socket Application Interfaces", for example.

Data type Comment

STRING input variable

DWORD output variable

Description This function converts a STRING in IP address format into a value of the data type DWORD.

Data types

Conversion instructions

250

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

STRING_TO_ETLAN
ADDR

STRING to ETLAN Address

Thereby the attached string is first converted to a value of the data type STRING[32]. Finally this is
converted to a value of the data type DWORD via a sub-programm of approx. 330 steps that is also
used in the functions STRING_TO_IPADDR and STRING_TO_ETLANADDR.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

See also: STRING_TO_ETLANADDR_STEPSAVER

Example with and without EN/ENO:

Permissible format:

'[Space]Octet1.Octet2.Octet3.Octet4[Space]', e.g.: ' [192.168.206.4] '

Permissible characters:

Space All characters except for decimal numbers

Octets 1-4 Decimal numbers "0“-"9“, maximal 3 positions, with or without leading
zeros in the range 0-255

  The analysis ends with the first non-decimal number after the 4th octet
or in case of a format error.

 If the format is wrong the result is 0.

 The conversion is such that the highest byte of the ET-LAN address
represents the first octet and lowest byte of the IP address the fourth
octet. This format for ET-LAN addresses is used, for example, by the
FP Serie's ET-LAN modules.

Description This function converts a STRING in IP address format into a value of the data type DWORD.

 Conversion instructions

251

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

STRING_TO_ETLAN
ADDR_STEPSAVER

STRING (IP-address format 00a.0bb.0cc.ddd) to ETLAN Address

The function uses for approx. 50 steps of generated code the basic instruction F76_A2BIN (see
page 637). The instruction expects that each octet consists of three characters with leading zeros.
Otherwise the PLC delivers an operation error.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Example:

Permissible format:

'Octet1.Octet2.Octet3.Octet4[Space]', e.g.: ' [192.168.206.4] '

Permissible characters:

Octets 1-4 Decimal numbers "0“-"9“, maximal 3 positions, with or without leading
zeros in the range 0-255

 If the format is wrong the result is 0.

The conversion is such that the highest byte of the ET-LAN address
represents the first octet and lowest byte of the IP address the fourth
octet. This format for ET-LAN addresses is used, for example, by the FP
Serie's ET-LAN modules.

Description This function converts a STRING in IP address format into a value of the data type DWORD.

Chapter 8

 Selection instructions

Selection instructions

254

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

MAX Maximum value

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of MAX (see page 1328)

 The number of input contacts lies in the range of 2 to 28.

Data type I/O Function

all except
STRING

1st input value 1

all except
STRING

2nd input value 2

all except
STRING

output as input result, whichever input variable's value is greater

In this example the input variables (value_1 and value_2) have been declared. Instead, you may
enter a constant directly at the input contact of a function.

Description MAX determines the input variable with the highest value.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body Value_1 and value_2 are compared with each other. The maximum value of all input variables is
written in maximum_value.

LD

ST When programming with structured text, enter the following:

maximum_value:=MAX(value_1, value_2);

 Selection instructions

255

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

MIN Minimum value

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of MIN (see page 1328)

 The number of input contacts lies in the range of 2 to 28.

Data type I/O Function

all except
STRING

1st input value 1

all except
STRING

2nd input value 2

all except
STRING

output as input result, whichever input variable's value is smallest

In this example the input variables (value_1 and value_2) have been declared. Instead, you may
enter a constant directly at the input contact of a function.

Description MIN detects the input variable with the lowest value.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body Value_1 and value_2 are compared with each other. The lower value of the two is written into
minimum_value.

LD

ST When programming with structured text, enter the following:

minimum_value:=MIN(value_1, value_2);

Selection instructions

256

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

MUX Select value from multiple channels

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of MUX (see page 1328)

  When using the data type STRING with small PLCs like FP-e or FP0,
make sure that the length of the result string is equal to or greater than
the length of the source string.

 For further information refer to the online help: Upgrade Problems with
Data Type STRING

  The difference between the functions MUX and SEL (see page 257) is
that in MUX with an integer value you can select between plural
channels, and in SEL with a Boolean value only between two channels.

 The number of input contacts lies in the range of 2 to 28.

Data type I/O Function

INT 1st input selects channel for 2nd or 3rd input value to be written to

all data types 2nd input value 1

all data types 3rd input value 2

all data types output as 2nd and
3rd input

result

The 2nd and 3rd input variables must be of the same data type.

In this example the input variables (channel_select, channel_0 and channel_1) have been
declared. Instead, you may enter a constant directly at the input contact of a function.

Description The function Multiplexer selects an input variable and writes its value into the output variable. The
1st input variable determines which input variable (IN1or IN2 ...) is to be written into the output
variable. The function MUX can be configured for any desired number of inputs.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Selection instructions

257

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Body In channel_select you find the integer value (0, 1...n) for the selection of channel_0 or
channel_1. The result will be written into output.

LD

ST When programming with structured text, enter the following:

output:=MUX(K:= channel_select , IN0:= channel_0 ,

 IN1:= channel_1);

Selection instructions

258

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

SEL Select value from one of two channels

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of SEL (see page 1330)

  When using the data type STRING with small PLCs like FP-e or FP0,
make sure that the length of the result string is equal to or greater than
the length of the source string.

 For further information refer to the online help: Upgrade Problems with
Data Type STRING

  The difference between the functions SEL and MUX (see page 255) is
that in case of SEL a Boolean value serves for the channel selection,
and in case of MUX an integral number (INT). Therefore, you can
choose between more than two channels with MUX.

Data type I/O Function

BOOL G selects between input value IN0 or IN1

all data types IN0 value is written into the output variable if G = FALSE

all data types IN1 value is written into the output variable if G = TRUE

all data types output result value as IN0 or IN1

In this example the input variables (channel_select, channel_0 and channel_1) have been
declared. Instead, you may enter a constant directly at the input contact of a function.

Description With the first input variable (data type BOOL) of SEL you define which input variable is to be written
into the output variable. If the Boolean value = 0 (FALSE), the input variable IN0 will be written into
the output variable, otherwise IN1.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the
POU header.

Body If channel_select has the value 0, channel_0 will be written into output, otherwise channel_1.

 Selection instructions

259

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

output := SEL(G := channel_select, IN0 := channel_0, IN1 := channel_1);

Chapter 9

 String instructions

String instructions

262

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

LEN String Length

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of LEN (see page 1328)

  If the string is longer than the length defined for the input variable
(input_string) in the field "Type", an error occurs (see Special Internal
Relays for Error Handling).

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

  When using the data type STRING with small PLCs like FP-e or FP0,
make sure that the length of the result string is equal to or greater than
the length of the source string.

 For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data type I/O Function

STRING input input data type

INT output length of string

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 input string is longer than the length
defined for the input variable in the field
"Type"

Description LEN calculates the length of the input string and writes the result into the output variable.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

In this example the input variable (input_string) has been declared. Instead, you may enter the
string ('Panasonic') directly into the function. The string has to be put in inverted commas, both in
the POU header and in the function.

Body The length (9) of input_string (‘Panasonic’) is written into output_value.

 String instructions

263

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

output_value:=LEN(input_value);

String instructions

264

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

LEFT Copy characters from the left

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of LEFT (see page 1328)

  If the number of characters to be delivered is greater than the input
string, the complete string will be copied to the output variable
(output_string).

 If the output string is longer than the length defined for the output
variable in the field "Type", only as many characters are copied from
the left as the output variable can hold. The special internal relay
R9009 (%MX0.900.9) is set.

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data type I/O Function

STRING 1st input input string

INT 2nd input number of input string's characters that are copied, from the left

STRING output copied string

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 input string is longer than the length
defined for the input variable in the field
"Type"

R9009 %MX0.900.9 for an instant  output string is longer than the length
defined for the output variable in the field
"Type"

Description LEFT copies, starting from the left, n characters of the string of the first input variable to the output
variable. You define the number of characters to be delivered n by the second input variable.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 String instructions

265

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

In this example the input variables (input_string and character_number) have been declared.
Instead, you may enter the string ('Ideas for life') and the number of characters to be delivered
directly into the function. The string has to be put in inverted commas, both in the POU header and
in the function.

Body Starting from the left, character_number (5) of input_string (‘Ideas for life’) is copied to
output_string (‘Ideas’).

LD

ST When programming with structured text, enter the following:

output_string:=LEFT(IN:=input_string, L:=character_number);

String instructions

266

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

RIGHT Copy characters from the right

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of RIGHT (see page 1330)

  If the number of characters to be delivered is greater than the input
string, the complete string will be copied to the output variable
(output_string).

 If the output string is longer than the length defined for the output
variable in the field "Type", only as many characters are copied from
the left as the output variable can hold. The special internal relay
R9009 (%MX0.900.9) is set.

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.
(up to 200 steps)

Data type I/O Function

STRING 1st input input string

INT 2nd
input

number of input string's characters that are copied, from the right

STRING output copied string

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 input string is longer than the length
defined for the input variable in the field
"Type"

R9009 %MX0.900.9 for an instant  output string is longer than the length
defined for the output variable in the field
"Type"

Description RIGHT copies, starting from the right, n characters of the string of the first input variable to the
output variable. You define the number of characters to be delivered n by the second input
variable.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the
POU header.

 String instructions

267

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

In this example the input variables (input_string and character_number) have been declared.
Instead, you may enter the string ('Ideas for life') and the number of characters to be delivered
directly into the function. The string has to be put in inverted commas, both in the POU header and
in the function.

Body Starting from the right, character_number (4) of input_string (‘Ideas for life’) is copied to
output_string (‘life’).

LD

String instructions

268

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

MID Copy characters from a middle position

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of MID (see page 1328)

  The sum of start position and number of characters to be delivered
should not be greater than the input string. If you want to receive for
example 5 characters of a 10-character string, starting from position 7,
only the last 4 characters are delivered.

 If the output string is longer than the length defined for the output
variable (output_string) in the field "Type", only as many characters
are copied from the start position as the output variable can hold. The
special internal relay R9009 (%MX0.900.9) is set.

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.
(up to 200 steps)

Data type I/O Function

STRING 1st input input string

INT 2nd input number of input string's characters that are copied

INT 3rd input position where copying begins

STRING output copied string

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 input string is longer than the length
defined for the input variable in the field
"Type" or start position is greater than
the input string

R9009 %MX0.900.9 for an instant  output string is longer than the length
defined for the output variable in the field
"Type"

Description MID copies L characters of the string IN starting at position P with 1 denoting the first character of
the string. The result is written into the output variable.

Data types

Error Flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

 String instructions

269

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

In this example the input variables (input_string, character_number and start_position) have
been declared. Instead, you may enter the string ('Ideas for life'), the number of characters to be
delivered and the start position directly into the function. The string has to be put in inverted
commas, both in the POU header and in the function.

Body Starting from start_position (7), character_number (8) of input_string (‘Ideas for life’) is copied
to output_string (‘for life’).

LD

ST When programming with structured text, enter the following:

output_string:=MID(IN:=input_string, L:=character_number,
P:=start_position);

String instructions

270

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

CONCAT Concatenate (attach) a string

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of CONCAT (see page 1318)

  If the output string is longer than the length defined for the output
variable (output_string) in the field "Type", only as many characters
are copied, starting from the left, as the output variable can hold. The
special internal relay R9009 (%MX0.900.9) is set.

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data type I/O Function

STRING 1st input beginning input string

STRING 2nd input string that will be attached to the beginning string

STRING output resulting string

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 input string is longer than the length
defined for the input variable in the field
"Type"

R9009 %MX0.900.9 for an instant  output string is longer than the length
defined for the output variable in the field
"Type"

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

In this example the input variables (input_string1, input_string2 and input_string3) have been
declared. However, you may enter the strings ('Ideas', ' for' and ' life') directly into the function.
The strings have to be put in inverted commas, both in the POU header and in the function.

Description CONCAT concatenates (attaches) the second and the following input strings (IN1 + IN2 + ...) to the
first input string and writes the resulting string into the output variable.

Data types

Error flags

Example

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body Input_string3 (‘ life’) is attached to input_string2 (‘ for’) and this string is attached to
input_string1 ('Ideas'). The resulting string (‘Ideas for life’) is written into output_string.

 String instructions

271

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

output_string:=CONCAT(input_string1, input_string2, input_string3);

String instructions

272

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DELETE Delete characters from a string

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DELETE (see page 1319)

  If the output string is longer than the length defined for the output
variable (output_string) in the field "Type", only as many characters
are copied, starting from the left, as the output variable can hold. The
special internal relay R9009 (%MX0.900.9) is set.

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.
(up to 200 steps)

Data type I/O Function

STRING 1st input input string

INT 2nd input number of input string's characters that are deleted

INT 3rd input position where deletion begins

STRING output resulting string

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 input string is longer than the length
defined for the input variable in the field
"Type"

R9009 %MX0.900.9 for an instant  output string is longer than the length
defined for the output variable in the field
"Type"

In this example the input variables (input_string, character_number and start_position) have
been declared. Instead, you may enter the string ('Ideas for life'), the number of characters to be

Description DELETE deletes L characters in the string IN starting at position P with 1 denoting the first
character of the string. The result is written into the output variable.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 String instructions

273

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

deleted and the start position directly into the function. The string has to be put in inverted commas,
both in the POU header and in the function.

Body Starting from start_position (6), character_number (8) is deleted from input_string (‘Ideas for
life’). The resulting string (‘Ideas’) is written into output_string.

LD

ST When programming with structured text, enter the following:

output_string:=DELETE(input_string, character_number, start_position);

String instructions

274

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

FIND Find string's position

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of FIND (see page 1326)

  If the strings are longer than the length defined for the input variables
(input_string_1 and input_string_2) in the field "Type", an error occurs
(see Special Internal Relays for Error Handling).

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.
(up to 200 steps)

Data type I/O Function

STRING 1st input input string

STRING 2nd input string that is searched for in the input string

INT output position at which the string searched for is found

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 input strings are longer than the length
defined for the input variables in the field
"Type"

Description FIND returns the position at which the second input string first occurs in the first input string. The
result is written into the output variable. If the second input string does not occur in the first input
string, the value ZERO is returned.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

In this example the input variables (input_string_1 and input_string_2) have been declared.
Instead, you may enter the strings ('Ideas for life' and 'for') directly into the function. The strings
have to be put in inverted commas, both in the POU header and in the function.

Body Input_string_2 (‘for’) is searched in input_string_1 (‘Ideas for life’). The position of the first
occurrence (7) is written into output_value.

 String instructions

275

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

output_value:= FIND(input_string_1, input_string_2);

String instructions

276

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

INSERT Insert characters

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of INSERT (see page 1327)

  If the strings are longer than the length defined for the input variables
(input_string_1 and input_string_2) in the field "Type", an error occurs
(see Special Internal Relays for Error Handling).

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.
(up to 200 steps)

Data type I/O Function

STRING 1st input input string

STRING 2nd input string to be inserted into input string

INT 3rd input position at which string is inserted

STRING output result string

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 input strings are longer than the length
defined for the input variables in the field
"Type"

Description INSERT inserts the string IN2 into the string IN1 beginning after the character position P, where 0
denotes the beginning of the string, 1 the position after the first string character, etc. The result is
written into the output variable.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 String instructions

277

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Body In this example the input variables input_string1, input_string2 and position have been
declared. However, you may enter the values directly at the function's input contact pins instead.
The STRING values have to be put in inverted commas, both in the POU header and at the contact
pins. input_string2 ('for ') is inserted into input_string1 ('Ideas life') after character position 6. The

result ('Ideas for life') is returned at output_value. In the LD example, (Monitoring) icon was
activated while in online mode, hence you can see the results immediately.

LD

ST When programming with structured text, enter the following:

output_value:=INSERT(IN1:=input_string1, IN2:=input_string2, P:=6);

String instructions

278

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

REPLACE Replaces characters

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of REPLACE (see page 1330)

  If the strings are longer than the length defined for the input variables
(input_string_1 and input_string_2) in the field "Type", an error occurs
(see Special Internal Relays for Error Handling).

 The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.
(up to 200 steps)

Data type I/O Function

STRING 1st input input string

STRING 2nd input replacement string

INT 3rd input the number of characters in the input string to be replaced

INT 4th input position at which characters begin to be replaced

STRING output resulting string

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 input strings are longer than the length
defined for the input variables in the field
"Type"

Description REPLACE replaces the characters in the string IN1 with P denoting the first position to be replaced
and L denoting the number of characters to be replaced with the characters specified by IN2. The
result is written into the output variable.

Data types

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the
POU header.

Body In this example constant values are entered directly at the function's input contact pins. However,
you may declare variables in the POU header. The STRING values have to be put in inverted
commas, either in the POU header or at the contact pins. Here the 'c' in the STRING 'MrSpock' has
been replaced with an 'o', yielding 'MrSpook'.

 String instructions

279

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

LD

Chapter 10

 Date and time instructions

Date and time instructions

282

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

ADD_DT_TIME Add TIME to DATE_AND_TIME

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of ADD_DT_TIME (see page 1318)

Data type I/O Function

DATE_AND_TIME 1st input augend

TIME 2nd input addend

DATE_AND_TIME output sum

Description ADD_DT_TIME adds the value of a variable of the data type TIME to the date and time stored in
the variable of the data type DATE_AND_TIME. The result is stored in a variable of the data type
DATE_AND_TIME.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

DT_result := ADD_DT_TIME(DT_value, TIME_value);

 Date and time instructions

283

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

ADD_TOD_TIME Add TIME to TIME_OF_DAY

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of ADD_TOD_TIME (see page 1318)

Data type I/O Function

TIME_OF_DAY 1st input augend

TIME 2nd input addend

TIME_OF_DAY output sum

Description ADD_TOD_TIME adds a variable of the data type TIME to the time of day. The result is stored in a
variable of the data type TIME_OF_DAY.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

TOD_result := ADD_TOD_TIME(TOD_value, TIME_value);

Date and time instructions

284

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

CONCAT_DATE_INT Concatenate INT values to form a date

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Inverse instruction: SPLIT_DATE_INT (see page 295)

PLC types Availability of CONCAT_DATE_INT (see page 1318)

Data type I/O Function

INT

1st input

2nd input

3rd input

year

month

day

DATE output result

BOOL output The Boolean output ERROR is set if the input values
are invalid date or time values.

DATE_value := CONCAT_DATE_INT(YEAR := YEAR_value,

 MONTH := MONTH_value,

 DAY := DAY_value,

 ERROR => ERROR);

Description CONCAT_DATE_INT concatenates the INTEGER values of year, month, and day.The result is
stored in the output variable of the data type DATE. The Boolean output ERROR is set if the input
values are invalid date or time values.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

 Date and time instructions

285

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

CONCAT_DATE_TOD Concatenate date and time of day

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of ADD_TIME CONCAT_DATE_TOD (see page 1318)

Data type I/O Function

DATE 1st input date

TIME_OF_DAY 2nd input time of day

DATE_AND_TIME output result

Description CONCAT_DATE_TOD concatenates a value of the data type DATE with a value of the data type
TIME_OF_DAY.The result is stored in the output variable of the data type DATE_AND_TIME.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

DT_value := CONCAT_DATE_TOD(DATE_value, TOD_value);

Date and time instructions

286

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

CONCAT_DT_INT Concatenate INT values to form date and time

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Inverse instruction: SPLIT_DT_INT (see page 296)

PLC types Availability of CONCAT_DT_INT (see page 1318)

Data type I/O Function

INT

1st input

2nd input

3rd input

4th input

5th input

6th input

7th input

year

month

day

hour

minute

second

millisecond

DATE_AND_TIME output result

BOOL output The Boolean output ERROR is set if the input values
are invalid date or time values.

Description CONCAT_DT_INT concatenates the INT values of year, month, day, hour, minute, second, and
millisecond. The result is stored in the output variable of the data type DATE_AND_TIME. The
Boolean output ERROR is set if the input values are invalid date or time values.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Date and time instructions

287

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DT_value := CONCAT_DT_INT(YEAR := YEAR_value,

 MONTH := MONTH_value,

 DAY := DAY_value,

 HOUR := HOUR_value,

 MINUTE := MINUTE_value,

 SECOND := SECOND_value,

 MILLISECOND := MILLISECOND_value,

 ERROR => ERROR);

LD

ST When programming with structured text, enter the following:

Date and time instructions

288

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

CONCAT_TOD_INT Concatenate INT values to form the time of day

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Inverse instruction: SPLIT_TOD_INT (see page 298)

PLC types Availability of CONCAT_TOD_INT (see page 1318)

Data type I/O Function

INT

1st input

2nd input

3rd input

4th input

hour

minute

second

millisecond

TIME_OF_DAY output result

BOOL output The Boolean output ERROR is set if the input values
are invalid date or time values.

TOD_value := CONCAT_TOD_INT(HOUR := HOUR_value,

 MINUTE := MINUTE_value,

 SECOND := SECOND_value,

 MILLISECOND := MILLISECOND_value,

 ERROR => ERROR);

Description CONCAT_TOD_INT concatenates the INTEGER values for hour, minute, second, and millisecond.
The result is stored in the output variable of the data type TIME_OF_DAY. The Boolean output
ERROR is set if the input values are invalid date or time values.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

 Date and time instructions

289

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DAY_OF_WEEK1 Return the day of the week

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1319

Data type I/O Function

DATE input date

ANY16 output 1 (Monday) – 7 (Sunday)

The value iDAY_OF_WEEK_value = 2 corresponds to Tuesday.

Description DAY_OF_WEEK1 returns the day of the week for any date as an INT. The number 1 corresponds
to Monday; 7 corresponds to Sunday.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

iDAY_OF_WEEK_value := DAY_OF_WEEK1(DATE_value);

Date and time instructions

290

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

GET_RTC_DT Read the Real-Time Clock

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of GET_RTC_DT (see page 1326)

Data type I/O Function

DATE_AND_TIME output date and time

Description GET_RTC_DT reads the PLC's real-time clock value for the clock/calendar function. If the PLC has
no real-time clock or if the real-time clock is not functioning, the result is an invalid date and time
value.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

DT_value := GET_RTC_DT();

 Date and time instructions

291

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

IS_VALID_DATE_INT Check whether a DATE is valid

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of IS_VALID_DATE_INT (see page 1327)

Data type I/O Function

INT

1st input

2nd input

3rd input

year

month

day

BOOL output set to TRUE if the resulting date value is valid

VALID := IS_VALID_DATE_INT(YEAR := YEAR_value,

 MONTH := MONTH_value,

 DAY := DAY_value);

Description IS_VALID_DATE_INT checks whether the combination of the INT values for the year, month, and
day is a valid DATE value. The Boolean output flag is set if the date is valid.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

Date and time instructions

292

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

IS_VALID_DT_INT Check whether DATE_AND_TIME is valid

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of IS_VALID_DT_INT (see page 1327)

Data type I/O Function

INT

1st input

2nd input

3rd input

4th input

5th input

6th input

7th input

year

month

day

hour

minute

second

millisecond

BOOL output set to TRUE if the resulting date and time value is valid

Description IS_VALID_DT checks whether the combination of INT values for year, month, day, hour, minute,
second, and millisecond is a valid date and time value. The Boolean output flag is set if the date
and time value is valid.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

 Date and time instructions

293

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

VALID := IS_VALID_DT_INT(YEAR := YEAR_value,

 MONTH := MONTH_value,

 DAY := DAY_value,

 HOUR := HOUR_value,

 MINUTE := MINUTE_value,

 SECOND := SECOND_value,

 MILLISECOND := MILLISECOND_value);

ST When programming with structured text, enter the following:

Date and time instructions

294

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

IS_VALID_TOD_INT Check whether the TIME_OF_DAY is valid

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of IS_VALID_TOD_INT (see page 1328)

Data type I/O Function

INT

1st input

2nd input

3rd input

4th input

hour

minute

second

millisecond

BOOL output set to TRUE if the resulting time of day value is valid

VALID := IS_VALID_TOD_INT(HOUR := HOUR_value,

 MINUTE := MINUTE_value,

 SECOND := SECOND_value,

 MILLISECOND := MILLISECOND_value);

Description IS_VALID_TOD_INT checks whether the combination of INT values for hour, minute, second, and
millisecond is a valid time of day value. The Boolean output flag is set if the time of day value is
valid.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

 Date and time instructions

295

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

SET_RTC_DT Set the Real-Time Clock

PLC types Availability of SET_RTC_DT (see page 1330)

Data type I/O Function

DATE_AND_TIME input date and time

Description SET_RTC_DT sets the real-time clock value in the PLC for the clock/calendar function. If the PLC
has no real-time clock or if the real-time clock is not functioning, the result is an invalid date and
time value.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

IF DF(bSetEdge) THEN
 SET_RTC_DT(DT_value);
END_IF;

Date and time instructions

296

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

SPLIT_DATE_INT Split a date into INTEGER values

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Inverse instruction: CONCAT_DATE_INT (see page 283)

PLC types Availability of SPLIT_DATE_INT (see page 1331)

Data type I/O Function

DATE input date

INT

1st output

2nd output

3rd output

year

month

day

SPLIT_DATE_INT(IN := DATE_value,

 YEAR => YEAR_value,

 MONTH => MONTH_value,

 DAY => DAY_value);

Description SPLIT_DATE_INT splits a value of the data type DATE into INT values for year, month, and day.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

 Date and time instructions

297

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

SPLIT_DT_INT Split a date and time into INTEGER values

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Inverse instruction: CONCAT_DT_INT (see page 285)

PLC types Availability of SPLIT_DT_INT (see page 1331)

Data type I/O Function

DATE_AND_TIME input date and time

INT

1st output

2nd output

3rd output

4th output

5th output

6th output

7th output

year

month

day

hour

minute

second

millisecond

Description SPLIT_DT_INT splits a value of the data type DATE_AND_TIME into INT values for year, month,
day, hour, minute, second, and millisecond.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

Date and time instructions

298

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

SPLIT_DT_INT(IN := DT_value,

 YEAR => YEAR_value,

 MONTH => MONTH_value,

 DAY => DAY_value,

 HOUR => HOUR_value,

 MINUTE => MINUTE_value,

 SECOND => SECOND_value,

 MILLISECOND => MILLISECOND_value);

LD

ST When programming with structured text, enter the following:

 Date and time instructions

299

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

SPLIT_TOD_INT Split the time of day into INT values

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Inverse instruction: CONCAT_TOD_INT (see page 287)

PLC types Availability of SPLIT_TOD_INT (see page 1331)

Data type I/O Function

TIME_OF_DAY input time of day

INT

1st output

2nd output

3rd output

4th output

hour

minute

second

millisecond

SPLIT_TOD_INT(IN := TOD_value,

 HOUR => HOUR_value,

 MINUTE => MINUTE_value,

 SECOND => SECOND_value,

 MILLISECOND => MILLISECOND_value);

Description SPLIT_TOD_INT splits a value of the data type TIME_OF_DAY into INT values for hour, minute,
second, and millisecond.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

Date and time instructions

300

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

SUB_DATE_DATE Subtracts a date from another date

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of SUB_DATE_DATE (see page 1331)

 The TIME result is only valid if the difference between the minuend and
subtrahend is smaller than or equal to the maximum TIME duration allowed.
Otherwise an overflow of the TIME result variable occurs and the CARRY flag is
set.

Data type I/O Function

DATE 1st input minuend

DATE 2nd input subtrahend

TIME output result

TIME_result := SUB_DATE_DATE(DATE_value1, DATE_value2);

Description SUB_DATE_DATE subtracts a value of the data type DATE from another DATE value. The result
is stored in the output variable of the data type TIME.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

 Date and time instructions

301

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

SUB_DT_DT Subtract date and time from date and time

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of SUB_DT_DT (see page 1331)

 The TIME result is only valid if the difference between the minuend and
subtrahend is smaller than or equal to the maximum TIME duration allowed.
Otherwise an overflow of the TIME result variable occurs and the CARRY flag is
set.

Data type I/O Function

DATE_AND_TIME 1st input minuend

DATE_AND_TIME 2nd input subtrahend

TIME output result

Description SUB_DT_DT subtracts a value of the data type DATE_AND_TIME from another DATE_AND_TIME
value. The result is stored in the output variable of the data type TIME.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

TIME_result := SUB_DT_DT(DT_value1, DT_value2);

Date and time instructions

302

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

SUB_DT_TIME Subtracts time from date and time

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of SUB_DT_TIME (see page 1331)

Data type I/O Function

DATE_AND_TIME 1st input minuend

TIME 2nd input subtrahend

DATE_AND_TIME output result

Description SUB_DT_TIME subtracts a value of the data type TIME from a value of the data type
DATE_AND_TIME. The result is stored in the output variable of the data type TIME_OF_DAY.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

DT_result := SUB_DT_TIME(DT_value, TIME_value);

 Date and time instructions

303

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

SUB_TOD_TIME Subtracts a TIME value from the time of day

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of SUB_TOD_TIME (see page 1331)

Data type I/O Function

TIME_OF_DAY 1st input minuend

TIME 2nd
input

subtrahend

TIME_OF_DAY output result

Description SUB_TOD_TIME subtracts a TIME value from a value of the data type TIME_OF_DAY. The result
is stored in the output variable of the data type TIME_OF_DAY.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

TOD_result := SUB_TOD_TIME(TOD_value, TIME_value);

Date and time instructions

304

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

SUB_TOD_TOD Subtract Time of Day from Time of Day

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of SUB_TOD_TOD (see page 1331)

Data type I/O Function

TIME_OF_DAY 1st input minuend

TIME_OF_DAY 2nd input subtrahend

TIME output result

Description SUB_TOD_TOD subtracts a value of the data type TIME_OF_DAY from another TIME_OF_DAY
value. The result is stored in the output variable of the data type TIME.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

TIME_result := SUB_TOD_TOD(TOD_value1, TOD_value2);

Chapter 11

 Bistable instructions

Bistable instructions

306

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

SR Set/reset

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For SR declare the following:
SET (S1) Set

The output Q is set for each rising edge at SET

RESET (R) reset

The output Q is reset for each rising edge detected at RESET, except
when SET is set (see time chart)

Q (Q1) signal output

is set if a rising edge is detected at SET; is reset if a rising edge is
detected at RESET if SET is not set.

  The names in brackets are the valid parameter names of the ST-editor.

 Q is set if a rising edge is detected at both inputs (Set and Reset).

 Upon initialising, Q always has the status zero (reset).

Time chart

PLC types Availability of SR (see page 1331)

Data type I/O Function

1st input Set

2nd input reset BOOL

output set or reset depending on inputs

Description The function block SR (set/reset) allows you to both set and reset an output.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

 Bistable instructions

307

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

POU header All input and output variables which are used for programming the function block SR are declared
in the POU header. This also includes the function block (FB) itself. By declaring the FB you create
a copy of the original FB. This copy is saved under copy_name, and a separate data area is
reserved.

Body If set is set (status = TRUE), signal_output will be set. If only reset is set, the signal_output will
be reset (status = FALSE). If both set and reset are set, signal_output will be set.

LD

ST When programming with structured text, enter the following:

copy_name(SET:= set, RESET:= reset);

 signal_output:= signal_output;

Bistable instructions

308

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

RS Reset/set

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For RS declare the following:
SET (S1) Set

The output Q is set for each rising edge at SET if RESET is not set.

RESET (R) reset

The output Q is reset for each rising edge at RESET.

Q (Q1) signal output

is set if a rising edge is detected at SET and if RESET is not set; is reset if
a rising edge is detected at RESET.

  The names in brackets are the valid parameter names of the ST-editor.

 Q is reset if a rising edge is detected at both inputs.

Time chart

PLC types Availability of RS (see page 1330)

Data type I/O Function

1st input Set

2nd input reset BOOL

output set or reset depending on inputs

Description The function block RS (reset/set) allows you to both reset and set an output.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

 Bistable instructions

309

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

POU header All input and output variables which are used for programming the function block RS are declared
in the POU header. This also includes the function block (FB) itself. By declaring the FB you create
a copy of the original FB. This copy is saved under copy_name, and a separate data area is
reserved.

Body If set is set (status = TRUE) the signal_output will be set. If only reset is set, the signal_output
will be reset (status = FALSE). If both set and reset are set, the signal_output will be reset to
FALSE.

LD

ST When programming with structured text, enter the following:

copy_name(SET:= set, RESET:= reset);

 signal_output:= signal_output;

Chapter 12

 Edge detection instructions

Edge detection instructions

312

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

R_TRIG Rising edge trigger

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For R_TRIG declare the following:
CLK signal input

the output Q is set for each rising edge at the signal input (CLK = clock)

Q signal output

is set when a rising edge is detected at CLK.

PLC types Availability of R_TRIG (see page 1330)

 The output Q of a function block R_TRIG remains set for a complete PLC cycle
after the occurrence of a rising edge (status change FALSE -> TRUE) at the CLK
input and is then reset in the following cycle.

Data type I/O Function

input CLK detects rising edge for clock
BOOL

output Q set when rising edge detected

Description The function block R_TRIG (rising edge trigger) allows you to recognize a rising edge at an input.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block R_TRIG are
declared in the POU header. This also includes the function block (FB) itself. By declaring the FB
you create a copy of the original FB. This copy is saved under copy_name, and a separate data
area is reserved.

Body Signal_output will be set, if a rising edge is detected at signal_input.

LD

ST When programming with structured text, enter the following:

copy_name(CLK:= signal_input ,

 Q=> signal_output);

 Edge detection instructions

313

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

F_TRIG Falling edge trigger

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For F_TRIG declare the following:
CLK signal input

the output Q is set for each falling edge at the signal input (clk = clock)

Q signal output

is set if a falling edge is detected at CLK.

PLC types Availability of F_TRIG (see page 1320)

 The output Q of a function block F_TRIG remains set for a complete PLC cycle
after the occurrence of a falling edge (status change TRUE -> FALSE) at the CLK
input and is then reset in the following cycle.

Data type I/O Function

input CLK detects falling edge at input clock

BOOL
output Q is set if falling edge is detected at

input

Description The function block F_TRIG (falling edge trigger) allows you to recognize a falling edge at an input.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block F_TRIG are
declared in the POU header. This also includes the function block (FB) itself. By declaring the FB
you create a copy of the original FB. This copy is saved under copy_name, and a separate data
area is reserved.

Body Signal_output will be set, if a falling edge is detected at signal_input.

LD

ST When programming with structured text, enter the following:

copy_name(CLK:= signal_input ,

 Q=> signal_output);

Chapter 13

 Counter instructions

Counter instructions

316

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

CTU Up counter

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For CTU declare the following:
CU clock generator

the value 1 is added to CV for each rising edge at CU, except when RESET is
set

RESET (R) reset

CV is reset to zero for each rising edge at RESET

PV set value

if PV (preset value) is reached, Q is set

Q signal output

is set if CV is greater than/equal to PV

CV current value

contains the addition result (CV = current value)

 The names in brackets are the valid parameter names of the ST-editor.

PLC types Availability of CTU (see page 1319)

Time chart

Data type I/O Function

input CU detects rising edge, adds 1 to CV
BOOL

input RESET resets CV to 0 at rising edge

INT input PV set value

BOOL output Q set if CV >= PV

INT output CV current value

Description The function block CTU (count up) allows you to program counting procedures.

Data types

 Counter instructions

317

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block CTU are declared
in the POU header. This also includes the function block (FB) itself. By declaring the FB you create
a copy of the original FB. This copy is saved under copy_name. A separate data area is reserved
for this copy.

Body If reset is set (status = TRUE), current_value (CV) will be reset. If a rising edge is detected at
clock, the value 1 will be added to current_value. If a rising edge is detected at clock, this
procedure will be repeated until current_value is greater than/equal to set_value. Then,
signal_output will be set.

LD

ST When programming with structured text, enter the following:

copy_name(CU:= clock, RESET:= reset, PV:= set_value, Q=> signal_output, CV=>
current_value);

Counter instructions

318

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

CTD Down counter

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For CTD declare the following:
CD clock generator input

the value 1 is subtracted from the current value CV for each rising edge
detected at CD, except when LOAD is set or CV has reached the value zero.

LOAD (LD) Set

with LOAD the counter state is reset to PV

PV preset value

is the value subjected to subtraction during the first counting procedure

Q signal output

is set if CV = zero

CV current value

contains the current subtraction result (CV = current value)

 The names in brackets are the valid parameter names of the ST-editor.

PLC types Availability of CTD (see page 1319)

Time chart

Description The function block CTD (count down) allows you to program counting procedures.

 Counter instructions

319

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Data type I/O Function

input CD subtracts 1 from CV at rising edge
BOOL

input LOAD resets counter to PV

INT input PV preset value

BOOL output Q signal output, set if CV = 0

INT output CV current value

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block CTD are declared
in the POU header. This also includes the function block (FB) itself. By declaring the FB you create
a copy of the original FB. This copy is saved under copy_name, and a separate data area is
reserved.

Body If set is set (status = TRUE), the preset_value (PV) is loaded in the current_value (CV). The
value 1 will be subtracted from the current_value each time a rising edge is detected at clock.
This procedure will be repeated until the current_value is greater than/equal to zero. Then,
signal_output will be set.

LD

ST When programming with structured text, enter the following:

IF set THEN (* first cycle *)

 load:=TRUE; (* load has to be TRUE,

 to set current_value to output_value *)

 clock:=FALSE;

END_IF;

copy_name(CD:= clock, LOAD:= set, PV:= output_value, Q=> signal_output, CV=>
current_value);

load:=FALSE; (* now current_value got the right value, load doesn't need
to be *)

 (* TRUE any longer *);

Counter instructions

320

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

CTUD Up/down counter

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For CTUD declare the following:
CU count up

the value 1 is added to the current CV for each rising edge detected at CU,
except when RESET and/or LOAD is/are set.

CD count down

the value 1 is subtracted from the current CV for each rising edge detected at
CD, except when RESET and/or LOAD is/are set and if CU and CD are
simultaneously set. In the latter case, counting will be upwards.

RESET (R) reset

if RESET is set, CV will be reset

LOAD (LD) Set

if LOAD is set, PV is loaded to CV. This, however, does not apply if RESET is
set simultaneously. In this case, LOAD will be ignored.

PV preset value

defines the preset value which is to be attained with the addition or subtraction
(PV = preset value)

QU signal output - count up

is set if CV is greater than/equal to PV

QD signal output - count down

is set if CV = zero

CV current value

is the addition/subtraction result (CV = current value)

 The names in brackets are the valid parameter names of the ST-editor.

PLC types Availability of CTUD (see page 1319)

Description The function block CTUD (count up/down) allows you to program counting procedures (up and
down).

 Counter instructions

321

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Time chart

Data type I/O Function

input CU count up

input CD count down

input RESET resets CV if set
BOOL

input LOAD loads PV to CV

INT input PV set value

output QU signal output count up
BOOL

output QD signal output count down

INT output CV current value

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block CTUD are
declared in the POU header. This also includes the function block (FB) itself. By declaring the FB
you create a copy of the original FB. This copy is saved under copy_name. A separate data area
is reserved for this copy.

Counter instructions

322

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Body Count up:

If reset is set, the current_value (CV) will be reset. If up_clock is set, the value 1 is added to the
current_value. This procedure is repeated for each rising edge detected at up_clock until the
current value is greater than/equal to the set_value. Then output_up is set. The procedure is not
conducted, if reset and/or set is/are set.

Count down:

If set is set (status = TRUE), the set_value (PV = preset value) will be loaded in the current_value
(CV). If down_clock is set, the value 1 is subtracted from set_value at each clock. This procedure
is repeated at each clock until the current_value is smaller than/equal to zero. Then,
signal_output is set. The procedure will not be conducted, if reset and/or set is/are set or if CU
and CV are set at the same time. In the latter case, counting will be downwards.

LD

ST When programming with structured text, enter the following:

copy_name(CU:= up_clock, CD:= down_clock, RESET:= reset, LOAD:= set, PV:=
set_value,

 QU=> output_up, QD=> output_down, CV=> current_value);

Chapter 14

 Timer instructions

Timer instructions

324

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

TOF Timer with switch-off delay

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For TOF declare the following:
IN timer ON

an internal timer is started if a falling edge is detected at IN. If a rising edge is
detected at IN before PT has reached its value, Q will not be switched off (see

time chart, section 2)

PT switch-off delay

(16-bit value: 0 - 327.27s, 32-bit value: 0 - 21,474,836.47s; resolution 10ms
each) the switch-off delay is defined here (PT = preset time)

Q signal output

is reset if PT = ET

ET elapsed time

represents the current value of the elapsed time

Time
chart

t0 t1 + PT t2 t5 + PT

t0 t1 t2 t3 t4 t5
IN

Q

ET

PT

t0 t1 t2 t3 t4 t5
1 2

1 Q is switched off with a delay corresponding to the time defined in PT. Switching on is
carried out without delay.

2 If IN (as in the time chart on top for t3 to t4) is set prior to the lapse of the delay time PT, Q
remains set (time chart for t2 to t3).

PLC types Availability of TOF (see page 1332)

Description The function block TOF allows you to program a switch-off delay, e.g. to switch off the ventilator of
a machine at a later point in time than the machine itself.

 Timer instructions

325

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Data type I/O Function

BOOL (IN) input internal timer on a falling edge

TIME (PT) input switch off delay

BOOL (Q) output signal output reset if PT = ET

TIME (ET) output elapsed time

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block TOF are declared
in the POU header. This also includes the function block (FB) itself. By declaring the FB you create
a copy of the original FB. This copy is saved under copy_name. A separate data area is reserved
for this copy.

Body If start is reset, this signal is transferred to signal_output with a delay corresponding to the period
of time set_value.

LD

ST When programming with structured text, enter the following:

copy_name(IN:= start ,

 PT:= set_value ,

 Q=> signal_output ,

 ET=> current_value);

Timer instructions

326

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

TON Timer with switch-on delay

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For TON declare the following:
IN timer ON

an internal timer is started for each rising edge detected at IN

PT switch-on delay

(16-bit value: 0 - 327.27s, 32-bit value: 0 - 21,474,836.47s; resolution 10ms
each) the switch-on delay is defined here (PT = preset time)

Q signal output

is set if PT = ET

ET elapsed time

indicates the current value of the elapsed time

Time
chart NI

Q

ET

PT

 t0 t1 t2 t3

 t t0 0 + PT t1 t2 t3

 t0 t1 t2 t3

 t

1 2

1 Q is set delayed with the time defined in PT. Resetting is without any delay.

2 If the input IN is only set for the period of the delay time PT or even for a shorter period of time
(t3 - t2 < PT), Q will not be set.

PLC types Availability of TON (see page 1332)

Description The function block TON allows you to program a switch-on delay.

 Timer instructions

327

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Data type I/O Function

BOOL (IN) input internal timer starts at rising edge

TIME (PT) input switch on delay

BOOL (Q) output signal output set if PT = ET

TIME (ET) output elapsed time

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block TON are declared
in the POU header. This also includes the function block (FB) itself. By declaring the FB you create
a copy of the original FB. This copy is saved under copy_name. A separate data area is reserved
for this copy.

Body If start is set (status = TRUE), the input signal is transferred to signal_output with a delay by the
time period set_value.

LD

ST When programming with structured text, enter the following:

copy_name(IN:= start ,

 PT:= set_value ,

 Q=> signal_output ,

 ET=> current_value);

Timer instructions

328

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

TP Timer with defined period

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For TP declare the following:
IN clock generator

if a rising edge is detected at IN, a clock is generated having the period
defined in PT

PT clock period

(16-bit value: 0 - 327.27s, 32-bit value: 0 -21,474,836.47s; resolution 10ms
each) a timer having the period PT is caused for each rising edge at IN. A
new rising edge detected at IN within the pulse period does not cause a new

timer (see time chart, section 2)

Q signal output

is set for the period of PT as soon as a rising edge is detected at IN

ET elapsed time

contains the elapsed period of the timer. If PT = ET, Q will be reset

 FP2, FP2SH and FP10SH use a 32-bit value for PT.

Time
chart

 t0 t1 + PT t2 t3 t4 t4 + PT

 t0 t1 + PT t2 t2 + PT t4 t4 + PT

t0 t1 t2 t3 t4 t5 t6 t7
IN

Q

ET

PT

1

t

2 3

1 + 2 Independent of the turn-on period of the IN signal, a clock is generated at the output
Q having a length defined by PT. The function block TP is triggered if a rising edge
is detected at the input IN.

3 A rising edge at the input IN does not have any influence during the processing of
PT.

PLC types Availability of TP (see page 1332)

Description The function block TP allows you to program a pulse timer with a defined clock period.

 Timer instructions

329

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

Data type I/O Function

BOOL input IN clock generated according to clock period at rising edge

TIME input PT clock period

BOOL output Q signal output

TIME output ET elapsed time

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block TP are declared
in the POU header. This also includes the function block (FB) itself. By declaring the FB you create
a copy of the original FB. This copy is saved under copy_name. A separate data area is reserved
for this copy.

Body If start is set (status = TRUE), the clock is emitted at signal_output until the set_value for the
clock period is reached.

LD

ST When programming with structured text, enter the following:

copy_name(IN:= start ,

 PT:= set_value ,

 Q=> signal_output ,

 ET=> current_value);

Timer instructions

330

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

ADD_TIME Add TIME

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of ADD_TIME (see page 1318)

Data type I/O Function

TIME 1st input augend

TIME 2nd input addend

TIME output sum

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

In this example the input variables (time_value_1 and time_value_2) have been declared. Instead,
you may enter constants directly at the input contacts of a function.

Description ADD_TIME adds the times of the two input variables and writes the sum in the output variable.

Data types

Example

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body Time_value_1 and time_value_2 are added. The result is written into time_value_3.

LD

ST time_value_3:=ADD_TIME(time_value_1, time_value_2);

 Timer instructions

331

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

CONCAT_TIME_INT Concatenate INT values to form a time

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of CONCAT_TIME_INT (see page 1318)

Data type I/O Function

INT

1st input

2nd input

3rd input

4th input

5th input

days

hours

minutes

seconds

milliseconds

TIME output result

BOOL output The Boolean output ERROR is set if the input values are invalid date or time values.

TIME_value := CONCAT_TIME_INT(DAYS := DAYS_value,

 HOURS := HOURS_value,

 MINUTES := MINUTES_value,

 SECONDS := SECONDS_value,

 MILLISECONDS := MILLISECONDS_value,

 ERROR => ERROR);

Description The highest non-zero time unit may be greater than its apparent limit, e.g. T#25h is a valid time
value whereas T#1d25h is not.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

Timer instructions

332

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DIV_TIME_INT Divide TIME by INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DIV_TIME_INT (see page 1319)

Data type I/O Function

TIME 1st input dividend

INT 2nd input divisor

TIME output result

Description DIV_TIME_INT divides the value of the first input variable by the value of the second input variable
and writes the result into the output variable.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

In this example the input variables (time_value_1 and INT_value) have been declared. Instead,
you may enter constants directly at the input contacts of a function.

Body time_value_1 is divided by INT_value. The result is written into time_value_2.

LD

ST When programming with structured text, enter the following:

time_value_2:=DIV_TIME_INT(time_value_1, INT_value);

 Timer instructions

333

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DIV_TIME_DINT Divide TIME by DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DIV_TIME_DINT (see page 1319)

Data type I/O Function

TIME 1st input dividend

DINT 2nd input divisor

TIME output result

Description DIV_TIME_DINT divides the value of the first input variable by the value of the second and writes
the result into the output variable.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header In the POU header, all input and output variables are declared that are used for programming this
function.

In this example, the input variables (time_value_1, DINT_value) have been declared. However,
you can write a constant directly at the input contact of the function instead.

Body time_value_1 is divided by DINT_value. The result is written in time_value_2.

LD

ST When programming with structured text, enter the following:

time_value_2:=DIV_TIME_DINT(time_value_1, INT_value);

Timer instructions

334

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

DIV_TIME_REAL Divide TIME by REAL

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DIV_TIME_REAL (see page 1319)

Data type I/O Function

TIME 1st input dividend

REAL 2nd input divisor

TIME output result

Description DIV_TIME_REAL divides the value of the first input variable of the data type TIME by the value of
the second input variable of the data type REAL. The REAL value is rounded off to the nearest
whole number. The result is written into the output variable.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The value of variable input_time is divided by the value of the variable input_real. The result is
written in div_result. In this example the input variables have been declared in the POU header.
However, you may enter constants directly at the contact pins of the function.

LD

ST When programming with structured text, enter the following:

div_result:=DIV_TIME_REAL(input_time, input_real);

 Timer instructions

335

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

MUL_TIME_INT Multiply TIME by INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of MUL_TIME_INT (see page 1328)

Data type I/O Function

TIME 1st input multiplicand

INT 2nd input multiplicator

TIME output result

Description MUL_TIME_INT multiplies the values of the two input variables with each other and writes the
result into the output variable.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

In this example the input variables (time_value_1 and multiplier) have been declared. Instead,
you may enter constants directly at the input contacts of a function.

Body Time_value_1 is multiplied with multiplier. The result is written into time_value_2.

LD

ST When programming with structured text, enter the following:

time_value_2:=MUL_TIME_INT(time_value_1, multiplier);

Timer instructions

336

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

MUL_TIME_DINT Multiply TIME by DOUBLE INTEGER

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of MUL_TIME_DINT (see page 1328)

Data type I/O Function

TIME 1st input multiplicand

DINT 2nd input multiplicator

TIME output result

Description MUL_TIME_DINT multiplies the values of the input variables and writes the result to the output
variable.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header In the POU header, all input and output variables are declared that are used for programming this
function.

In this example, the input variables time_value and multiplier have been declared. However, you
can write a constant directly at the input contact of the function instead.

Body time_value_1 is multiplied by multiplier. The result is written in time_value_2.

LD

ST When programming with structured text, enter the following:

time_value_2:=MUL_TIME_DINT(time_value_1, multiplier);

 Timer instructions

337

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

MUL_TIME_REAL Multiply TIME by REAL

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of MUL_TIME_REAL (see page 1328)

Data type I/O Function

TIME 1st input multiplicand

REAL 2nd input multiplicator

TIME output result

Description MUL_TIME_REAL multiplies the value of the first input variable of the data type TIME by the value
of the second input variable of the data type REAL. The REAL value is rounded off to the nearest
whole number. The result is written into the output variable.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The constant T#1h30m is multiplied by the value 3.5. The result is written in mul_result. By

clicking on the (Monitoring) icon while in the online mode, you can see the result
T#5h15m0s0.00ms immediately.

LD

ST When programming with structured text, enter the following:

mul_result:=MUL_TIME_REAL(T#1h30m, 3.5);

Timer instructions

338

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

SPLIT_TIME_INT Split a time into INTEGER values

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of SPLIT_TIME_INT (see page 1331)

Data type I/O Function

TIME input time

INT

1st output

2nd output

3rd output

4th output

5th output

days

hours

minutes

seconds

milliseconds

SPLIT_TIME_INT(IN := TIME_value,

 DAYS => DAYS_value,

 HOURS => HOURS_value,

 MINUTES => MINUTES_value,

 SECONDS => SECONDS_value,

 MILLISECONDS => MILLISECONDS_value);

Description The highest non-zero time unit may be greater than its apparent limit, e.g. T#25h is a valid time
value whereas T#1d25h is not.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

 Timer instructions

339

P
ar

t
II

 I
E

C
 I

n
st

ru
ct

io
n

s

SUB_TIME Subtract TIME

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of SUB_TIME (see page 1331)

Data type I/O Function

TIME 1st input minuend

TIME 2nd input subtrahend

TIME output result

Description SUB_TIME subtracts the value of the second input variable from the value of the first input variable
and writes the result into the output variable.

Data types

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

In this example the input variables (minuend and subtrahend) have been declared. Instead, you
may enter constants directly at the input contacts of a function.

Body Subtrahend is subtracted from minuend. The result will be written into result.

LD

ST When programming with structured text, enter the following:

result:= SUB_TIME(minuend, subtrahend);

Chapter 15

 Arithmetic instructions

Arithmetic instructions

342

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F20_ADD 16-bit addition

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1

Example value 27
Bit

Example value 16
Bit

Result value 43 if trigger is ON
Bit

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction ADD (see
page 61). Please refer also to Advantages of the IEC instructions in the online help.

 When this instruction is used, the area for the augend d is overwritten by the
added result. If you want to avoid the overwrite, we recommend using the
instruction F22_ADD2 (see page 345).

PLC types see see page 1322

Variable Data type Function

s addend

d ANY16 augend and result

The variables s and d have to be of the same data type.

Description The 16-bit equivalent constant or 16-bit area specified by s and the 16-bit area specified by d are
added together if the trigger EN is in the ON-state. The result is stored in d. All 16-bit values are
treated as integer values.

Data types

 Arithmetic instructions

343

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 16-bit
data (overflow or underflow).

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F20_ADD(value_in, value_in_out);

END_IF;

Arithmetic instructions

344

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F21_DADD 32-bit addition

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

s 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

Example value 1312896

Bit

32-bit area

Example value 558144

Bit

Result value 1871040 if trigger is on

Bit

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction ADD (see
page 61). Please refer also to Advantages of the IEC instructions in the online help.

 When this instruction is used, the area for the augend d is overwritten by the
added result. If you want to avoid the overwrite, we recommend using the
instruction F23_DADD2 (see page 347).

PLC types Availability of F21_DADD (see page 1323)

Variable Data type Function

s addend

d
ANY32

augend and result

The variables s and d have to be of the same data type.

Description The 32-bit equivalent constant or 32-bit area specified by s and the 32-bit data specified by d are
added together if the trigger EN is in the ON-state. The result is stored in d. All 32-bit values are
treated as double integer values.

Data types

 Arithmetic instructions

345

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 32-bit
data (overflow or underflow).

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F21_DADD(value, output_value);

END_IF;

Arithmetic instructions

346

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F22_ADD2 16-bit addition, destination can be specified

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1

Example value 27
Bit

Example value 16
Bit

Result value 43 if trigger is ON
Bit

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction ADD (see
page 61). Please refer also to Advantages of the IEC instructions in the online help.

PLC types Availability of F22_ADD2 (see page 1323)

Variable Data type Function

s1 augend

s2 addend

d

ANY16

result

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description The 16-bit data or 16-bit equivalent constant specified by s1 and s2 are added together if the
trigger EN is in the ON-state. The result is stored in d. All 16-bit values are treated as integer
values.

Data types

Operands

 Arithmetic instructions

347

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 16-bit
data (overflow or underflow).

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F22_ADD2(value_in1, value_in2, value_out);

END_IF;

Arithmetic instructions

348

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F23_DADD2 32-bit addition, destination can be specified

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

s 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

Example value 1312896

Bit

32-bit area

Example value 558144

Bit

Result value 1871040 if trigger is on

Bit

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction ADD (see
page 61). Please refer also to Advantages of the IEC instructions in the online help.

PLC types Availability of F23_DADD2 (see page 1323)

Variable Data type Function

s1 augend

s2 addend

d

ANY32

result

The variables s1, s2 and d have to be of the same data type.

Description The 32-bit data or 32-bit equivalent constant specified by s1 and s2 are added together if the
trigger EN is in the ON-state. The added result is stored in d. All 32-bit values are treated as double
integer values.

Data types

 Arithmetic instructions

349

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 32-bit
data (overflow or underflow).

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F23_DADD2(value_in1, value_in2, value_out);

END_IF;

Arithmetic instructions

350

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F40_BADD 4-digit BCD addition

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1

2 1 1 1

0 0 1 1

2 1 2 2

16# (BCD)

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

16# (BCD)

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0

16# (BCD)

Example value 16#0011 (BCD)

Bit

Result value 16#2122 (BCD) if trigger is ON

Bit

Bit

Example value 16#2111 (BCD)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

 When this instruction is used, the area for the augend d is overwritten by the
added result. If you want to avoid the overwrite, we recommend using the
instruction F41_DBADD (see page 351).

PLC types Availability of F40_BADD (see page 1325)

Variable Data type Function

s WORD addend, 16-bit area for 4-digit BCD data or equivalent
constant

d WORD augend and result, 16-bit area for 4-digit BCD data

Description The 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by s and the
16-bit area for 4-digit BCD data specified by d are added together if the trigger EN is in the
ON-state. The result is stored in d.

Data types

 Arithmetic instructions

351

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 4-digit
BCD data (overflow).

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST IF start THEN

 F40_BADD(summand, output_value);

END_IF;

Arithmetic instructions

352

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F41_DBADD 8-digit BCD addition

31 . . 28 27 . . 24 23 . . 20 19 . . 16

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

16# BCD

31 . . 28 27 . . 24 23 . . 20 19 . . 16

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 1 1 0 0 1 1 1 1 0 0 0

16# BCD

31 . . 28 27 . . 24 23 . . 20 19 . . 16

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0

0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0

16# BCD

1 2 3 4 2 0 0 0

0 0 0 0 3 6 7 8

1 2 3 4 5 6 7 8

Example value 16#12342000 (BCD)

Result value 16#12345678 (BCD) if trigger is ON

Bit

Bit

Example value 16#00003678 (BCD)

32-bit area

Bit

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

 When this instruction is used, the area for the augend d is overwritten by the
added result. If you want to avoid the overwrite, we recommend using the
instruction F43_DBADD2 (see page 355).

PLC types Availability of F41_DBADD (see page 1325)

Variable Data type Function

s DWORD addend, 32-bit area for 8-digit BCD data or equivalent
constant

d DWORD augend and result, 32-bit area for 8-digit BCD data

Description The 8-digit BCD equivalent constant or 8-digit BCD data specified by s and the 8-digit BCD data
specified by d are added together if the trigger EN is in the ON-state. The result is stored in d.

Data types

 Arithmetic instructions

353

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 8-digit
BCD data (overflow).

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST IF DF(start) THEN

 F41_DBADD(summand, output_value);

END_IF;

Arithmetic instructions

354

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F42_BADD2 4-digit BCD addition, destination can be specified

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1

16# (BCD)

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s2 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0

16# (BCD)

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

16# (BCD)

4 3 2 1

1 2 3 4

5 5 5 5

Bit

Example value 16#4321 (BCD)

Example value 16#1234 (BCD)

Result value 16#5555 (BCD) if trigger is ON

Bit

Bit

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F42_BADD2 (see page 1325)

Variable Data type Function

s1 WORD augend, 16-bit area for 4-digit BCD data or equivalent constant

s2 WORD addend, 16-bit area for 4-digit BCD data or equivalent constant

d WORD sum, 16-bit area for 4-digit BCD data

For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description The 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by s1 and s2 are
added together if the trigger EN is in the ON-state. The result is stored in d.

Data types

Operands

 Arithmetic instructions

355

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 4-digit
BCD data (overflow).

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST IF start THEN

 F42_BADD2(summand_1, summand_2, output_value);

END_IF;

Arithmetic instructions

356

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F43_DBADD2 8-digit BCD addition, destination can be specified

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

s1 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0

16# BCD

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

s2 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1

16# BCD

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

16# BCD

1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

9 9 9 9 9 9 9 9

Bit

Result value 16#99999999 (BCD) if trigger is ON

Bit

Example value 16#87654321 (BCD)

Bit

32-bit area

Example value 16#12345678 (BCD)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F43_DBADD2 (see page 1325)

Variable Data type Function

s1 DWORD augend, 32-bit area for 8-digit BCD data or equivalent
constant

s2 DWORD addend, 32-bit area for 8-digit BCD data or equivalent
constant

d DWORD sum, 32-bit area for 8-digit BCD data

Description The 8-digit BCD equivalent constant or 32-bit area for 8-digit BCD data specified by s1 and s2 are
added together if the trigger EN is in the ON-state. The result is stored in d.

Data types

 Arithmetic instructions

357

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 8-digit
BCD data (overflow).

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F43_DBADD2(summand_1, summand_2, output_value);

END_IF;

Arithmetic instructions

358

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F35_INC 16-bit increment

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

Result value 18 if trigger is ON

Bit

Bit

Example value 17

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F35_INC (see page 1325)

Variable Data type Function

d ANY16 16-bit area to be increased by 1

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 16-bit
data (overflow).

Description Adds "1" to the 16-bit data specified by d if the trigger EN is in the ON-state. The result is stored in
d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

 Arithmetic instructions

359

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST IF DF(start) THEN

 F35_INC(increment_value);

END_IF;

Arithmetic instructions

360

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F36_DINC 32-bit increment

31 . . 28 27 . . 24 23 . . 20 19 . . 16

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

31 . . 28 27 . . 24 23 . . 20 19 . . 16

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

32-bit area

Bit

Result value 131082 if trigger is ON

Bit

Example value 131081

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F36_DINC (see page 1325)

Variable Data type Function

d ANY32 32-bit area to be increased by 1

For Relay T/C Register Constant

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 32-bit
data (overflow).

Description Adds "1" to the 32-bit data specified by d if the trigger EN is in the ON-state. The result is stored in
d.

Data types

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

 Arithmetic instructions

361

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST IF DF(start) THEN

 F36_DINC(increment_value);

END_IF;

Arithmetic instructions

362

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F55_BINC 4-digit BCD increment

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0

16# BCD

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1

16# BCD

4 3 2 0

4 3 2 1

Bit

Result value 16#4321 (BCD) if trigger is ON

Bit

Example value 16#4320 (BCD)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F55_BINC (see page 1325)

Variable Data type Function

d WORD 16-bit area for 4-digit BCD data to be increased by 1

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 4-digit
BCD data (overflow).

Description Adds "1" to the 4-digit BCD data specified by d if the trigger EN is in the ON-state. The result is
stored in d.

Operands

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Arithmetic instructions

363

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF DF(start) THEN

 F55_BINC(increment_value);

END_IF;

Arithmetic instructions

364

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F56_DBINC 8-digit BCD increment

8 7 6 5 4 3 2 0

8 7 6 5 4 3 2 1

31 . . 28 27 . . 24 23 . . 20 19 . . 16

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1

0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0

16# BCD

31 . . 28 27 . . 24 23 . . 20 19 . . 16

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1

0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1

16# BCD

Bit
Result value 16#87654321 (BCD) if trigger is ON

32-bit area

Bit

Example value 16#87654320 (BCD)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F56_DBINC (see page 1325)

Variable Data type Function

d DWORD 32-bit area for 8-digit BCD data to be increased by 1

For Relay T/C Register Constant

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 8-digit
BCD data (overflow).

Description Adds "1" to the 8-digit BCD data specified by d if the trigger EN is in the ON-state. The result is
stored in d.

Data types

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

 Arithmetic instructions

365

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST IF DF(start) THEN

 F56_DBINC(increment_value);

END_IF;

Arithmetic instructions

366

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F25_SUB 16-bit subtraction

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction SUB (see
page 62). Please refer also to Advantages of the IEC instructions in the online help.

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1

Example value 16

Bit

Example value 27

Bit

Result value -11 if trigger is ON

Bit

PLC types Availability of F25_SUB (see page 1323)

Variable Data type Function

s subtrahend

d ANY16 minuend and result

The variables s and d have to be of the same data type.

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description Subtracts the 16-bit equivalent constant or 16-bit area specified by s from the 16-bit area specified
by d if the trigger EN is in the ON-state. The result is stored in d (minuend area). All 16-bit values
are treated as integer values.

Data types

Operands

 Arithmetic instructions

367

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 16-bit
data (overflow or underflow).

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F25_SUB(value_in, value_in_out);

END_IF;

Arithmetic instructions

368

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F26_DSUB 32-bit subtraction

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction SUB (see
page 62). Please refer also to Advantages of the IEC instructions in the online help.

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

s 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1

Example value 16778109
Bit

32-bit area

Example value 524740

Bit
Result value 16253369 if trigger is ON

Bit

PLC types Availability of F26_DSUB (see page 1323)

Variable Data type Function

s subtrahend

d ANY32 minuend and result

The variables s and d have to be of the same data type.

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description Subtracts the 32-bit equivalent constant or 32-bit data specified by s from the 32-bit data specified
by d if the trigger EN is in the ON-state. The result is stored in d (minuend area). All 32-bit values
are treated as double integer values.

Data types

Operands

 Arithmetic instructions

369

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 32-bit
data (overflow or underflow).

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F26_DSUB(value_in, value_in_out);

END_IF;

Arithmetic instructions

370

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F27_SUB2 16-bit subtraction, destination can be specified

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction SUB (see
page 62). Please refer also to Advantages of the IEC instructions in the online help.

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

Example value 27

Bit

Example value 16

Bit

Result value 11 if trigger is ON
Bit

PLC types Availability of F27_SUB2 (see page 1323)

Variable Data type Function

s1 minuend

s2 subtrahend

d

ANY16

result

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description Subtracts the 16-bit data or 16-bit equivalent constant specified by s2 from the 16-bit data or 16-bit
equivalent constant specified by s1 if the trigger EN is in the ON-state. The result is stored in d. All
16-bit values are treated as integer values.

Data types

Operands

 Arithmetic instructions

371

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 16-bit
data (overflow or underflow).

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F27_SUB2(minuend, subtrahend, output_value);

END_IF;

Arithmetic instructions

372

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F28_DSUB2 32-bit subtraction, destination can be specified

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction SUB (see
page 62). Please refer also to Advantages of the IEC instructions in the online help.

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

s1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

s2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Example value 16809984

Bit
Result value 16284672 if trigger is ON

Bit

Example value 525312

32-bit area

Bit

PLC types Availability of F28_DSUB2 (see page 1323)

Variable Data type Function

s1 minuend

s2 subtrahend

d

ANY32

result

The variables s1, s2 and d have to be of the same data type.

Description Subtracts the 32-bit data or 32-bit equivalent constant specified by s2 from the 32-bit data or 32-bit
equivalent constant specified by s1 if the trigger is in the ON-state. The result is stored in d. All
32-bit values are treated as double integer values.

Data types

 Arithmetic instructions

373

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 32-bit
data (overflow or underflow).

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F28_DSUB2(minuend, subtrahend, output_value);

END_IF;

Arithmetic instructions

374

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F45_BSUB 4-digit BCD subtraction

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1

16# (BCD)

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

16# (BCD)

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

16# (BCD)

2 1 1 1

0 0 1 1

2 1 0 0

Bit

Result value 16#2100 (BCD)

Trigger: ON

Bit

Bit

Example value 16#0011 (BCD)

Example value 16#2111 (BCD)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F45_BSUB (see page 1325)

Variable Data type Function

s WORD subtrahend, 16-bit area for 4-digit BCD data or equivalent
constant

d WORD minuend and result, 16-bit area for 4-digit BCD data

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description Subtracts the 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by s
from the 16-bit area for 4-digit BCD data specified by d if the trigger EN is in the ON-state. The
result is stored in d.

Data types

Operands

 Arithmetic instructions

375

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 4-digit
BCD data (overflow).

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST IF DF(start) THEN

 F45_BSUB(subtrahend, output_value);

END_IF;

Arithmetic instructions

376

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F46_DBSUB 8-digit BCD subtraction

31 . . 28 27 . . 24 23 . . 20 19 . . 16

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

16# BCD

31 . . 28 27 . . 24 23 . . 20 19 . . 16

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

16# BCD

31 . . 28 27 . . 24 23 . . 20 19 . . 16

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

16# BCD

2 3 2 1 0 0 4 4

0 0 2 1 0 0 1 1

2 3 0 0 0 0 3 3

Bit

Trigger: ON

Bit

Example value 16#00210011 (BCD)

32-bit area

Bit

Example value 16#23210044 (BCD)

Result value 16#23000033 (BCD)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F46_DBSUB (see page 1325)

Variable Data type Function

s DWORD subtrahend, 32-bit area for 8-digit BCD data or equivalent
constant

d DWORD minuend and result, 32-bit area for 8-digit BCD data

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description Subtracts the 8-digit BCD equivalent constant or 8-digit BCD data specified by s from the 8-digit
BCD data specified by d if the trigger EN is in the ON-state. The result is stored in d.

Data types

Operands

 Arithmetic instructions

377

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 8-digit
BCD data (overflow).

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST IF DF(start) THEN

 F46_DBSUB(subtrahend, output_value);

END_IF;

Arithmetic instructions

378

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F47_BSUB2 4-digit BCD subtraction, destination can be specified

15 . . 12 10 . . 8 7 . . 4 3 . . 0

0 0 1 6

0 0 0 4

0 0 1 2

s1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1

0 0 0 1

0 1 1 0

16# (BCD)

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s2 0 1 0 0

16# (BCD)

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 1 0

16# (BCD)

Bit

Result value 16#12 (BCD)

Bit

Bit

Trigger: ON

Example value 16#4 (BCD)

Example value 16#16 (BCD)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F47_BSUB2 (see page 1325)

Variable Data type Function

s1 WORD minuend, 16-bit area for 4-digit BCD data or equivalent
constant

s2 WORD subtrahend, 16-bit area for 4-digit BCD data or equivalent
constant

d WORD result, 16-bit area for 4-digit BCD data

Description Subtracts the 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by s2
from the 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by s1 if the
trigger EN is in the ON-state. The result is stored in d.

Data types

 Arithmetic instructions

379

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 4-digit
BCD data (overflow).

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F47_BSUB2(minuend, subtrahend, output_value);

END_IF;

Arithmetic instructions

380

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F48_DBSUB2 8-digit BCD subtraction, destination can be specified

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

s1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0

16# BCD

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

s2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

16# BCD

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 1 1 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0

16# BCD

3 3 5 5 5 5 8 8

0 0 1 1 0 0 2 2

3 3 4 4 5 5 6 6

Trigger: ON

Bit

Example value 16#00110022 (BCD)

Bit

32-bit area

Example value 16#33555588 (BCD)

Bit

Result value 16#33445566 (BCD)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F48_DBSUB2 (see page 1325)

Variable Data type Function

s1 DWORD minuend, 32-bit area for 8-digit BCD data or equivalent
constant

s2 DWORD subtrahend, 32-bit area for 8-digit BCD data or equivalent
constant

d DWORD result, 32-bit area for 8-digit BCD data

Description Subtracts the 8-digit BCD equivalent constant or 8-digit BCD data specified by s2 from the 8-digit
BCD equivalent constant or 8-digit BCD data specified by s1 if the trigger EN is in the ON-state.
The result is stored in d.

Data types

 Arithmetic instructions

381

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 8-digit
BCD data (overflow).

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F48_DBSUB2(minuend, subtrahend, output_value);

END_IF;

Arithmetic instructions

382

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F37_DEC 16-bit decrement

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Result value 16 if trigger is ON

Bit

Bit

Example value 17

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F37_DEC (see page 1325)

Variable Data type Function

d INT, WORD 16-bit area to be decreased by 1

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 16-bit
data (underflow).

Description Subtracts "1" from the 16-bit data specified by d if the trigger EN is in the ON-state. The result is
stored in d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

 Arithmetic instructions

383

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST IF DF(start) THEN

 F37_DEC(decrement_value);

END_IF;

Arithmetic instructions

384

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F38_DDEC 32-bit decrement

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

32-bit area

Bit

Result 131080

Bit

Example value 131081

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F38_DDEC (see page 1325)

Variable Data type Function

d ANY32 32-bit area to be decreased by 1

For Relay T/C Register Constant

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 32-bit
data (underflow).

Description Subtracts "1" to the 32-bit data specified by d if the trigger EN is in the ON-state. The result is
stored in d.

Data types

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Arithmetic instructions

385

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST IF DF(start) THEN

 F38_DDEC(decrement_value);

END_IF;

Arithmetic instructions

386

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F57_BDEC 4-digit BCD decrement

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0

16# BCD

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1

16# BCD

4 3 2 2

4 3 2 1

Trigger: ON

Result value 4321 (BCD)

Bit

Bit

Example value 4322 (BCD)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F57_BDEC (see page 1325)

Variable Data type Function

d WORD 16-bit area for BCD data to be decreased by 1

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 4-digit
BCD data (underflow).

Description Subtracts "1" from the 4-digit BCD data specified by d if the trigger EN is in the ON-state. The
result is stored in d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Arithmetic instructions

387

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST IF DF(start) THEN

 F57_BDEC(decrement_value);

END_IF;

Arithmetic instructions

388

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F58_DBDEC 8-digit BCD decrement

31 . . 28 27 . . 24 23 . . 20 19 . . 16

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1

0 1 0 0 0 0 1 1 0 0 1 0 0 0 1 0

16# BCD

31 . . 28 27 . . 24 23 . . 20 19 . . 16

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1

0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1

16# BCD

8 7 6 5 4 3 2 2

8 7 6 5 4 3 2 1

Example value 87654322 (BCD)

Bit

Bit

Result value 87654321 (BCD)

Trigger: ON

32-bit area

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F58_DBDEC (see page 1325)

Variable Data type Function

d DWORD 32-bit area for BCD data to be decreased by 1

For Relay T/C Register Constant

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the result exceeds the range of 8-digit
BCD data (underflow).

Description Subtracts "1" from the 8-digit BCD data specified by d if the trigger EN is in the ON-state. The
result is stored in d.

Data types

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header

 Arithmetic instructions

389

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST IF DF(start) THEN

 F58_DBDEC(decrement_value);

END_IF;

Arithmetic instructions

390

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F30_MUL 16-bit multiplication, destination can be specified

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

15 . . 12 10 . . 8 7 . . 4 3 . . 0

 s2 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

15 . . 12 10 . . 8 7 . . 4 3 . . 0 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 1 0 1 0 1 0 1 0

X
Example value 10

Bit

Example value 17

Bit

Bit

Result value 170 if trigger is ON

32-bit area

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction MUL (see
page 63). Please refer also to Advantages of the IEC instructions in the online help.

PLC types Availability of F30_MUL (see page 1323)

Variable Data type Function

s1 multiplicand

s2 ANY16 multiplier

d ANY32 result

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description Multiplies the 16-bit data or 16-bit equivalent constant s1 and the 16-bit data or 16-bit equivalent
constant specified by s2 if the trigger EN is in the ON-state. The result is stored in d (32-bit area).
All 16-bit values are treated as integer values.

Data types

Operands

 Arithmetic instructions

391

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F30_MUL(multiplicand, multiplicator, output_value);

END_IF;

Arithmetic instructions

392

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F31_DMUL 32-bit multiplication, destination can be specified

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction MUL (see
page 63). Please refer also to Advantages of the IEC instructions in the online help.

PLC types Availability of F31_DMUL (see page 1324)

Variable Data type Function

s1 multiplicand

s2
ANY32

multiplier

d ARRAY [0..1] of
ANY32

result

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Access to the result is possible with output_value[0] and output_value[1].

Description Multiplies the 32-bit data or 32-bit equivalent constant specified by s1 and the one specified by s2 if
the trigger EN is in the ON-state. The result is stored in d[0], d[1] (64-bit area). All 32-bit values are
treated as double integer values.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

 Arithmetic instructions

393

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST IF start THEN

 F31_DMUL(multiplicand, multiplicator, output_value);

END_IF;

Arithmetic instructions

394

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F34_MULW 16-bit data multiply (result in 16 bits)

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

X
Example value 5

Bit

Bit

Bit

Example value 6

Result value 30 if trigger is ON

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F34_MULW (see page 1324)

Variable Data type Function

s1 multiplicand

s2 multiplier

d

ANY16

result

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description The function multiplies the value specified at input s1 by the value specified at input s2. The result
of the function is returned at output d. The result at output d lies between -32768 and 32767 (i.e.
between 16#0 and 16#FFFF). All 16-bit values are treated as integer values.

Data types

Operands

 Arithmetic instructions

395

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the result calculated exceeds the 16-bit
area specified at output b.

R900B %MX0.900.11 for an instant  the result calculated is 0.

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F34_MULW(input_value_1, 5, output_value);

END_IF;

Arithmetic instructions

396

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F39_DMULD 32-bit data multiply (result in 32 bits)

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

Result value 18 if trigger is ON

Bit

Bit

Example value 17

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F39_DMULD (see page 1325)

Variable Data type Function

s1 multiplicand

s2 multiplier

d

ANY32

result

For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the result calculated exceeds the 32-bit
area specified at output d.

R900B %MX0.900.11 for an instant  the result calculated is 0.

Description The function multiplies the value specified at input s1 by the value specified at input s2. The result
of the function is returned at output d. The result at output 'd' lies between -2147483648 and
2147483647 (i.e. between 16#0 and 16#FFFFFFFF). All 32-bit values are treated as double integer
values.

Data types

Operands

Error flags

 Arithmetic instructions

397

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

In this example the input variables input_value_1 and input_value _2 are declared. However, you
can write constants directly at the input contact of the function instead.

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F39_DMULD(input_value_1, input_value_2, output_value);

END_IF;

Arithmetic instructions

398

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F50_BMUL 4-digit BCD multiplication, destination can be specified

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s1 0 0 2 0

0 0 0 0 0 0 4 0

0 0 0 2

15 . . 12 10 . . 8 7 . . 4 3 . . 0

 s2

15 . . 12 10 . . 8 7 . . 4 3 . . 0 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d
32-bit area

Bit

Result value 16#40 if trigger is ON

Bit

Example value 16#2 BCD

Example value 16#20 BCD
Bit

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F50_BMUL (see page 1325)

Variable Data type Function

s1 WORD multiplicand, 16-bit area for 4-digit BCD data or equivalent
constant

s2 WORD multiplier, 16-bit area for 4-digit BCD data or equivalent
constant

d DWORD result, 32-bit area for 8-digit BCD data

For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

Description Multiplies the 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by s1
and s2 if the trigger EN is in the ON-state. The result is stored in d (8-digit area).

Data types

Operands

Error flags

 Arithmetic instructions

399

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F50_BMUL(multiplicand, multiplicator, output_value);

END_IF;

Arithmetic instructions

400

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F51_DBMUL 8-digit BCD multiplication, destination can be 11 specified

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

16# BCD

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

s 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

16# BCD

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d array[0] 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

16# BCD

 output_array[0]

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d array[1] 0 1 0 0 1 0 0

16# BCD

 output_array[1]

0 0 0 6 0 0 0 8

0 0 0 4 0 0 0 2

0 0 4 4 0 0 1 6

0 0 0 0 0 0 2 4

Bit

Example value 16#40002 (BCD)

Bit

32-bit area

Example value 16#60008 (BCD)

Bit

Bit

Result value 16#2400440016 (BCD) if trigger is ON stored in the ARRAY [0..1] of DWORD

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F51_DBMUL (see page 1325)

Description Multiplies the 32-bit BCD (8-digit) equivalent constant or 8-digit BCD data specified by s1 and the
one specified by s2 if the trigger EN is in the ON-state. The result is stored in the ARRAY d[0], d[1]
(64-bit area).

 Arithmetic instructions

401

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Variable Data type Function

s1 DWORD multiplicand, 32-bit area for 8-digit BCD data or equivalent
constant

s1 DWORD multiplier, 32-bit area for 8-digit BCD data or equivalent
constant

d ARRAY [0..1] of
DWORD

result

For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

Data types

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F51_DBMUL(multiplicand, multiplicator, output_value);

END_IF;

Arithmetic instructions

402

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F32_DIV 16-bit division, destination can be specified

The quotient is stored in d and the remainder is stored in the special data register DT9015
(DT90015 for FP2/2SH and FP10/10S/10SH). All 16-bit values are treated as integer values.

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

15 . . 12 10 . . 8 7 . . 4 3 . . 0 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Example value 36

Remainder 2 stored in DT9015/90015

Bit

Result value 2 if trigger is ON

Bit

Example value 17

Bit

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction DIV (see page
64). Please refer also to Advantages of the IEC instructions in the online help.

PLC types Availability of F32_DIV (see page 1324)

Variable Data type Function

s1 dividend

s2 divisor

d

ANY16

quotient

The variables s1, s2 and d have to be of the same data type.

Description The 16-bit data or 16-bit equivalent constant specified by s1 is divided by the 16-bit data or 16-bit
equivalent constant specified by s2 if the trigger EN is in the ON-state.

Data types

 Arithmetic instructions

403

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculated result is 0.

R9009 %MX0.900.9 for an instant  the negative minimum value -32768
(16#8000) is divided by -1 (16#FFFF)

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F32_DIV(dividend, divisor, output_value);

END_IF;

Arithmetic instructions

404

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F33_DDIV 32-bit division, destination can be specified

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

s1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

s2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 1 1 1 0 0

31 . . 28 27 . . 24 23 . . 20 19 . . 16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

 DT9016/DDT90016 DT9015/DDT90015

Bit
Remainder 393232

Bit

Result value 28 if trigger is ON

Bit

Example value 589828

32-bit area

Bit
Example value 16908416

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction DIV (see page
64). Please refer also to Advantages of the IEC instructions in the online help.

PLC types Availability of F33_DDIV (see page 1324)

Description The 32-bit data or 32-bit equivalent constant specified by s1 is divided by the 32-bit data or 32-bit
equivalent constant specified by s2 if the trigger EN is in the ON-state. The quotient is stored in d
and the remainder is stored in the special data registers DDT9015 (DDT90015 for FP2/2SH and
FP10/10S/10SH). All 32-bit values are treated as double integer values.

 Arithmetic instructions

405

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Variable Data type Function

s1 dividend

s2 divisor

d

ANY32

quotient

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Data types

Operands

Example In this example, the same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F33_DDIV(dividend, divisor, output_value);

END_IF;

Arithmetic instructions

406

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F52_BDIV 4-digit BCD division, destination can be specified

The quotient is stored in the area specified by d and the remainder is stored in special data register
DT9015 (DT90015 for FP2/2SH and FP10/10S/10SH).

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1

16# (BCD)

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

16# (BCD)

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

16# (BCD)

15 . . 12 10 . . 8 7 . . 4 3 . . 0

DT9015 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

16# (BCD)

0 0 3 7

0 0 1 5

0 0 0 2

0 0 0 7

Bit

Remainder 16#0007

Bit

Result value 16#0002

Trigger: ON

Bit

Example value 16#0015 (BCD)

Bit

Example value 16#0037 (BCD)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F52_BDIV (see page 1325)

Description The 4-digit BCD equivalent constant or the 16-bit area for 4-digit BCD data specified by s1 is
divided by the 4-digit BCD equivalent constant or the 16-bit area for 4-digit BCD data specified by
s2 if the trigger EN is in the ON-state.

 Arithmetic instructions

407

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Variable Data type Function

s1 WORD dividend, 16-bit area for BCD data or 4-digit BCD equivalent
constant

s2 WORD divisor, 16-bit area for BCD data or 4-digit BCD equivalent constant

d WORD quotient, 16-bit area for BCD data (remainder stored in special data
register DT9015/DT90015)

For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the result calculated is 0.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F52_BDIV(dividend, divisor, output_value);

END_IF;

Arithmetic instructions

408

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F53_DBDIV 8-digit BCD division, destination can be specified

31 . . 28 27 . . 24 23 . . 20 19 . . 16

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

16# BCD

31 . . 28 27 . . 24 23 . . 20 19 . . 16

15 . . 12 10 . . 8 7 . . 4 3 . . 0

s2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

16# BCD

31 . . 28 27 . . 24 23 . . 20 19 . . 16

15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

16# BCD

31 . . 28 27 . . 24 23 . . 20 19 . . 16

15 . . 12 10 . . 8 7 . . 4 3 . . 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

16# BCD

 DT9016/DDT90016 DT9015/DDT90015

0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

Remainder 16#00000010 (BCD) if trigger is ON stored in DT9015 to DT9016
(DDT90015 to DDT90016)

Bit

Bit

Result value 16#00000100 (BCD) if trigger is ON

Example value 16#0000011 (BCD)

Bit

32-bit area

Bit

Example value 16#00001110 (BCD)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F53_DBDIV (see page 1325)

Description The result is stored in the area specified by d, and the remainder is stored in the special data
registers DT9016 and DT9015 (DT90016 and DT90015 for FP2/2SH and FP10/10S/10SH).

 Arithmetic instructions

409

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Variable Data type Function

s1 DWORD dividend, 32-bit area for BCD data or 8-digit BCD equivalent
constant

s2 DWORD divisor, 32-bit area for BCD data or 8-digit BCD equivalent
constant

d DWORD quotient, 32-bit area for BCD data (remainder stored in
special data register DT9016 and DT9015/DT90016 and
DT90015)

For Relay T/C Register Constant

s1, s2, s3 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the result calculated is 0.

Data types

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F53_DBDIV(dividend, divisor, output_value);

END_IF;

Arithmetic instructions

410

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F313_FDIV Floating Point Data Divide

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction DIV (see page
64). Please refer also to Advantages of the IEC instructions in the online help.

PLC types Availability of F313_FDIV (see page 1324)

 This instruction cannot be programmed in the interrupt program.

Variable Data type Function

s1 REAL Real number data for dividend.

s2 REAL Real number data for divisor.

d REAL 32-bit area for result (destination).

For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL -

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 data other than real number data is
specified in s1 and s2.

 the real number data (floating point data)
for the divisor specified by s2 is "0.0".

R9009 %MX0.900.9 for an instant  the result is overflowed.

Description The real number data specified by s1 is divided by the real number data specified by s2 when the
trigger turns on. The result is stored in d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Arithmetic instructions

411

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable Start is set to TRUE, the real number entered for the variable RealNumber1 is
divided by the real number entered for RealNumber2 and the result stored at the address assigned
by the compiler to the variable Result. The monitor value icon is activated.

LD

Arithmetic instructions

412

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F70_BCC Block check code calculation

16#

BCC calculation method set with “s1”

0: Addition

1: Substraction

2: Exclusive OR operation

A: CRC-16

Starting byte position for calculation (No. of bytes from “s2”)

Conversion data

0 to F

Starting byte position for storing results (No. of bytes from “d”)

0 to F

0: Binary data (CRC: 2 bytes / Not CRC: 1 byte)

1: ASCII code (2 bytes)

 If CRC-16 is specified as the calculation method, ASCII code cannot be
specified for the conversion data.

PLC types Availability of F70_BCC (see page 1326)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Variable Data type Function

s1 INT specifies BCC calculation method: 0 = addition, 1 =
subtraction, 2 = exclusive OR operation

s2 ANY16 starting 16-bit area to calculate BCC

s3 INT specifies number of bytes for BCC calculation

d ANY16 16-bit area for storing BCC

For Relay T/C Register Constant

s1, s3 WX WY WR WL SV EV DT LD FL dec. or hex.

s2 WX WY WR WL SV EV DT LD FL -

d - WY WR WL SV EV DT LD FL -

Description Calculates the Block Check Code (BCC), which is used to detect errors in message transmission,
of s3 bytes of ASCII data starting from the 16-bit area specified by s2 according to the calculation
method specified by s1. The Block Check Code (BCC) is stored in the lower byte of the 16-bit area
specified by d. (BCC is one byte. The higher byte of d does not change.)

Data types

Operands

 Arithmetic instructions

413

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the number of specified bytes for the
target data exceeds the limit of the
specified data area.

0 0 1

2

0 0 1 0

5

1

0 0 0

1

1 1 1 0

D

1

%
0 0 1

3

1 0 0 0

0

00

0 0 1

3

1 0 0 0

1

11

0 0 1

3

1 0 0 0

0

00

.

.

.

Exclusive ORing

etc.

etc.

This calculation result (16#1D)
is stored in d.

Block Check Code (BCC)

calculation

Exclusive ORing

Exclusive ORing

ASCII-HEX-Code

ASCII-BIN-Code

ASCII-HEX-Code

ASCII-HEX-Code

ASCII-HEX-Code

ASCII-HEX-Code

ASCII-BIN-Code

ASCII-BIN-Code

ASCII-BIN-Code

ASCII-BIN-Code

The ASCII BIN code bits of the first two characters are compared with each other to yield an
8-character exclusive OR operation result:
Sign for comparison ASCII BIN code

% 00100101

0 00110000

Exclusive OR result 00010101

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body A block check code is performed on the value entered for the variable ASCII_String when Start
becomes TRUE. The exclusive OR operation, which is more suitable when large amounts of data
are transmitted, has been chosen for the BCC method.

How the BCC is calculated using the exclusive OR operation:

Arithmetic instructions

414

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

This result is then compared to the ASCII BIN code of the next character, i.e. "1".
Sign for comparison ASCII BIN code

Exclusive OR result 00010101

1 00110001

Next exclusive OR 00100100

And so on until the final character is reached.

LD

ST IF start THEN

 F70_BCC(s1_Control:= BCC_Calc_Methode,

 s2_Start:= Adr_Of_VarOffs(Var:= ASCII_String,

 Offs:= 2),

 s3_Number:= LEN(ASCII_String),

 d=> BCC);

END_IF;

 Arithmetic instructions

415

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F160_DSQR 32-bit data square root

The figures of the first decimal place and below are disregarded.

31 . . 28 27 . . 24 23 . . 20 19 . . 16

15 . . 12 10 . . 8 7 . . 4 3 . . 0

0 1 0 0 0 0 0 0

0 1 0 0

64

8

31 . . 28 27 . . 24 23 . . 20 19 . . 16

15 . . 12 10 . . 8 7 . . 4 3 . . 0

Example value 64

Result value 8

Trigger: ON

32-bit area

Bit

Bit

Binary
Decimal

Binary
Decimal

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction SQRT (see
page 68). Please refer also to Advantages of the IEC instructions in the online help.

PLC types Availability of F160_DSQR (see page 1321)

Variable Data type Function

s DINT, DWORD source, 32-bit area to be calculated

d DINT, DWORD square root (decimal places deleted)

The variables s1 and d have to be of the same data type.

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description The square root of the 32-bit data or constant value specified by s is calculated if the trigger EN is
in the ON-state. The result (square root) is stored in d.

Data types

Operands

Arithmetic instructions

416

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F160_DSQR(input_value, output_value);

END_IF;

 Arithmetic instructions

417

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F300_BSIN BCD type Sine operation

BCD values for input s lie in the area from 0° to 360° (16#0 to 16#360) in 1° steps. With this, output
d can yield a result in the range of -1.0000 to 1.0000. The result is returned as follows:
ARRAY[0] preceding sign (0 when input is +, 1 when input is -)

ARRAY[1] whole number before the decimal point (0 or 1)

ARRAY[2] numbers after the decimal point with 4 significant figures as a BCD value (16#0000 to
16#9999).

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F300_BSIN (see page 1323)

Variable Data type Function

s WORD 16-bit area where angle data is stored

d ARRAY [0..2] of
WORD

result stored in 3 words

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the input value for s is not a BCD value
or is not between 0° and 360°.

R900B %MX0.900.11 for an instant  the result is 0.

R9009 %MX0.900.9 for an instant  the result causes an overflow.

Description The function calculates the sine of BCD code angular data (input s) and stores the result (output d)
as a BCD value in an array with three elements.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help. In addition, an analytical program is
created that interprets the result. The same POU header is used for both programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Arithmetic instructions

418

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

In this example, the input variable input_value is declared. However, you can write a constant (e.g.
16#45 for 45°) directly at the input contact of the function.

Body In the body, the value 90° is assigned to the variable input_value. When the variable start is set to
TRUE, the function F300_BSIN is carried out. It stores the result in the variable output_value. If
the input_value is between 181° and 359°, output_value has a minus sign. The function
WORD_TO_BOOL sets the variable input_181_to_359 to TRUE. With an input_value of 90° or
270°, the output_value is 1, which represents the value before the decimal point. If this is the
case, then WORD_TO_BOOL sets the value of the variable input_90_or_270 to TRUE.

LD

ST input_value:=16#90;

IF start THEN

 F300_BSIN(input_value, output_value);

END_IF;

input_181_to_359:=WORD_TO_BOOL(output_value[0]);

input_90_or_270:=WORD_TO_BOOL(output_value[1]);

 Arithmetic instructions

419

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F301_BCOS BCD type Cosine operation

BCD values for input s lie in the area from 0° to 360° (16#0 to 16#360) in 1° steps. With this output
d can yield a result in the range of -1.0000 to 1.0000. The result is returned as follows:
ARRAY[0] preceding sign (0 when input is +, 1 when input is -)

ARRAY[1] whole number before the decimal point (0 or 1)

ARRAY[2] numbers after the decimal point with 4 significant figures as a BCD value (16#0000 to
16#9999).

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F301_BCOS (see page 1323)

Variable Data type Function

s WORD area where angle data is stored

d ARRAY [0..2] of
WORD

result stored in 3 words

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the input value for s is not a BCD value
or is not between 0° and 360°.

R900B %MX0.900.11 for an instant  the result is 0.

R9009 %MX0.900.9 for an instant  the result causes an overflow.

Description The function calculates the cosine of BCD code angular data (input s) and stores the result (output
d) as a BCD value in an array with three elements.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

Arithmetic instructions

420

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

In this example, the input variable input_value is declared. However, you can write a constant (e.g.
16#45 for 45°) directly at the input contact of the function.

POU header In the POU header, all input and output variables are declared that are used for programming this
function.

Body In the body, the value 16#45° is assigned to the variable input_value. When the variable start is
set to TRUE, the function is carried out. The result at output d isoutput_value[0] = 0,
output_value[1] = 0, output_value[2] = 7071.

LD

ST input_value:=16#45;

IF start THEN

 F301_BCOS(input_value, output_value);

END_IF;

 Arithmetic instructions

421

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F302_BTAN BCD type Tangent operation

BCD values for input s lie in the area from 0° to 360° (16#0 to 16#360) in 1° steps. With this output
d yields a result in the range of -57.2900 to 57.2900. The result is returned as follows:
ARRAY[0] preceding sign (0 when input is +, 1 when input is -)

ARRAY[1] whole number before the decimal point as BCD value (16#0 to
16#57)

ARRAY[2] numbers after the decimal point with 4 significant figures as BCD
value (16#0000 to 16#9999)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F302_BTAN (see page 1324)

Variable Data type Function

s WORD area where angle data is stored

d ARRAY [0..2] of
WORD

result stored in 3 words

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the input value for s is not a BCD value

 s = 90° (16#90) or 270° (16#270)

R900B %MX0.900.11 to TRUE  the result is 0.

R9009 %MX0.900.9 for an instant  the result causes an overflow.

Description The function calculates the tangent of BCD code angular data (input s) and stores the result
(output d) as a BCD value in an array with three elements.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

Arithmetic instructions

422

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

In this example, the input variable input_value is declared. However, you can write a constant (e.g.
16#89 for 89°) directly at the input contact of the function.

POU header In the POU header, all input and output variables are declared that are used for programming this
function.

Body When the variable start is set to TRUE, the function is carried out. The input_value was initialized
with the value 16#89 (89°) in the POU header. The result is written to the ARRAY output_value.
Here in the first element of the ARRAY, the output_value = 16# (+ sign). In the second element,
16#57 represents the number before the decimal point, and 16#2899 comes after the decimal point
in the third element.

LD

ST IF start THEN

 F302_BTAN(input_value, output_value);

END_IF;

 Arithmetic instructions

423

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F303_BASIN BCD type Arcsine operation

BCD values for input s lie in the area from -1.0000 to 1.0000. They are entered as follows:
ARRAY[0] preceding sign (0 when input is +, 1 when input is -)

ARRAY[1] whole number before the decimal point (0 or 1)

ARRAY[2] numbers after the decimal point with 4 significant figures as a BCD
value (16#0000 to 16#9999).

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F303_BASIN (see page 1324)

Variable Data type Function

s ARRAY [0..2] of
WORD

area where angle data is stored

d WORD result stored in 3 words

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the input value for s is not a BCD value
or is not between -1.0000 and 1.0000

R900B %MX0.900.11 to TRUE  the result is 0.

R9009 %MX0.900.9 for an instant  the result causes an overflow.

Description The function calculates the arcsine of a BCD value that is entered at input s as an ARRAY with
three elements. The result is returned as BCD angular data in the range of 0° to 360° (16#0 to
16#360) at output d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Arithmetic instructions

424

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body The first element of the ARRAY’s input_value is given the value 1 (- sign). The second element
has 0 as its whole number value, and in the third element 16#4500 is written as the value after the
decimal point. When the variable start is set to TRUE, the function is carried out. The result for the
output_value = 16#333 (333°).

LD

ST input_value[0]:=1;

input_value[1]:=0;

input_value[2]:=16#4500;

IF start THEN

 F303_BASIN(input_value, output_value);

END_IF;

 Arithmetic instructions

425

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F304_BACOS BCD type Arccosine operation

BCD values for input s lie in the area from -1.0000 to 1.0000. They are entered as follows:
ARRAY[0] preceding sign (0 when input is +, 1 when input is -)

ARRAY[1] whole number before the decimal point (0 or 1)

ARRAY[2] numbers after the decimal point with 4 significant figures as a BCD
value (16#0000 to 16#9999).

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F304_BACOS (see page 1324)

Variable Data type Function

s ARRAY [0..2] of
WORD

area where angle data is stored in 3 words

d WORD result

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the input value for s is not a BCD value
or is not between -1.0000 and 1.0000.

R900B %MX0.900.11 to TRUE  the result is 0.

R9009 %MX0.900.9 for an instant  the result causes an overflow.

In the POU header, all input and output variables are declared that are used for programming this
function.

Description The function calculates the arccosine of a BCD value that is entered at input s as an ARRAY with
three elements. The result is returned as BCD angular data in the range of 0° to 360° (16#0 to
16#360) at output d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header

Arithmetic instructions

426

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start is set to TRUE, the function is carried out. The input_value = 0 (+ sign) in
the ARRAY’s first element. 0 represents the whole in the second element, and the value after the
decimal point is 8660. The function thus calculates the output_value = 16#30 (30°).

LD

ST IF start THEN

 F304_BACOS(input_value, output_value);

END_IF;

 Arithmetic instructions

427

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F305_BATAN BCD type Arctangent operation

BCD values for input s lie in the area from -9999.9999 to 9999.9999. They are entered as follows:
ARRAY[0] preceding sign (0 when input is +, 1 when input is -)

ARRAY[1] whole number before the decimal point as BCD value (16#0 to
16#9999)

ARRAY[2] numbers after the decimal point with 4 significant figures as a BCD
value (16#0000 to 16#9999).

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F305_BATAN (see page 1324)

Variable Data type Function

s ARRAY [0..2] of
WORD

area where angle data is stored in 3 words

d WORD result

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the input value at s is not a BCD value.

R900B %MX0.900.11 to TRUE  the result is 0.

R9009 %MX0.900.9 for an instant  the result causes an overflow.

Description The function calculates the arctangent of a BCD value that is entered at input s as an ARRAY with
three elements. The result is returned as BCD angular data in the range 0° to 90° (16#0 to 16#90)
or 270° to 360° (16#270 to 16#360) at output d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

Arithmetic instructions

428

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable Start is set to TRUE, the Arctangent of the real number entered for the variable
TangentofAngle is calculated and the result stored at the address assigned by the compiler to the
variable Angle (units are radians).

LD

 Arithmetic instructions

429

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F87_ABS 16-bit data absolute value

The absolute value of the 16-bit data with +/- sign is stored in d. This instruction is useful for
handling data whose sign (+/-) may vary.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction ABS (see
page 66). Please refer also to Advantages of the IEC instructions in the online help.

PLC types Availability of F87_ABS (see page 1326)

Variable Data type Function

d ANY16 16-bit area for storing original data and its absolute value

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the 16-bit data is the negative minimum
value -32768 (16#8000).

R9009 %MX0.900.9 for an instant  the 16-bit data is the negative value in
the range from -1 to -32767 (16#FFFF to
16#8001).

Description Gets the absolute value of 16-bit data with the sign specified by d if the trigger EN is in the
ON-state.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

Arithmetic instructions

430

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST IF start THEN

 F87_ABS(abs_value);

END_IF;

 Arithmetic instructions

431

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F88_DABS 32-bit data absolute value

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction ABS (see
page 66). Please refer also to Advantages of the IEC instructions in the online help.

PLC types Availability of F88_DABS (see page 1326)

Variable Data type Function

d ANY32 32-bit area for storing original data and its absolute value

For Relay T/C Register Constant

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the 32-bit data is the negative minimum
value -2147483648 (16#80000000).

R9009 %MX0.900.9 for an instant  the 32-bit data is the negative value in
the range from -1 to -2147483647
(16#FFFFFFFF to 16#80000001).

Description Gets the absolute value of 32-bit data with the sign specified by d if the trigger EN is in the
ON-state. The absolute value of the 32-bit data with sign is stored in d. This instruction is useful for
handling data whose sign (+/-) may vary.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

Arithmetic instructions

432

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST IF start THEN

 F88_DABS(abs_value);

END_IF;

 Arithmetic instructions

433

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F287_BAND 16-bit data deadband control

 If the input value at input s3 < s1, the lower limit at input s1 is subtracted from
the input value at s3, and the result is stored as the output value at d.

 If the input value at input s3 > s2, the upper limit at input s2 is subtracted from
the input value at s3, and the result is stored as the output value at d.

 If the input value at s2  s3  s1, 0 is returned as the output value at d.

0

Lower limit of
deadband s1

Input value s3

Output value d

Upper limit of deadband s2

In this range, zero is output

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F287_BAND (see page 1323)

Variable Data type Function

s1 the area where the lower limit is stored or the lower limit data

s2 the area where the upper limit is stored or the upper limit
data

s3 the area where the input value is stored or the input value
data

d

ANY16

the area where the output value data is stored

For Relay T/C Register Constant

s1, s2, s3 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description The function compares the input value at input s3 with a deadband whose lower limit is specified at
input s1 and whose upper limit is specified at s2. The result of the function is returned at output d
as follows:

Data types

Operands

Arithmetic instructions

434

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the value at s1 > s2.

R900B %MX0.900.11 TRUE  the input value at s3 is 0.

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. The constant 3 (lower limit of
the deadband) and 10 (upper limit of the deadband) are assigned to inputs s1 and s2. However,
you can declare variables in the POU header and write them in the function in the body at the
inputs.

LD

ST IF start THEN

 F287_BAND(3, 10, input_value, output_value);

END_IF; (* 3=lower limit of deadband, 10=upper limit of deadband *)

 Arithmetic instructions

435

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F288_DBAND 32-bit data deadband control

 If the input value at input s3 < s1, the lower limit at input s1 is subtracted from
the input value at s3, and the result is stored as the output value at d.

 If the input value at input s3 > s2, the upper limit at input s2 is subtracted from
the input value at s3, and the result is stored as the output value at d.

 If the input value at s2  s3  s1, 0 is returned as the output value at d.

0

Lower limit of
deadband s1

Input value s3

Output value d

Upper limit of deadband s2

In this range, zero is output

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F288_DBAND (see page 1323)

Variable Data type Function

s1 the area where the lower limit is stored or the lower limit data

s2 the area where the upper limit is stored or the upper limit
data

s3 the area where the input value is stored or the input value
data

d

ANY32

the area where the output value data is stored

For Relay T/C Register Constant

s1, s2, s3 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description The function compares the input value at input s3 with a deadband whose lower limit is specified at
input s1 and whose upper limit is specified at s2. The result of the function is returned at output d
as follows:

Data types

Operands

Arithmetic instructions

436

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant  the value at s1 > s2.

R900B %MX0.900.11 to TRUE  the input value at s3 is 0.

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. The constant -10 (lower limit of
the deadband) and 20 (upper limit of the deadband) are assigned to inputs s1 and s2. However,
you can declare variables in the POU header and write them in the function in the body at the
inputs.

LD

ST IF start THEN

 F288_DBAND(-10, 20, input_value, output_value);

END_IF; (* 10=lower limit of deadband, 20=upper limit of deadband *)

 Arithmetic instructions

437

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F348_FBAND Floating point data deadband control

0

Lower limit of
deadband s1

Input value s3

Output value d

Upper limit of deadband s2

In this range, zero is output

Comparison
between s1 and s2

Flag

 R900A
(> flag)

R900B
(= flag)

R900C
(< flag)

s1 < s2 off off on

s1  s3 and s2  s1 off on off

s3 < s1 on off off

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F348_FBAND (see page 1324)

Variable Data type Function

s1_Min REAL the area where the lower limit is stored or the lower limit data

s2_Max REAL the area where the upper limit is stored or the upper limit
data

s3_In REAL the area where the input value is stored or the input value
data

d REAL the area where the output value data is stored

For Relay T/C Register Constant

s1_Min,
s2_Max,
s3_In

DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

Description The function compares the input value at input s3_In with a deadband whose lower limit is
specified at input s1_Min and whose upper limit is specified at s2_Max. The result of the function
is returned at output d as follows:

Data types

Operands

Arithmetic instructions

438

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the values at inputs s1_Min, s2_Max,
and s3_In are not REAL numbers or the
value at s1_Min > s2_Max.

R900B %MX0.900.11 to TRUE  the result is 0.

R9009 %MX0.900.9 for an instant  the result causes an overflow.

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The constants 3.0 and 10.0 are assigned to the inputs s1_Min (lower limit of the deadband) and
s2_Max (upper limit of the deadband). However, you can declare two variables in the POU header
and write them in the function in the body at the inputs. When the variable start is set to TRUE, the
function is carried out. Since the input_value = 12.0 is larger than the value of the upper limit of
the deadband at s2_Max, the output_value = 12.0 -10.0 = 2.0.

LD

 Arithmetic instructions

439

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST IF start THEN

 F348_FBAND(s1_Min:= 3.0 ,

 s2_Max:= 10.0 ,

 s3_In:= input_value ,

 d=> output_value)

END_IF; (* 3.0=lower limit of deadband, 10.0=upper limit *)

Arithmetic instructions

440

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F289_ZONE 16-bit data zone control

 If the input value at input s3 < 0, the negative offset value at input s1 is added to
the input value at s3, and the result is stored as the output value at d.

 If the input value at input s3 = 0, 0 is returned at the output value to output d.

 If the input value at input s3 > 0, the positive offset value at input s2 is added to
the input value at s3, and the result is stored as the output value at d.

0

Output value d

Positive bias
value s2

Input value s3

Negative bias value s1

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F289_ZONE (see page 1323)

Variable Data type Function

s1 area where negative bias value is stored or negative bias value
data

s2 area where positive bias value is stored or positive bias value data

s3 area where input value is stored or input value data

d

ANY16

area where output value is stored

Description The function adds an offset value to the input value at input s3. The offset values for the negative
and positive areas are entered at inputs s1 and s2. The result of the function is returned at output d
as follows:

Data types

 Arithmetic instructions

441

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s1, s2, s3 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculation results in an overflow or
an underflow of output d.

R9009 %MX0.900.9 for an instant  the input value s3 is 0.

In this example the input variables input_value and negative_offset are declared. However, you
can write constants directly at the input contact of the function instead.

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. It adds the corresponding
negative offset value = 10 to the negative input_value = -12. However, you can declare a variable
in the POU header and assign it to the function’s input in the body.

LD

ST IF start THEN

 F289_ZONE(negative_offset, 20, input_value, output_value);

END_IF; (*negative_offset=neg. offset, 20=pos. offset *)

Arithmetic instructions

442

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F290_DZONE 32-bit data (double word data) zone control

 If the input value at input s3 < 0, the negative offset value at input s1 is added to
the input value at s3, and the result is stored as the output value at d.

 If the input value at input s3 = 0, 0 is returned at the output value to output d.

 If the input value at input s3 > 0, the positive offset value at input s2 is added to
the input value at s3, and the result is stored as the output value at d.

0

Output value d

Positive bias
value s2

Input value s3

Negative bias value s1

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F290_DZONE (see page 1323)

Variable Data type Function

s1 area where negative bias value is stored or negative bias
value data

s2 area where positive bias value is stored or positive bias value
data

s3 area where input value is stored or input value data

d

ANY32

area where output value is stored

Description The function adds an offset value to the input value at input s3. The offset value for the negative
and positive area are entered at inputs s1 and s2. The result of the function is returned at output d
as follows:

Data types

 Arithmetic instructions

443

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s1, s2, s3 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the calculation results in an overflow or
an underflow of output d.

R9009 %MX0.900.9 for an instant  the input value s3 is 0.

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. It adds the corresponding
positive offset value = 2 to the positive input value = 18. The constants 5 (negative offset) and 2
(positive offset) are assigned to inputs s1 and s2 respectively. However, you can declare variables
in the POU header and write them in the function in the body at the inputs.

LD

ST IF start THEN

 F290_DZONE(s1_NegBias:= 5,

 s2_PosBias:= 2,

 s3_In:= input_value,

 d=> output_value);

END_IF; (*5=neg. offset, 2=pos. offset *)

Arithmetic instructions

444

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F349_FZONE Floating point data zone control

 If the input value at input s3 < 0.0, the negative offset value at input s1 is added
to the input value at s3, and the result is stored as the output value at d.

 If the input value at input s3 = 0.0, 0.0 is returned as the output value to output d.

 If the input value at input s3 > 0.0, the positive offset value at input s2 is added to
the input value at s3, and the result is stored as the output value at d.

0

Output value d

Positive bias
value s2

Input value s3

Negative bias value s1

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F349_FZONE (see page 1324)

Variable Data type Function

s1 REAL area where negative bias value is stored or negative bias
value data

s2 REAL area where positive bias value is stored or positive bias value
data

s3 REAL area where input value is stored or input value data

d REAL area where output value is stored

Description The function adds an offset value to the input value at input s3. The offset value for the negative
and positive area are entered at inputs s1 and s2. The result of the function is returned at output d
as follows:

Data types

 Arithmetic instructions

445

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s1, s2, s3 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the values at inputs s1, s2, and s3 are
not REAL numbers.

R900B %MX0.900.11 to TRUE  the result is 0.

R9009 %MX0.900.9 for an instant  the result causes an overflow.

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The constant -1.23 is assigned to input s1 (negative offset) and the constant 5.55 is assigned to
input s2 (positive offset). However, you can declare two variables in the POU header and write
them in the function in the body at the inputs. When the variable start is set to TRUE, the function
is carried out. Since the input_value is negative (-10.0), the negative offset -1.23 is added to it.
The result here is: output_value = -11.23.

LD

Arithmetic instructions

446

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST IF start THEN

 F349_FZONE(s1_NegBias:= -1.23 ,

 s2_PosBias:= 5.55 ,

 s3_In:= input_value ,

 d=> output_value);

END_IF; (*-1.23=neg. offset, 5.55=pos. offset *)

 Arithmetic instructions

447

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F85_NEG 16-bit data two's complement

Two’s complement is a number system used to express positive and negative numbers in binary
format. In this system, the number becomes negative if the most significant bit (MSB) of data is 1.
Two’s complement is obtained by inverting all bits and adding 1 to the inverted result.

This instruction is useful for inverting the sign of 16-bit data from positive to negative or from
negative to positive.

· ·· · · · · · ·

d

15

1 1

12

1

11

1

8 7

1

4 3

01

0

1

· ·· · · · · · ·

d

15

0 0

12

0

11

0

8 7

0

4 3

0

0

1100000000

3

1 1 1 1 1 1 1 1

-3

Destination

Destination
Bit position

Bit position

Decimal data

start: ON

Decimal data

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F85_NEG (see page 1326)

Variable Data type Function

d ANY16 16-bit area for storing original data and its two's complement

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

Description Takes two's complement of 16-bit data specified by d if the trigger EN is in the ON-state. Two's
complement of the original 16-bit data is stored in d.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

Arithmetic instructions

448

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST IF DF(start) THEN

 F85_NEG(negotiate_value);

END_IF;

 Arithmetic instructions

449

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F86_DNEG 32-bit data two's complement

Two’s complement is a number system used to express positive and negative numbers in binary
format. In this system, the number becomes negative if the most significant bit (MSB) of data is 1.
Two’s complement is obtained by inverting all bits and adding 1 to the inverted result.

This instruction is useful for inverting the sign of 32-bit data from positive to negative or from
negative to positive.

· ·· · · · · · ·15

0

1211

0 0

8

0

7

0 0

4

0

3

0

0 · ·· · · · · · ·15

0

12

0

11

0

8

0

7

0

4

0

3

0 1

0

1

DT1 DT0

· ·· · · · · · ·15

1

1211

1 1

8

1

7

1 1

4

1

3

1

0 · ·· · · · · · ·15

1

12

1

11

1

8 7

1

4

1

3

1 0

0

1

DT1 DT0

1111111111111111

-3

000000000000000

3

start: ON

Destination

Destination

Bit position

Bit position

32-bit area

32-bit area

Binary data

Binary data

Decimal data

Decimal data

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F86_DNEG (see page 1326)

Variable Data type Function

d ANY32 32-bit area for storing original data and its two's complement

For Relay T/C Register Constant

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description Takes two's complement of 32-bit data specified by d if the trigger EN is in the ON-state. Two's
complement of the original 32-bit data is stored in d.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Arithmetic instructions

450

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST IF DF(start) THEN

 F86_DNEG(negotiate_value);

END_IF;

 Arithmetic instructions

451

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F270_MAX Maximum value search in 16-bit data table

Input s1 specifies the starting area of the data table, and s2 specifies the end. The maximum value
is returned at output max and its position at output pos.

The position pos is relative to the position at the beginning of the data table to the first occurrence
of the maximum value.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F270_MAX (see page 1323)

Variable Data type Function

s1 starting area of data table

s2 ANY16 ending area of data table

max INT specifies maximum value

pos INT position where maximum value was found

For Relay T/C Register Const.

s1, s2 WX WY WR WL SV EV DT LD FL -

max, pos - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the address of the variable at input s1 >
s2.

 the address areas of s1 and s2 are
different.

Description The function searches for the maximum value and its position in a 16-bit data table.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. It searches for the maximum
value and its position in the data_field. The result is here: maximum_value = 6 and position = 2.

Arithmetic instructions

452

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST IF start THEN

 F270_MAX(s1_Start:= data_field[0],

 s2_End:= data_field[4],

 Max=> maximum_value,

 Pos=> position);

END_IF;

 Arithmetic instructions

453

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F271_DMAX Maximum value search in 32-bit data table

Input s1 specifies the starting area of the data table, and s2 specifies the end. The maximum value
is returned at output max and its position at output pos.

The position pos is relative to the position at the beginning of the data table to the first occurrence
of the maximum value.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F271_DMAX (see page 1323)

Variable Data type Function

s1 DINT, DWORD starting area of data table

s2 DINT, DWORD ending area of data table

max DINT specifies maximum value

pos WORD position where maximum value was found

For Relay T/C Register Const.

s1, s2 DWX DWY DWF DWL DSV DEV DDT DLD DFL -

max - DWY DWR DWL DSV DEV DDT DLD DFL -

pos - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the address of the variable at input s1 >
s2.

 the address areas of s1 and s2 are
different.

Description The function searches for the maximum value and its position in a 32-bit data table.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Arithmetic instructions

454

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start is set to TRUE, the function is carried out. It searches for the maximum
value and its position in the data_field. The result is here: maximum_value = 222222 and
position = 2.

LD

ST IF start THEN

 F271_DMAX(s1_Start:= data_field[0],

 s2_End:= data_field[4],

 Max=> maximum_value,

 Pos=> position);

END_IF;

 Arithmetic instructions

455

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F350_FMAX Maximum value search in real number data table (floating point data)

Input s1 specifies the starting area of the data table, and s2 specifies the end. The maximum value
is returned at output max and its position at output pos.

The address of the maximum value at output pos is relative to the beginning address in the data
table as specified at input s1.

If more than one maximum value is found, the first one found beginning from the starting address
specified at s1 is stored in d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F350_FMAX (see page 1325)

Variable Data type Function

s1 REAL starting area of data table

s2 REAL ending area of data table

max REAL specifies maximum value

pos INT position where maximum value was found

For Relay T/C Register Const.

s1, s2 DWX DWY DWF DWL DSV DEV DDT DLD DFL -

max - DWY DWR DWL DSV DEV DDT DLD DFL -

pos - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the addresses of variables at inputs s1 >
s2.

 the address areas are different.

 the floating point values exceed the
processing range.

Description The function searches for the maximum value and its position in a floating point data table.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

Arithmetic instructions

456

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. It then searches the data_field
for a maximum value and its position. The result here is: max_value = 5.44 and position = 3.

LD

ST IF start THEN

 F350_FMAX(s1_Start:= data_field[0],

 s2_End:= data_field[4],

 Max=> max_value,

 Pos=> position);

END_IF;

 Arithmetic instructions

457

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F272_MIN Minimum value search in 16-bit data table

Input s1 specifies the starting area of the data table, and s2 specifies the end. The minimum value
is returned at output min and its position at output pos.

The position pos is relative to the position at the beginning of the data table to the first occurrence
of the minimum value.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F272_MIN (see page 1323)

Variable Data type Function

s1 starting area of data table

s2 ANY16 ending area of data table

min INT specifies minimum value

pos INT position where minimum value was found

For Relay T/C Register Const.

s1, s2 WX WY WR WL SV EV DT LD FL -

min, pos - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the address of the variable at input s1 >
s2.

 the address areas of s1 and s2 are
different.

Description The function searches for the minimum value and its position in a 16-bit data table.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Arithmetic instructions

458

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start is set to TRUE, the function is carried out. It searches for the minimum
value and its position in the data_field. The result is here: minimum_value = -3 and position = 3.

LD

ST IF start THEN

 F272_MIN(s1_Start:= data_field[0],

 s2_End:= data_field[4],

 Min=> minimum_value,

 Pos=> position);

END_IF;

 Arithmetic instructions

459

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F273_DMIN Minimum value search in 32-bit data table

Input s1 specifies the starting area of the data table, and s2 specifies the end. The minimum value
is returned at output min and its position at output pos.

The position pos is relative to the position at the beginning of the data table to the first occurrence
of the minimum value.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F273_DMIN (see page 1323)

Variable Data type Function

s1 starting area of data table

s2 ANY32 ending area of data table

min DINT specifies minimum value

pos INT position where minimum value was found

For Relay T/C Register Const.

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL -

min - DWY DWR DWL DSV DEV DDT DLD DFL -

pos - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the address of the variable at input s1 >
s2.

 the address areas of s1 and s2 are
different.

Description The function searches for the minimum value and its position in a 32-bit data table.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Arithmetic instructions

460

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start is set to TRUE, the function is carried out. It searches for the minimum
value and its position in the data_field. The result is here: minimum_value = -333333 and
position = 3.

LD

ST IF start THEN

 F273_DMIN(s1_Start:= data_field[0],

 s2_End:= data_field[4],

 Min=> minimum_value,

 Pos=> position);

END_IF;

 Arithmetic instructions

461

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F351_FMIN Minimum value search in real number data table (floating point data)

Input s1 specifies the starting area of the data table, and s2 specifies the end. The minimum value
is returned at output min and its position at output pos.

The address of the minimum value at output pos is relative to the beginning address in the data
table as specified at input s1.

If more than one minimum value is found, the first one found beginning from the starting address
specified at s1 is stored in d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F351_FMIN (see page 1325)

Variable Data type Function

s1 REAL starting area of data table

s2 REAL ending area of data table

min REAL specifies minimum value

pos INT position where minimum value was found

For Relay T/C Register Const.

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL -

min - DWY DWR DWL DSV DEV DDT DLD DFL -

pos - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the addresses of variables at inputs s1 >
s2.

 the address areas are different.

 the floating point values exceed the
processing range.

Description The function searches for the minimum value and its position in a floating point data table.

Data types

Operands

Error flags

Arithmetic instructions

462

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. It then searches the data_field
for a minimum value and its position. The result here is: min_value = 6.91 and position = 2.

LD

ST IF start THEN

 F351_FMIN(s1_Start:= data_field[0],

 s2_End:= data_field[4],

 Min=> min_value ,

 Pos=> position);

END_IF;

 Arithmetic instructions

463

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F275_MEAN Total and mean numbers calculation in 16-bit data table

Input s1_Start specifies the starting area of the data table, and s2_End specifies the end. The sum
of all elements in the data table is returned at output Sum and the arithmetic mean of all elements
in the data table is returned at output Mean. The arithmetic mean is rounded off if it is not a whole
number.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F275_MEAN (see page 1323)

Variable Data type Function

s1_Start starting area of data table

s2_End ANY16 ending area of data table

Mean INT mean of all elements in data table area specified

Sum DINT sum of all elements in data table area specified

For Relay T/C Register Const.

s1_Start,
s2_End

WX WY WR WL SV EV DT LD FL -

Mean - WY WR WL SV EV DT LD FL -

Sum - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the address of the variable at input
s1_Start > s2_End.

 the address areas are different.

R9009 %MX0.900.9 for an instant  the total value range overflows or
underflows the 16-bit range.

Description This function calculates the sum and the arithmetic mean of numbers (both with +/- signs) in the
specified 16-bit data table.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Arithmetic instructions

464

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable output is set to TRUE, the function F275_MEAN is carried out. The function
calculates the sum of all elements of the data table (sum = 4 + 3 + 8 + (-2) + 1 + (-6) = 8) and
writes the result (in this case 8) to the variable sum. Additionally, the function calculates the
arithmetic mean of all elements of the data table (mean = sum/6 = (4 + 3 + 8 + (-2) + 1 + (-6)) / 6 =
1.333) and writes the roanded-off number (in this case 1) to the variable mean.

LD

ST IF start THEN

 F275_MEAN(s1_Start:= data_field[0],

 s2_End:= data_field[4],

 Sum=> sum,

 Mean=> mean);

END_IF;

 Arithmetic instructions

465

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F276_DMEAN Total and mean numbers calculation in 32-bit data table

Input s1 specifies the starting area of the data table, and s2 specifies the end. The sum of all
elements in the data table are returned at output sum and the arithmetic mean of all elements in
the data table are returned at output mean. The arithmetic mean is rounded off if it is not already a
whole number.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F276_DMEAN (see page 1323)

Variable Data type Function

s1 starting area of data table

s2
ANY32

ending area of data table

mean DINT mean of all elements in data table area specified

sum ARRAY [0..1] of
DINT

sum of all elements in data table area specified

For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL -

mean, sum - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the address of the variable at input s1 >
s2.

 the address areas are different.

R9009 %MX0.900.9 for an instant  the total value range overflows or
underflows the 32-bit range.

Description This function calculates the sum and the arithmetic mean of numbers (both with +/- signs) in the
specified 32-bit data table.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

Arithmetic instructions

466

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. The function calculates the sum
of all elements of ARRAY data_field (sum = 2 + 3 + 222222 + (-333333) + 1 = -111105) and
transfers the result to the variable sum. In addition, the function calculates the mean (mean =
sum/5 = -111105/5 = -22221) and transfers the result to the variable mean.

LD

ST IF start THEN

 F276_DMEAN(s1_Start:= data_field[0],

 s2_End:= data_field[4],

 Sum=> sum,

 Mean=> mean);

END_IF;

 Arithmetic instructions

467

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F352_FMEAN Total and mean numbers calculation in floating point data table

Input s1 specifies the starting area of the data table, and s2 specifies the end. The sum of all
elements in the data table are returned at output sum, and the arithmetic mean of all elements in
the data table are returned at output mean.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F352_FMEAN (see page 1325)

Variable Data type Function

s1 REAL starting area of data table

s2 REAL ending area of data table

mean REAL mean of all elements in data table area specified

sum REAL sum of all elements in data table area specified

For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL -

mean, sum - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the addresses of variables at inputs s1 >
s2.

 the address areas are different.

 the floating point values exceed the
processing range.

R9009 %MX0.900.9 for an instant  the result leads to an overflow or an
underflow.

Description This function calculates the sum and the arithmetic mean (both with +/- signs) of floating point
values in the specified 32-bit data table.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

Arithmetic instructions

468

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. It calculates the sum = 2.0 +
3.45 + (-6.91) + 5.44 + 1.3 = 5.28 and the mean = Sum/5 = 5.28/5 = 1.056 of the elements of the
data_field.

LD

ST IF start THEN

 F352_FMEAN(s1_Start:= data_field[0] ,

 s2_End:= data_field[4] ,

 Sum=> sum ,

 Mean=> mean);

END_IF;

 Arithmetic instructions

469

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F282_SCAL Linearization of 16-bit data

The function can be used for:

 linearizing measured values, e.g. with non-linear sensors

 rendering a heater’s flow temperature y in relation to the outside temperature x

 etc.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F282_SCAL (see page 1323)

Variable Data type Function

x INT Input value x

xy_data DUT The first element of an DUT-type variable that contains the
xy value pairs.

y INT Output value y

EN BOOL Activation of the function (when EN = TRUE, the function is
executed during each PLC cycle)

ENO BOOL ENO is set to TRUE as soon the function is executed.
Helpful when cascading function blocks with EN functions.

For Relay T/C Register Constant

x WX WY WR WL SV EV DT LD FL dec. or hex.

y - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the number of reference points is not
between 2 ... 100, or the x values are not
in ascending order (x1 < x2 < x3 < ...).

Description The function renders the value y at position x by performing a linear interpolation based on the
neighboring reference points Pw(xw, yw) and Pw+1(xw+1, yw+1). In this example, w is the nearest
reference point whose x value is smaller than the input value x, i.e. the function connects the
individual reference points in series and renders the output value y based on the input value x.

Data types

Operands

Error flags

Arithmetic instructions

470

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 Limitations of the output value y:

If the input value x is smaller than the x-coordinate of the first reference point (P1: x < x1), the
output y is set to the first reference point’s y-coordinate (output y = y1, horizontal dashed line in the
graph’s upper left corner).

If the input value x is greater than the x-coordinate of the last reference point (P8: x > x8), the
output y is set to the last reference point’s y-coordinate (output y = y8, horizontal dashed line in the
graphic’s upper right corner).

 DUT for the xy value pairs (reference points P1, P2, ...):

The reference points (P1, P2, ...) are copied to the function via an DUT-type variable that contains
the number of reference points and the xy value pairs (number; x1, x2, ...; y1, y2; ...).

Structure of the DUT:

1. Entry: Variable of the data type INT that contains the number of reference
points.The number of reference points (xy value pairs) can be set anywhere between 2 ... 100. In the
graph, eight reference points (P1 ... P8) are used.

2. Entry: Variable of the data type ARRAY [0..z] OF INT that contains the x values.
Here z represents the place marker for the number of reference points (see entry 1).

3. Entry: Variable of the data type ARRAY [0..z] OF INT that contains the y values.
Here z represents the place marker for the number of reference points (see entry 1).

 Important information:

x values

The x values have to be entered in ascending order (x1 < x2 < x3 < ...). If the x values are the
same (e.g. x2 = x3 = x4) the reference points P2(x2,y2) and P3(x3,y3) are ignored.

Overflow of the function:

In order to avoid an overflow in the calculation, neighboring reference points must fulfill the
following conditions:
|ya - yb| < 32767

|x - xb| < 32767

|(ya - yb)*(x - xb)| < 32767

|xa - xb| < 32767

Accuracy of the calculation:

This function can only process whole numbers. Numbers that follow the decimal point are cut out
when calculating the value y. For example, if at the position x, y = 511,13, the function returns the
value 511.

 Arithmetic instructions

471

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

In the POU header, all input and output variables are declared that are used for programming this
function.

Here the input variable measured_value was declared, corresponding to the type of the DUT
defined above. Assigning the x values and y values was done in the POU header. However, you
can change the x values and y values in the body by assigning a value to the variable, e.g.
Measuredvalues.X_Values[1] for x.

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

DUT In the DUT Pool the number of reference points and the xy value pairs are declared.

POU header

Body When the variable start is set to TRUE, the function is carried out. For the input value at position x,
the output value y is calculated via linear interpolation of the neighboring reference points stored in
the variable measured_value.

LD

ST IF start THEN

 F282_SCAL(input_value, measured_value.referencepoints, output_value);

END_IF;

Arithmetic instructions

472

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F283_DSCAL Linearization of 32-bit data

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

The function can be used for:

 linearizing measured values, e.g. with non-linear sensors

 rendering a heater’s flow temperature y in relation to the outside temperature x

 etc.

PLC types Availability of F283_DSCAL (see page 1323)

Variable Data type Function

x DINT Input value x

xy_data DUT The first element of a DUT-type variable that contains the xy
value pairs.

y DINT Output value y

EN BOOL Activation of the function (when EN = TRUE, the function is
executed during each PLC cycle)

ENO BOOL ENO is set to TRUE as soon the function is executed.
Helpful when cascading function blocks with EN functions.

For Relay T/C Register Constant

x WX WY WR WL SV EV DT LD FL dec. or hex.

y - WY WR WL SV EV DT LD FL -

Description The function renders the value y at position x by performing a linear interpolation based on the
neighboring reference points Pw(xw, yw) and Pw+1(xw+1, yw+1). In this example, w is the
nearest reference point whose x value is smaller than the input value x, i.e. the function connects
the individual reference points in series and renders the output value y based on the input value s.

Data types

Operands

 Arithmetic instructions

473

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the number of reference points is not
between 2 ... 100, or the x values are not
in ascending order (x1 < x2 < x3 < ...).

 Limitations of the output value y:

If the input value x is smaller than the x-coordinate of the first reference point (P1: x < x1), the
output y is set to the first reference point’s y-coordinate (output y = y1, horizontal dashed line in the
graph’s upper left corner).

If the input value x is greater than the x-coordinate of the last reference point (P8: x > x8), the
output y is set to the last reference point’s y-coordinate (output y = y8, horizontal dashed line in the
graphic’s upper right corner).

 DUT for the xy value pairs (reference points P1, P2, ...):

The reference points (P1, P2, ...) are copied to the function via a DUT-type variable that contains
the number of reference points and the xy value pairs (number; x1, x2, ...; y1, y2; ...).

Structure of the DUT:

1. Entry: Variable of the data type INT that contains the number of reference points.

The number of reference points (xy value pairs) can be anywhere between 2 ... 100. In the graph, eight reference points (P1 ... P8) are used.

2. Entry: Variable of the data type ARRAY [0..z] OF DINT that contains the x
values.

Here z represents the place marker for the number of reference points (see entry 1).

3. Entry: Variable of the data type ARRAY [0..z] OF DINT that contains the y
values.

Here z represents the place marker for the number of reference points (see entry 1).

 Important information:

x values

The x values have to be entered in an ascending order (x1 < x2 < x3 < ...). If the x values are the
same (e.g. x2 = x3 = x4) the reference points P2(x2,y2) and P3(x3,y3) are ignored.

Overflow of the function:

In order to avoid an overflow in the calculation, neighboring reference points must fulfill the
following conditions:
|ya - yb| < 2147483647

|x - xb| < 2147483647

|(ya - yb)*(x - xb)| < 2147483647

|xa - xb| < 2147483647

Accuracy of the calculation:

This function can only process whole numbers. Numbers that follow the decimal point are cut out
when calculating the value y. For example, if at the position x, y = 511,13, the function returns the

Error flags

Arithmetic instructions

474

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

value 511.

Here the input variable measured_value was declared, corresponding to the type of the DUT
defined above. Assigning the x values and y values was done in the POU header. However, you
can change the x values and y values in the body by assigning a value to the variable, e.g.
Measuredvalues.Y_Values[3] for y3.

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

DUT In the DUT Pool, the number of reference points and the xy value pairs are declared.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. For the input value at position
x, the output value y is calculated via linear interpolation between the neighboring reference points
stored in the variable measured value.

LD

ST IF start THEN

 F283_DSCAL(input_value, measured_value.referencepoints, output_value);

END_IF;

 Arithmetic instructions

475

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F284_RAMP Inclination output of 16-bit data

PLC types Availability of F284_RAMP (see page 1323)

Variable Data type Function

s1_InitialValue INT The initial value from which the output value increases or
decreases after the trigger's rising edge has been detected by
the system

s2_TargetValue INT The target value to which the output value increases or
decreases

s3_RiseTime INT The time range in ms for the output value to increase or
decrease from the initial value to the target value

d_OutputValue INT The output value

For Relay T/C Register Constant

s1, s2, s3 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the area specified using the index
modifier exceeds the limit.

 the output time range specified by
s3_RiseTime is smaller than 1 or larger
than 30000.

In this example, the input variables iInitialValue, iTargetValue and iRiseTime are declared.
However, you can write a constant directly at the input contact of the function instead. Additionally,
the variable bRun is declared to start the ramp function and the variable iOutputValue is declared
for storing the result.

Description Executes linear ramp output based on the parameters set.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Arithmetic instructions

476

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Time chart for increasing the output value:

Example values: iInitialValue = 3000, iTargetValue = 6000, iRiseTime = 1000

iOutputValue

iTargetValue

ilnitialValue

2750175010000

1000 ms

6000

3000 iRiseTime

ON

OFF

Data is initialized when the system

detects the trigger's rising edge.

bRun (Trigger)

Time (ms)

Time chart for decreasing the output value:

Example values: iInitialValue = 6000, iTargetValue = 3000, iRiseTime = 1000

1000 ms

2750175010000

3000

6000
iInitialValue

iTargetValue RiseTime

ON

OFF

Data is initialized when the system

detects the trigger's rising edge.

Time (ms)

bRun (Trigger)

Body When the variable bRun is switched to TRUE, the function is carried out and iOutputValue
increases from 3000 (the initial value of iInitialValue) to 6000 (the initial value of iTargetValue) in
1000ms (according to the initial value of iRiseTime).

LD

ST

 Arithmetic instructions

477

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

IF bRun THEN

 F284_RAMP(iInitialValue, iTargetValue, iRiseTime, iOutputValue);

END_IF;

Arithmetic instructions

478

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F354_FSCAL Scaling of Real Number Data

For a detailed description, refer to the instructions: F282_SCAL (see page 468) and F283_DSCAL
(see page 471).

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F354_FSCAL (see page 1325)

Variable Data type Function

x REAL Input value (X)

xy_data INT First element of the data unit type table used for scaling

y REAL Output value (Y)

For Relay T/C Register Constant

x WX WY WR WL SV EV DT LD FL real

xy_data WX WY WR WL SV EV DT LD FL -

y - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the specified address using the index
modifier exceeds a limit.

 a non-real number value is input into 'x'.

 the number of values (first element of the
DUT) < 2 or > 99.

 a non- real number value is specified to be
the real numerical value (xt, yt) specified in
'xy_data'.

 the linear table of 'xy_data' is not registered
in ascending order of the x-sequence.

 the linear table of 'xy_data' exceeds the
area.

 an overflow (operation is unable) occurs
during the scaling operation.

Description This function performs scaling (linearization) of a real number data table and renders the output (Y)
for an input value (X).

Data types

Operands

Error flags

 Arithmetic instructions

479

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F96_SRC Table data search (16-bit search)

When the search operation is performed, the search results are stored as follows:

 The number of data that is the same as s1 is transferred to special data register
DT9037 (or DT90037 for FP2/2SH, FP10/10S/10SH).

 The position the data is first found in, counting from the starting 16-bit area, is
transferred to special data register DT9038 (or DT90038 for FP2/2SH,
FP10/10S/10SH).

Be sure that s2  s3.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F96_SRC (see page 1326)

Variable Data type Function

s1 16-bit area or equivalent constant to store the value
searched for

s2 starting 16-bit area of the block

s3

ANY16

ending 16-bit area of the block

The variables s1, s2 and s3 have to be of the same data type.

For Relay T/C Register Constant

s1 WX WY WR WL SV EV DT LD FL dec. or hex.

s2, s3 - WY WR WL SV EV DT LD FL -

Description Searches for the value that is the same as s1 in the block of 16-bit areas specified by s2 (starting
area) through s3 (ending area) if the trigger EN is in the ON-state.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

Arithmetic instructions

480

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST IF start THEN

 F96_SRC(s1:= search_value ,

 s2_Start:= data_array[0] ,

 s3_End:= data_array[3]);

 number_matches:=DT90037;

 position_1match:=DT90038;

END_IF;

 Arithmetic instructions

481

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F97_DSRC 32-bit table data search

s1 -44 -44

22 22 22 22

01 23 45 67

s2

s3

32-bit table dataValue searched for

The number of data items that match s1 is stored in special data register DT90037.

The relative position of the first matching data item, counting from the starting 32-bit area s2, is
stored in special data register DT90038.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F97_DSRC (see page 1326)

Variable Data type Function

s1 32-bit area or equivalent constant to store the value
searched for

s2 starting 32-bit area of the block

s3

ANY32

ending 32-bit area of the block

The adresses of the variables at inputs s2 and s3 must be of the same adress type.

For Relay T/C Register Constant

s1 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

s2, s3 - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the address of the variables at outputs
s2 > s3.

Description The function searches for the value specified at input s1 in a block of 32-bit areas whose beginning
is specified at input s2 and whose end is specified at input s3.

Data types

Operands

Error flags

Arithmetic instructions

482

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. Instead of using an input
variable in this example, a constant (-44) is assigned to input s1. The result is stored in special data
registers DT90037 and DT90038. The two E_MOVE functions copy the results to the two variables
number_matches and position_1match.

LD

ST IF start THEN

 F97_DSRC(s1:= -44 ,

 s2_Start:= data_table[0] ,

 s3_End:= data_table[3]);

 number_matches:=DT90037;

 position1_match:=DT90038;

END_IF;

 Arithmetic instructions

483

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

15.1 Introduction into the FIFO buffer

The FIFO buffer is a first-in-first-out buffer area realized as a ring buffer. Data is stored in the order in which it is
written to the buffer, and then read out in the order stored, starting from the first data item stored. It is
convenient for buffering objects in sequential order.

Usage procedure

 The area to be used is defined as the FIFO buffer using the F115_FIFT (see page 483) instruction.
(This should be done only once, before reading or writing is done.)

 Data should be written to the buffer using the F117_FIFW (see page 491) instruction, and read out
of the buffer using the F116_FIFR (see page 487) instruction.

Writing data

 When data is written, the data items are stored in sequential order, starting from the first data
storage area. The writing pointer indicates the next area to which data is to be written. The number
of words stored increases by 1.

 If the data storage area becomes full, i.e. the number of words stored is equal to n-1, further data
writing is inhibited.

Reading data

 When data is read, data is transferred starting from the first data item stored. The reading pointer
indicates the next area from which data is to be read. The number of words stored decreases by 1.

 An error occurs if an attempt is made to read data when the data storage area is empty, the number
of words stored is equal to the memory size of the FIFO buffer or is equal to zero.

Data storage area

If data is written while the FIFO buffer is in the status shown below, the data will be stored in the area indicated
by 3. The writing pointer moves to 4, i.e. the next data item will be written to 4. If data is read, it will be read from
the area indicated by 0. The reading pointer then moves to 1, i.e. the next data item will be read from 1. (For
more information on the reading and writing pointer, see F115_FIFT (see page 483)).

0

1

2

3

4

100

101

102

5

3

0 3

0

1

2

3

4

100

101

102

5

4

0 4

0

1

2

3

4

100

101

102

5

3

1 4

103103

Size
Number

Positions

Read 100Write 103

Arithmetic instructions

484

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F115_FIFT FIFO buffer area definition

n: memory size (number of words (16-bit)) of FIFO buffer,
n = 1 to 256.

d1: the starting 16-bit area of FIFO buffer

How to use the FIFO buffer (see page 483)

Definition of the area using the FIFT instruction should be carried out only once, before writing to or
reading from the FIFO buffer. When the FIFT instruction is executed, the FIFO buffer area is
defined as follows:

0

0

nd1

d1+1

d1+2

15 0

d1+3

d1+n+2

15 0

0

d1+4

d1+n+1

Memory size of FIFO buffer (n)
Number of stored data items (words),
written and not read
FIFO pointer

Data [0]

Data
storage
area
(n words)

Data [1]

Data [n-1]

Data [n-2]

Writing pointer
(0 to 255/16#00 to 16FF)

Reading pointer
(0 to 255/16#00 to 16FF)

When the FIFT instruction is executed, the following are stored as default values: d1 = n (the value
specified by the FIFT instruction), d1 + 1 = 0, and d1 + 2 = 16#0000.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F115_FIFT (see page 1320)

Variable Data type Function

n INT specifies the memory size of FIFO buffer

d1 ANY16 starting 16-bit area of FIFO buffer

Description F115 specifies the starting area d1 for the FIFO (First-In-First-Out) buffer and the memory size n of
the FIFO buffer.

Data types

 Arithmetic instructions

485

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

n WX WY WR WL SV EV DT LD FL dec. or hex.

d1 - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 n = 0

 n > 256

 The area specified by n exceeds the limit

Operands

Error flags

Example This example illustrates the FIFO buffer by incorporating the functions F115_FIFT (see page 483),
F116_FIFR (see page 487) and F117_FIFW (see page 491). The function has been programmed
in ladder diagram (LD) and structured text (ST).

DUT

POU header All input and output variables used for programming this function have been declared in the POU
header.

Arithmetic instructions

486

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body The example below illustrates the status of the buffer after FIFO_Write has been enabled twice
and FIFO_Read once. When FIFO_Write was activated the first time, the value 1 was written into
FIFO.Data[0]. When FIFO_Read was enabled, Read_Data then read this value. When
FIFO_Write was enabled the second time, the Writing pointer was incremented by one and the
value 2 written into FIFO.Data[1]. see Entry Data Monitor 1

LD

 Arithmetic instructions

487

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST IF DF(FIFO_Initalize) THEN

 (* Create the FIFO buffer *)

 F115_FIFT(n_Number:= Size_Of_Var(FIFO.Data), d1_Start:= FIFO.Size);

 REPEAT

 (* Initialize FIFO buffer with values *)

 Write_Data:=Write_Data+1;

 F117_FIFW(s:= Write_Data, d1_Start:= FIFO.Size);

 UNTIL(FIFO.Number>=FIFO.Size)

 END_REPEAT;

END_IF;

IF DF(FIFO_Write) THEN

 (* Write value of Write_Data to FIFO buffer *)

 (* at rising edge of FIFO_Write *)

 F117_FIFW(s:= Write_Data, d1_Start:= FIFO.Size);

END_IF;

IF DF(FIFO_Read) THEN

 (* Read value from FIFO buffer *)
 (* at rising edge of FIFO_Read *)

 F116_FIFR(d1_Start:= FIFO.Size, d2:= Read_Data);

END_IF;

Arithmetic instructions

488

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F116_FIFR Read from FIFO buffer

How to use the FIFO buffer (see page 483)

Reading of data is done starting from the address specified by the reading pointer when the
instruction is executed.

d1+n+1

d1

d1+1

d1+2

15 0

d1+n+2

[d2]

d1+3

Memory size of FIFO buffer (n)
Number of stored data items (words),
written and not read

Data [0]

Data [n-2]
Data [n-1]

Reading pointer in upper byte

Data storage area
(n words)Reading

pointer

 (0), (n–2) and (n–1) are addresses assigned to the data storage area.

 n is the value specified by the F115_FIFT (see page 483) instruction.

The reading pointer is stored in the upper eight bits of the third word of the FIFO buffer area. The
actual address is the value of the leading address in the FIFO buffer area specified by d1 plus 3,
plus the value of reading pointer (the value of which only the first byte is a decimal value).

When the reading is executed, 1 is subtracted from the number of stored data items, and the
reading pointer is incremented by 1, or reset to zero if the reading pointer pointed to the final
element.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F116_FIFR (see page 1320)

Variable Data type Function

d1 starting 16-bit area of FIFO buffer

d2 ANY16 16-bit area for storing data read from FIFO buffer

The variables d1 and d2 have to be of the same data type.

For Relay T/C Register Const.

d1, d2 - WY WR WL SV EV DT LD FL -

Description F/P116 reads the data d1 from the FIFO (First-In-First-Out) buffer and stores the data in area
specified by d2.

Data types

Operands

 Arithmetic instructions

489

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

  An error occurs if this is executed when the number of stored data
items is 0 or when the reading pointer is equal to the writing pointer.

 Reading is only carried out when the reading pointer is not equal to
the writing pointer.

 If this is executed when the reading pointer is indicating the final
address in the FIFO buffer (the n defined by the FIFO instruction
minus 1), the reading pointer is set to 0.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the size (n) of the FIFO specified by d1 is
n = 0, or when n > 256.

 the number of stored data items of the
FIFO = 0.

 the number of stored data items of the
FIFO > FIFO size (n).

 the final address of the FIFO based on
the FIFO size (n) exceeds the area.

 the FIFO reading pointer > FIFO size (n).

 the FIFO reading pointer is 256 (16#100)
or higher after the data has been read.

Error flags

Example This example illustrates the FIFO buffer by incorporating the functions F115_FIFT (see page 483),
F116_FIFR (see page 487) and F117_FIFW (see page 491). The function has been programmed
in ladder diagram (LD) and structured text (ST).

DUT

POU header All input and output variables used for programming this function have been declared in the POU
header.

Arithmetic instructions

490

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body The example below illustrates the status of the buffer after FIFO_Write has been enabled twice
and FIFO_Read once. When FIFO_Write was activated the first time, the value 1 was written into
FIFO.Data[0]. When FIFO_Read was enabled, Read_Data then read this value. When
FIFO_Write was enabled the second time, the Writing pointer was incremented by one and the
value 2 written into FIFO.Data[1]. see Entry Data Monitor 1

LD

 Arithmetic instructions

491

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST IF DF(FIFO_Initalize) THEN

 (* Create the FIFO buffer *)

 F115_FIFT(n_Number:= Size_Of_Var(FIFO.Data), d1_Start:= FIFO.Size);

 REPEAT

 (* Initialize FIFO buffer with values *)

 Write_Data:=Write_Data+1;

 F117_FIFW(s:= Write_Data, d1_Start:= FIFO.Size);

 UNTIL(FIFO.Number>=FIFO.Size)

 END_REPEAT;

END_IF;

IF DF(FIFO_Write) THEN

 (* Write value of Write_Data to FIFO buffer *)

 (* at rising edge of FIFO_Write *)

 F117_FIFW(s:= Write_Data, d1_Start:= FIFO.Size);

END_IF;

IF DF(FIFO_Read) THEN

 (* Read value from FIFO buffer *)
 (* at rising edge of FIFO_Read *)

 F116_FIFR(d1_Start:= FIFO.Size, d2:= Read_Data);

END_IF;

Arithmetic instructions

492

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F117_FIFW Write to FIFO buffer

How to use the FIFO buffer (see page 483)

The specified data is written to the address indicated by the writing pointer when the instruction is
executed.

d1

d1+1

d1+2

15 0

d1+n+2

d1+n+1

[s]

d1+3

Writing
pointer

Data storage area
(n words)

Number of stored data items (words), written
and not read

Memory size of FIFO buffer (n)

Writing pointer in lower byte
Data [0]

Data [n-2]
Data [n-1]

 (0), (n-2) and (n-1) are addresses assigned to the data storage area.

 n is the value specified by the F115_FIFT (see page 483) instruction.

The writing pointer is stored in the lower eight bits of the third word of the FIFO buffer area, and is
indicated by a relative position in the data storage area. The actual address to which data is being
written is specified by d1 plus the offset 3 plus the value of the writing pointer (the value of which
only the lower byte is a decimal value).

When the writing is executed, 1 is added to the number of stored data items, and the writing pointer
is incremented by 1, or reset to zero if the writing pointer pointed to the final element.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F117_FIFW (see page 1320)

Variable Data type Function

s 16-bit area or equivalent constant for storing data to write in
the FIFO buffer

d1
ANY16

starting 16-bit area of FIFO buffer

The variables s and d1 have to be of the same data type.

Description F/P117 writes the data specified by s into the FIFO buffer specified by d1.

Data types

 Arithmetic instructions

493

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d1 - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the size (n) of the FIFO specified by d1 is
n = 0, or when n > 256.

 the number of stored data items of the
FIFO = 0.

 the number of stored data items of the
FIFO > FIFO size (n).

 the final address of the FIFO based on
the FIFO size (n) exceeds the area.

 the FIFO writing pointer > FIFO size (n).

 the FIFO writing pointer is 256 (16#100)
or higher after the data has been written.

  An error occurs if this is executed when the FIFO buffer is full (the
number of stored data items = the size n of the FIFO defined by the
FIFT instruction). Writing is inhibited.

 If this is executed when the writing pointer is indicating the final
address in the FIFO buffer (the "n" value defined by the FIFT
instruction), the writing pointer will be set to 0.

Operands

Error flags

Example This example illustrates the FIFO buffer by incorporating the functions F115_FIFT (see page 483),
F116_FIFR (see page 487) and F117_FIFW (see page 491). The function has been programmed
in ladder diagram (LD) and structured text (ST).

DUT

POU header All input and output variables used for programming this function have been declared in the POU
header.

Arithmetic instructions

494

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body The example below illustrates the status of the buffer after FIFO_Write has been enabled twice
and FIFO_Read once. When FIFO_Write was activated the first time, the value 1 was written into
FIFO.Data[0]. When FIFO_Read was enabled, Read_Data then read this value. When
FIFO_Write was enabled the second time, the Writing pointer was incremented by one and the
value 2 written into FIFO.Data[1]. see Entry Data Monitor 1

LD

 Arithmetic instructions

495

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST IF DF(FIFO_Initalize) THEN

 (* Create the FIFO buffer *)

 F115_FIFT(n_Number:= Size_Of_Var(FIFO.Data), d1_Start:= FIFO.Size);

 REPEAT

 (* Initialize FIFO buffer with values *)

 Write_Data:=Write_Data+1;

 F117_FIFW(s:= Write_Data, d1_Start:= FIFO.Size);

 UNTIL(FIFO.Number>=FIFO.Size)

 END_REPEAT;

END_IF;

IF DF(FIFO_Write) THEN

 (* Write value of Write_Data to FIFO buffer *)

 (* at rising edge of FIFO_Write *)

 F117_FIFW(s:= Write_Data, d1_Start:= FIFO.Size);

END_IF;

IF DF(FIFO_Read) THEN

 (* Read value from FIFO buffer *)
 (* at rising edge of FIFO_Read *)

 F116_FIFR(d1_Start:= FIFO.Size, d2:= Read_Data);

END_IF;

Arithmetic instructions

496

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F98_CMPR Data table shift-out and compress

 Contents of d2 (highest address) are shifted out to the area specified by d3.

Non-zero data is shifted (compressed) in sequential order, in the direction of the higher address in
the specified range.

d1 K3

0

K2

0

K1d2

d1 0

0

0

K3

K2d2

K1d3

 Starting area d1 and ending area d2 should be the same type of operand.

 Be sure to specify d1 and d2 with "d1  d2".

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F98_CMPR (see page 1326)

Variable Data type Function

d1 starting (lowest) address of data to be compressed

d2 final (highest) address of data to be compressed, data at d2
is shifted out

d3

ANY16

receives data shifted out from d2

For Relay T/C Register Const.

d1, d2, d3 - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently  d1 > d2

R9008 %MX0.900.8 for an instant  d1 and d2 are not in the same memory
area

Description Shifts out non-zero data stored at the highest address of the table to the specified area and
compresses the data in the table to the higher address. The data in the table specified by d1 and
d2 is rearranged as follows:

Data types

Operands

Error flags

 Arithmetic instructions

497

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

1. Executing the F99_CMPW/ P99_CMPW instruction
When data items are written to the first address of the buffer (the area of the specified range), they are
stored and accumulated in the buffer in sequential order. The oldest data will be stored in the last
address of the buffer.

2. Executing the F98_CMPR/ P98_CMPR instruction
When the data in the last address of the buffer (the area of the specified range) has been read, data
can be extracted in sequential order, starting from the oldest data.

The rest of the data in the buffer is shifted in the direction of the first address, so normally, the
oldest data at that point is stored in the last address of the buffer.

Example 1 In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. The data in the lower addresses
is compressed toward the higher addresses, and the value defined at the highest address, i.e. 10,
is shifted out.

LD

Example 2 In combination with the F99_ CMPW/ P99_CMPW instruction, this can be used to construct an
optional buffer. (Use a FIFO buffer for non-zero values.)

POU header

Arithmetic instructions

498

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

In Step 2 the F98 function is activated, and the value defined in the variable at d3, i.e. 11, is shifted
out.

LD In Step 1 the F99 function is activated, shifting in the value given in the variable ShiftinData at s,
i.e. 31, and compressing the rest of the data.

 Arithmetic instructions

499

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F99_CMPW Data table shift-in and compress

 Data specified by s is shifted in to the area specified by d1 (starting address).

Non-zero data is shifted (compressed) in sequential order, in the direction of the higher address in
the specified range.

d1

K0

K0

K1d2

d1 K0

K4

K3

K2

K1d2

s

K2

K3

K4

 Starting area d1 and ending area d2 should be the same type of operand.

 Be sure to specify d1 and d2 with "d1  d2".

 If the content of s is "0", only a compressed shift is carried out.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F99_CMPW (see page 1326)

 For an example on how to construct a FIFO buffer using F/P99 and F/P98, see
Example 2 from F/P98.

Variable Data type Function

s data to be shifted in

d1 starting address of area that is compressed into which
data from s is shifted

d2

ANY16

end address of area where data is compressed

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d1, d2 - WY WR WL SV EV DT LD FL -

Description Shifts in data to the smallest address of the specified data table and compresses the data in the
table toward the higher address. The data in the table specified by d1 and d2 is rearranged as
follows:

Data types

Operands

Arithmetic instructions

500

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R9007 %MX0.900.7 permanently  d1 > d2

R9008 %MX0.900.8 for an instant  d1 and d2 are not in the same memory area

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body After the variable Start is set to TRUE, the value of the variable ShiftinData, i.e. 32, at the contact
s is shifted into the specified area of the data table, and the data is compressed.

LD

 Arithmetic instructions

501

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F277_SORT Sort data in 16-bit data table (in smaller or larger number order)

Input s1 specifies the starting area of the data table, and s2 specifies the end. You determine the
sorting order at input s3.

At input s3 you can enter the following values:

0 ascending order, i.e. begin with the smallest value

1 descending order, i.e. begin with the largest value

The data are sorted via bubble sort in the order specified according to the value entered at input s3.
Since the number of word comparisons increases in proportion to the square of the number of
words, the sorting process can take some time when there are a large number of words. When the
address of the variable at input s1 = s2, no sorting takes place.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F277_SORT (see page 1323)

Variable Data type Function

s1 INT starting area of data table to be sorted

s2 INT ending area of data table to be sorted

s3 INT specifies sorting order: 0 = ascending, 1 = descending

For Relay T/C Register Constant

s1, s2 - WY WR WL SV EV DT LD FL -

s3 WX WY WR WL SV EV DT LD FL dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the address of the variable at input s1 >
s2

 the address areas of the values at inputs
s1 and s2 are different

Description The function sorts values (with +/- sign) in a data table in ascending or descending order.

Data types

Operands

Error flags

Arithmetic instructions

502

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. The constant 0 is specified at
input s3, which means the sorting is carried out in an ascending order. However, you can declare a
variable in the POU header and write it in the function in the body at input s3.

LD

ST IF start THEN

 F277_SORT(s1_Start:= data_field[0],

 s2_End:= data_field[4],

 s3_Descending:= 0);

END_IF;

 Arithmetic instructions

503

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F278_DSORT Sort data in 32-bit data table (in smaller or larger number order)

Input s1 specifies the starting area of the data table, and s2 specifies the end. You determine the
sorting order at input s3.

At input s3 you can enter the following values:

0 ascending order, i.e. begin with the smallest value

1 descending order, i.e. begin with the largest value

The data are sorted via bubble sort in the order specified according to the value entered at input s3.
Since the number of word comparisons increases in proportion to the square of the number of
words, the sorting process can take some time when there are a large number of words. When the
address of the variable at input s1 = s2, no sorting takes place.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F278_DSORT (see page 1323)

 Although this is a 32-bit instruction, the number of steps is the same as the
16-bit instruction.

Variable Data type Function

s1 DINT starting area of data table to be sorted

s2 DINT ending area of data table to be sorted

s3 INT specifies sorting order: 0 = ascending, 1 = descending

For Relay T/C Register Constant

s1, s2 - DWY DWR DWL DSV DEV DDT DLD DFL -

s3 WX WY WR WL SV EV DT LD FL dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the address of the variable at input s1 >
s2

 the address areas of the values at inputs
s1 and s2 are different

Description The function sorts values (with +/- sign) in a data table in ascending or descending order.

Data types

Operands

Error flags

Arithmetic instructions

504

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

In this example, the input variable sort_order is declared. However, you can write a constant
directly at the input contact of the function instead.

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. Since the variable sort_order is
set to 1, the specified data field in sorted in descending order.

LD

ST IF start THEN

 F278_DSORT(s1_Start:= data_field[0],

 s2_End:= data_field[4],

 s3_Descending:= sort_order);

END_IF;

 Arithmetic instructions

505

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F353_FSORT Sort data in real number data table (floating point data table)

Input s1 specifies the starting area of the data table, and s2 specifies the end. You determine the
sorting order at input s3.

At input s3 you can enter the following values:

0 ascending order, i.e. begin with the smallest value

1 descending order, i.e. begin with the largest value

The data are sorted via bubble sort in the order specified according to the value entered at input s1.
Since the number of word comparisons increases in proportion to the square of the number of
words, the sorting process can take some time when there are a large number of words. When the
value at inputs s1 = s2, no sorting takes place.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F353_FSORT (see page 1325)

Variable Data type Function

s1 REAL starting area of data table to be sorted

s2 REAL ending area of data table to be sorted

s3 INT specifies sorting order: 0 = ascending, 1 = descending

For Relay T/C Register Constant

s1, s2 - DWY DWR DWL DSV DEV DDT DLD DFL -

s3 WX WY WR WL SV EV DT LD FL dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the addresses of variables at inputs s1 >
s2.

 the address areas are different.

 the floating point values exceed the
processing range.

Description The function sorts values (with +/- sign) in a data table in ascending or descending order.

Data types

Operands

Error flags

Arithmetic instructions

506

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

In this example, the input variable sort_order is declared. However, you can write a constant (e.g.
1 for a descending sorting order) directly at the input contact of the function in the body.

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The variable sort_order is specified as the value 1. When the variable start is set to TRUE, the
function is carried out. It sorts the elements of the ARRAY data_field in descending order.

LD

ST sort_order:=1;

IF start THEN

 F353_FSORT(s1_Start:= data_field[0],

 s2_End:= data_field[4],

 s3_Descending:= sort_order);

END_IF;

Chapter 16

 Bistable instructions

Bistable instructions

508

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

KEEP Serves as a relay with set and reset inputs

When the SetTrigger turns ON, output of the specified relay goes ON and maintains its condition.
Output relay goes OFF when the ResetTrigger turns ON. The output relay’s ON state is
maintained until a ResetTrigger turns ON regardless of the ON or OFF states of the SetTrigger. If
the SetTrigger and ResetTrigger turn ON simultaneously, the ResetTrigger is given priority.

PLC types Availability of KEEP (see page 1328)

Variable Data type Function

Set Trigger BOOL sets Address output, i.e. turns in ON

Reset
Trigger

BOOL resets Address output, i.e. turns it OFF

Address BOOL specifed relay whose status (set or reset) is kept

For Relay T/C Register Constant

Set Trigger,
Reset

Trigger

X Y R L T C - - - -

o - Y R L - - - - - -

Description KEEP serves as a relay with set and reset points.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

Address1:=KEEP(SetTrigger1, ResetTrigger1);

 Bistable instructions

509

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

SET SET, RESET

 You can use relays with the same number as many times as you
like with the SET and RST instructions. (Even if a total check is run, this is not
handled as a syntax error.)

 When the SET and RST instructions are used, the output changes with each step
during processing of the operation.

 To output a result while operation is still in progress, use a partial I/O update
instruction (F143).

 The output destination of a SET instruction is held even during the operation of
an MC instruction.

 The output destination of a SET instruction is reset when the mode is changed
from RUN to PROG. or when the power is turned off, except when a hold type
internal relay is specified as the output destination.

 Placing a DF instruction (or specifying a rising edge in LD) before the SET and
RST instructions ensures that the instruction is only executed at a rising edge.

Relays:

 Relays can be turned off using the RST instruction.

 Using the various relays with the SET and RST instructions does not result in
double output.

 It is not possible to specify a pulse relay (P) as the output destination for a SET
or RST instruction.

For Relay T/C Register Constant

SET
RST

- Y R L - - - E - -

Description SET: When the execution conditions have been satisfied, the output is turned on, and the on status
is retained.

RST: When the execution conditions have been satisfied, the output is turned off, and the off status
is retained.

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help. Since addresses are assigned directly
using FP addresses, no POU header is necessary.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Using the DF command or specifying a rising edge refines the program by making the
programming step valid for one scan only:
(1) When the input X0 is activated, the output Y0 is set.
(2) When the input X0 is turned off, the output Y0 remains set.
(3) When the input X1 is activated, the output Y0 is reset.
(4) When the input X0 is reactivated, the output Y0 is set.

Bistable instructions

510

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

FBD

LD In ladder diagram, specify a rising edge in the contact and SET or RESET in the coil:

ST When programming with structured text, enter the following:

(*TRUE and FALSE are assigned to Y0*)
IF DF(X0) THEN
 Y0:= TRUE;

END_IF;

IF DF(X1) THEN

 Y0:= FALSE;
END_IF;

Chapter 17

 Bitwise Boolean instructions

Bitwise Boolean instructions

512

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F5_BTM Bit data move

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

The operand n specifies the bit number as follows:

n: 16#

2

1 Bit position of source

Bit position of destination

Bit No. Description

0–3 source bit No. (16#0 to 16#F)

4–7 FP2/2SH and 10SH: number of bits to be transferred (16#0 to 16#F)

FP3: invalid

8–11 destination bit No. (16#0 to 16#F)

12–15 invalid

For example, reading from the right, n = 16#C01 would move from bit position one, one bit to bit
position 12 (16#C).

PLC types Availability of F5_BTM (see page 1325)

Variable Data type Function

s source 16-bit area

n specifies source and destination bit positions

d

ANY16

destination 16-bit area

The variables s and d have to be of the same data type.

Description 1 bit of the 16-bit data or constant value specified by s is copied to a bit of the 16-bit area specified
by d according to the content specified by n if the trigger EN is in the ON-state. When the 16-bit
equivalent constant is specified by s, the bit data move operation is performed internally converting
it to 16-bit binary expression.

Data types

 Bitwise Boolean instructions

513

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Explanation with example value 16#8888 and bit at position 2 moves to destination value at bit
position 15

15 . . 12 11 0

 0

15 . . 12 11 . .

8 7 4 5

 1 1 1 1 1

15 . . 12 11 . . 8 7 .

 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

. .

. . 0 8 7 4 5 . .

. 0 4 5 . .

. . . .

bit pos

source

bit pos

bit pos
target

result

Bit at position 15 is exchanged, destination value in this example: 16#7FFF

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F5_BTM(s:= input_value,

 n:= copy_operand,

 d=> output_value);

END_IF;

Bitwise Boolean instructions

514

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F6_DGT Digit data move

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Digits are units of 4 bits used when handling data. With this instruction, 16-bit data is separated into
four digits. The digits are called in order hexadecimal digit 0, digit 1, digit 2 and digit 3, beginning
from the least significant four bits:

15 . . 12 11 . . 8 7 . . 4 3 . . 0

 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1

3 2 1 0

bit

16-bit data

hexadec. digithexadec. digithexadec. digit hexadec. digit

n specifies the 3 source hexadecimal digit position, the 2 number of digits and the 1
destination hexadecimal digit position to be copied using hexadecimal data as follows:

n: 16#

3

2

1

Source: Starting hexadecimal digit position

0 Hexadecimal digit 0

1 Hexadecimal digit 1

2 Hexadecimal digit 2

3 Hexadecimal digit 3

Number of hexadecimal digits to be copied

0 Copies 1 hexadecimal digit (4 bits)

1 Copies 2 hexadecimal digits (8 bits)

2 Copies 3 hexadecimal digits (12 bits)

3 Copies 4 hexadecimal digits (16 bits)

Destination: Starting hexadecimal digit position

0 Hexadecimal digit 0

1 Hexadecimal digit 1

2 Hexadecimal digit 2

3 Hexadecimal digit 3

Following are some patterns of digit transfer based on the specification of n.

 Specify n: 16#101 when hexadecimal digit 1 of the source is copied to

Description

The hexadecimal digits in the 16-bit data or in the 16-bit equivalent constant specified by s are
copied to the 16-bit area specified by d as specified by n.

 Bitwise Boolean instructions

515

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

hexadecimal digit 1 of the destination.

3 2 1 0

s

↓

d

3 2 1 0

digit

digit

 Specify n: 16#003 (short form: 16#3) when hexadecimal digit 3 of the source is
copied to hexadecimal digit 0 of the destination.

3 2 1 0

s

d

3 2 1 0

digit

digit

 Specify n: 16#212 when multiple hexadecimal digits (hexadecimal digits 2 and 3)
of the source are copied to multiple hexadecimal digits (hexadecimal digits 2 and
3) of the destination.

3 2 1 0

s

↓ ↓

d

3 2 1 0

digit

digit

 Specify n: 16#210 when multiple hexadecimal digits (hexadecimal digits 0 and 1)
of the source are copied to multiple hexadecimal digits (hexadecimal digits 2 and
3) of the destination.

s

d

3 2 1 0

3 2 1 0

digit

digit

Bitwise Boolean instructions

516

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 Specify n: 16#130 when 4 hexadecimal digits (hexadecimal digits 0 to 3) of the
source are copied to 4 hexadecimal digits (hexadecimal digits 0 to 3) of the
destination.

3 2 1 0

s

d

3 2 1 0 digit

digit

PLC types Availability of F6_DGT (see page 1325)

Variable Data type Function

s 16-bit area source

n Specifies source and destination hexadecimal digit position
and number of hexadecimal digits

d

ANY16

16-bit area destination

For Relay T/C Register Constant

s, n WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. The values for source and
output in the Monitor Header of the ladder diagram body have been set to display the hexadecimal
value by activating the Hex button in the tool bar.

 Bitwise Boolean instructions

517

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

IF start THEN

 F6_DGT(s:= source,

 n:= specify_n,

 d=> output);

END_IF;

Bitwise Boolean instructions

518

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F65_WAN 16-bit data AND

· ·· · · · · · ·

s1

15

0 1 0

12

0

11

1 1 0

8

1

7

1 0 1

4

1

3

1 0 0

0

1

· ·· · · · · · ·

s2

15

0 0 0

12

0

11

0 0 0

8

0

7

1 1 1

4

1

3

1 1 1

0

1

· ·· · · · · · ·

d

15

0 0 0

12

0

11

0 0 0

8

0

7

1 0 1

4

1

3

1 0 0

0

1

Bit position

Bit position

Bit position

start: ON

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F65_WAN (see page 1326)

Variable Data type Function

s1, s2 16-bit area or 16-bit equivalent constant to be compared

d ANY16 16-bit area for storing AND operation result

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description Executes AND operation of each bit in 16-bit equivalent constant or 16-bit data specified by s1 and
s2 if the trigger EN is in the ON-state. The AND operation result is stored in the 16-bit area
specified by d. When 16-bit equivalent constant is specified by s1 or s2, the AND operation is
performed internally converting it to 16-bit binary expression. You can use this instruction to turn
OFF certain bits of the 16-bit data.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Bitwise Boolean instructions

519

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F65_WAN(value_1, value_2, output_value);

END_IF;

Bitwise Boolean instructions

520

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F66_WOR 16-bit data OR

· ·· · · · · · ·

s1

15

0 1 0

12

0

11

1 1 0

8

1

7

1 0 1

4

1

3

1 0 0

0

1

· ·· · · · · · ·

s2

15

0 0 0

12

0

11

0 0 0

8

0

7

1 1 1

4

1

3

1 1 1

0

1

· ·· · · · · · ·

d

15

0 1 0

12

0

11

1 1 0

8

1

7

1 1 1

4

1

3

1 1 1

0

1

Bit position

Bit position

start: ON

Bit position

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F66_WOR (see page 1326)

Variable Data type Function

s1, s2 16-bit area or 16-bit equivalent constant to be compared

d ANY16 16-bit area for storing OR operation result

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description Executes OR operation of each bit in 16-bit equivalent constant or 16-bit data specified by s1 and
s2 if the trigger EN is in the ON-state. The OR operation result is stored in the 16-bit area specified
by d. When 16-bit equivalent constant is specified by s1 or s2, the OR operation is performed
internally converting it to 16-bit binary expression. You can use this instruction to turn ON certain
bits of the 16-bit data.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Bitwise Boolean instructions

521

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F66_WOR(value_1, value_2, output_value);

END_IF;

Bitwise Boolean instructions

522

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F67_XOR 16-bit data exclusive OR

· ·· · · · · · ·

s1

15

0 1 0

12

0

11

1 1 0

8

1

7

1 0 1

4

1

3

1 0 0

0

1

· ·· · · · · · ·

s2

15

0 0 0

12

0

11

0 0 0

8

0

7

1 1 1

4

1

3

1 1 1

0

1

· ·· · · · · · ·

d

15

0 1 0

12

0

11

1 1 0

8

1

7

0 1 0

4

0

3

0 1 1

0

0

start: ON

Bit position

Bit position

Bit position

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F67_XOR (see page 1326)

Variable Data type Function

s1, s2 16-bit area or 16-bit equivalent constant to be compared

d ANY16 16-bit area for storing XOR operation result

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description Executes exclusive OR operation of each bit in 16-bit equivalent constant or 16-bit data specified
by s1 and s2 if the trigger EN is in the ON-state. The exclusive OR operation result is stored in the
16-bit area specified by d. When 16-bit equivalent constant is specified by s1 or s2, the exclusive
OR operation is performed internally converting it to 16-bit binary expression. You can use this
instruction to review the number of identical bits in the two 16-bit data.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Bitwise Boolean instructions

523

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F67_XOR(value_1, value_2, output_value);

END_IF;

Bitwise Boolean instructions

524

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F68_XNR 16-bit data exclusive NOR

· ·· · · · · · ·

s1

15

0 1 0

12

0

11

1 1 0

8

1

7

1 0 1

4

1

3

1 0 0

0

1

· ·· · · · · · ·

s2

15

0 0 0

12

0

11

0 0 0

8

0

7

1 1 1

4

1

3

1 1 1

0

1

· ·· · · · · · ·

d

15

1 0 1

12

1

11

0 0 1

8

0

7

1 0 1

4

1

3

1 0 0

0

1

Bit position

start: ON

Bit position

Bit position

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F68_XNR (see page 1326)

Variable Data type Function

s1, s2 16-bit area or 16-bit equivalent constant to be compared

d ANY16 16-bit area for storing NOR operation result

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description Executes exclusive NOR operation of each bit in 16-bit equivalent constant or 16-bit data specified
by s1 and s2 if the trigger EN is in the ON-state. The exclusive NOR operation result is stored in
the 16-bit area specified by d. When 16-bit equivalent constant is specified by s1 or s2, the
exclusive NOR operation is performed internally converting it to 16-bit binary expression. You can
use this instruction to review the number of identical bits in the two 16-bit data.

Data types

Operands

 Bitwise Boolean instructions

525

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F68_XNR(value_1, value_2, output_value);

END_IF;

Bitwise Boolean instructions

526

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F69_WUNI 16-bit data unite

[d] = ([s1] AND [s3]) OR ([s2] AND (NOT[s3]))

s1

1010 1011 1100 1101
A B C D

s3

s2

0001 0010 0011 0100
1 2 3 4

1111 1111 0000 1111
F F 0 F

0000 0000 1111 0000
0 0 F 0

1010 1011 0000 1101
A B 0 D

d

1010 1011 0011 1101
A B 3 D

0000 0000 0011 0000
0 0 3 0

s1 AND s3 s2 AND NOT s3

 Bit inverted of s3

OR

ANDAND

When the value at input s3 = 16#0, the value at input s2 is returned at output d.

When the value at input s3 = 16#FFFF, the value at input s1 is returned at output d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F69_WUNI (see page 1326)

Variable Data type Function

s1, s2 16-bit area or 16-bit equivalent constant to be compared

s3 16-bit area that stores master data for combination or 16-bit
equivalent constant data

d

ANY16

16-bit area for storing calculated result

The variables s1, s2, s3 and d have to be of the same data type.

Description The function combines the two values at inputs s1 and s2 with the value at input s3 by bit-unit
processing. The result of the function is returned at output d. The data-unite is calculated as
follows:

Data types

 Bitwise Boolean instructions

527

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s1, s2, s3 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R900B %MX0.900.11 for an instant the result calculated is 0.

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

In this example the input variables input_value_1, input_value _2 and selection are declared.
However, you can write constants directly at the input contact of the function instead.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F69_WUNI(s1:= input_value1,

 s2:= input_value2,

 s3_Mask:= selection,

 d=> output_value);

END_IF;

Bitwise Boolean instructions

528

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F215_DAND 32-bit data AND

Description

s1 s2 d

0 0 0

0 1 0

1 0 0

1 1 1

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F215_DAND (see page 1323)

Variable Data type Function

s1 32-bit equivalent constant or 32-bit area

s2 32-bit equivalent constant or 32-bit area

d

ANY32

32-bit area for storing AND operation result

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the result calculated (output d) is 0.

In this example the input variables input_value_1 and input_value _2 are declared. However, you

The function performs a bit-wise AND operation on two 32-bit data items at inputs s1 and s2. The
result of the function is returned at output d.

Truth
Table:

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Bitwise Boolean instructions

529

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

can write constants directly at the input contact of the function instead.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF START THEN

 F215_DAND(dint1, dint2, dint3);

END_IF;

Bitwise Boolean instructions

530

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F216_DOR 32-bit data OR

Description

s1 s2 d

0 0 0

0 1 1

1 0 1

1 1 1

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F216_DOR (see page 1323)

Variable Data type Function

s1 32-bit equivalent constant or 32-bit area

s2 32-bit equivalent constant or 32-bit area

d

ANY32

32-bit area for storing OR operation result

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the result calculated (output d) is 0.

In this example the input variables input_value_1 and input_value _2 are declared. However, you

The function performs a bit-wise OR operation on two 32-bit data items at inputs s1 and s2. The
result of the function is returned at output d.

Truth
Table:

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Bitwise Boolean instructions

531

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

can write constants directly at the input contact of the function instead.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F216_DOR(input_value_1, input_value_2, output_value);

END_IF;

Bitwise Boolean instructions

532

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F217_DXOR 32-bit data XOR

Description

s1 s2 d

0 0 0

0 1 1

1 0 1

1 1 0

Using this instruction you can check how many bits in the two 32-bit data items are different, for
example. At each position in which the bits at inputs s1 and s2 are different, a 1 is added in the
result.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F217_DXOR (see page 1323)

Variable Data type Function

s1 32-bit equivalent constant or 32-bit area

s2 32-bit equivalent constant or 32-bit area

d

ANY32

32-bit area for storing XOR operation result

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the result calculated (output d) is 0.

The functions a bit-wise exclusive OR operation on two 32-bit data items at inputs s1 and s2. The
result of the function is returned at output d.

Truth
Table:

Data types

Operands

Error flags

 Bitwise Boolean instructions

533

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

In this example the input variables input_value_1 and input_value _2 are declared. However, you
can write constants directly at the input contact of the function instead.

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F217_DXOR(input_value_1, input_value_2, output_value);

END_IF

Bitwise Boolean instructions

534

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F218_DXNR 32-bit data XNR

Description

s1 s2 d

0 0 1

0 1 0

1 0 0

1 1 1

Using this instruction you can check how many bits in the two 32-bit data items are the same. At
each position in which the bits at inputs s1 and s2 match, a 1 is produced in the result.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F218_DXNR (see page 1323)

Variable Data type Function

s1 32-bit equivalent constant or 32-bit area

s2 32-bit equivalent constant or 32-bit area

d

ANY32

32-bit area for storing XNR operation result

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the result calculated (output d) is 0.

The function performs a bit-wise exclusive NOR operation on two 32-bit data items at inputs s1 and
s2. The result of the function is returned at output d.

Truth
Table:

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

 Bitwise Boolean instructions

535

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable output is set to TRUE, the function F218_DXNR is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F218_DXNR(input_value_1, 2#11110001010100111, output_value);

END_IF;

Bitwise Boolean instructions

536

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F219_DUNI 32-bit data unites 12

[d] = ([s1] AND [s3]) OR ([s2] AND (NOT[s3]))

s1

1010 1011 1100 1101
A B C D

s3

OR

s2

0001 0010 0011 0100
1 2 3 4

1111 1111 0000 1111
F F 0 F

1010 1011 0000 1101
A B 0 D

1010 1011 0000 1101
A B 0 D

d

1010 1011 0011 1101
A B 3 D

0001 0010 1100 1101
1 2 C D

0000 0000 0011 0000
0 0 3 0

0001 0010 0000 0000
1 2 0 0

1010 1011 1100 1101
A B C D

0001 0010 0011 0100
1 2 3 4

0000 0000 1111 1111
0 0 F F

0000
0

0000 0000 1111 0000
0 0 F 0

1111 1111 0000
F F 0

Bit invert of s3

AND AND

s1 AND s3 s2 AND NOT s3

When the value at input s3 = 16#0, then the value at input s2 is returned at output d.

When the value at input s3 = 16#FFFFFFFF, then the value at input s1 is returned at output d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F219_DUNI (see page 1323)

Variable Data type Function

s1 32-bit equivalent constant or 32-bit area

s2 32-bit equivalent constant or 32-bit area

s3 32-bit area that stores master data for combination or 32-bit
equivalent constant

d

ANY32

32-bit area for storing result

The variables s1, s2, s3 and d have to be of the same data type.

Description The function combines the two values at inputs s1 and s2 bit-wise with the value at input s3. The
result of the function is returned at output d. The data-unite is calculated as follows:

Data types

 Bitwise Boolean instructions

537

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s1, s2, s3 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the result calculated (output d) is 0.

In this example the input variables input_value_1, input_value _2 and selection are declared.
However, you can write constants directly at the input contact of the function instead.

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F219_DUNI(s1:= input_value1,

 s2:= input_value2,

 s3_Mask:= selection,

 d=> output_value);

END_IF;

Bitwise Boolean instructions

538

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F130_BTS 16-bit data bit set

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F130_BTS (see page 1321)

Variable Data type Function

d ANY16 16-bit area

n INT specifies bit position to be set

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

Description Turns ON the bit specified by the bit position at n of the 16-bit data specified by d if the trigger EN
is in the ON-state. Bits other than the bit specified do not change. The range of n is 0 to 15.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F130_BTS(n:= 0,

 d=> output_value);

END_IF;

 Bitwise Boolean instructions

539

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F131_BTR 16-bit data bit reset

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F131_BTR (see page 1321)

Variable Data type Function

d ANY16 16-bit area

n INT specifies bit position to be reset

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

Description Turns OFF the bit specified by the bit position at n of the 16-bit data specified by d if the trigger EN
is in the ON-state. Bits other than the bit specified do not change. The range of n is 0 to 15.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F131_BTR(n:= 2,

 d=> output_value);

END_IF;

Bitwise Boolean instructions

540

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F132_BTI 16-bit data bit invert

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F132_BTI (see page 1321)

Variable Data type Function

d ANY16 16-bit area

n INT specify bit position to be inverted

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

Description Inverts [1 (ON)  0 (OFF) or 0 (OFF)  1 (ON)] the bit at bit position n in the 16-bit data area
specified by d if the trigger EN is in the ON-state. Bits other than the bit specified do not change.
The range of n is 0 to 15.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F132_BTI(n:= 1,

 d=> output_value);

END_IF;

 Bitwise Boolean instructions

541

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F133_BTT 16-bit data test

The specified bit is checked by special internal relay R900B.

 When specified bit is 0 (OFF), special internal relay R900B (=flag) turns ON.

 When specified bit is 1 (ON), special internal relay R900B (=flag) turns OFF.

n specifies the bit position to be checked in decimal data.
Range of n: 0 to 15

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F133_BTT (see page 1321)

Variable Data type Function

d ANY16 16-bit area

n INT specifies bit position to be tested

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

Description Checks the state [1 (ON) or 0 (OFF)] of bit position n in the 16-bit data specified by d if the trigger
EN is in the ON-state.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Bitwise Boolean instructions

542

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F133_BTT(n:= 0,

 d:= value);

 IF R900B THEN

 bit0_is_TRUE := FALSE;

 ELSE

 bit0_is_TRUE := TRUE;

 END_IF;

END_IF;

 Bitwise Boolean instructions

543

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F135_BCU Number of ON bits in 16-bit data

The number of 1 (ON) bits is stored in the 16-bit area specified by d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F135_BCU (see page 1321)

Variable Data type Function

s ANY16 source

d INT destination area for storing the number of bits in the ON (1)
state

For Relay T/C Register Constant

s - WY WR WL SV EV DT LD FL -

d WX WY WR WL SV EV DT LD FL dec. or hex.

Description Counts the number of bits in the ON state (1) in the 16-bit data specified by s if the trigger EN is in
the ON-state.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F135_BCU(checked_value1, output_value);

END_IF;

Bitwise Boolean instructions

544

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F136_DBCU Number of ON bits in 32-bit data

The number of 1 (ON) bits is stored in the 16-bit area specified by d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F136_DBCU (see page 1321)

Variable Data type Function

s ANY32 source

d INT destination area for storing the number of bits in the ON (1)
state

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description Counts the number of bits in the ON state (1) in the 32-bit data specified by s if the trigger EN is in
the ON-state.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F136_DBCU(checked_value, output_value);

END_IF;

 Bitwise Boolean instructions

545

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F84_INV 16-bit data invert (one's complement)

· ·· · · · · · ·
d

15

0 1 0

12

1

11

1 1 1

8

0

7

1 0 1

4

1

3

1 1 0

0

1

· ·· · · · · · ·
d

15

1 0 1

12

0

11

0 0 0

8

1

7

0 1 0

4

0

3

0 0 1

0

0

Destination

Destination

Bit position

Bit position

start: ON

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F84_INV (see page 1326)

Variable Data type Function

d ANY16 16-bit area to be inverted

For Relay T/C Register Const.

d - WY WR WL SV EV DT LD FL -

Description Inverts each bit (0 or 1) of the 16-bit data specified by d if the trigger EN is in the ON-state. The
inverted result is stored in the 16-bit area specified by d. This instruction is useful for controlling an
external device that uses negative logic operation.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

Bitwise Boolean instructions

546

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F84_INV(invert_value);

END_IF;

 Bitwise Boolean instructions

547

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F93_UNIT 16-bit data combine

n specifies the number of data to be extracted. The range of n is 0 to 4.

The programming example provided below can be envisioned thus:

· ·· · · · · · ·15

0 0 0

12

0

11

0 0 0

8

0

7

0 0 0

4

0

3

0 0 0

0

1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

· ·· · · · · · ·15

0 0 0

12

0

11

0 1 0

8

0

7

0 0 1

4

0

3

0 0 0

0

1

Source

Bit position

Bit position

Array[0] at s

Value at d

Bit positions 12 to 15 are filled with 0s.

start: ON

Destination

Array[2] at s

Array[1] at s

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F93_UNIT (see page 1326)

Variable Data type Function

s WORD starting 16-bit area to be extracted (source)

n INT specifies number of data to be extracted

d WORD 16-bit area for storing combined data (destination)

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description Extracts each lower 4 bits (bit position 0 to 3) starting with the 16-bit area specified by s and
combines the extracted data into 1 word if the trigger EN is in the ON-state. The result is stored in
the 16-bit area specified by d.

Data types

Operands

Bitwise Boolean instructions

548

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the area specified using the index
modifier exceeds the limit

 the value at n  5

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. The binary values in the
illustration on the main help page serve as the array values in data_input. In this example,
variables are declared in the POU header. However, you may assign constants directly at the input
function’s contact pins instead.

LD
In this example, (Monitoring) was activated so you can see the results immediately.

 Bitwise Boolean instructions

549

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F94_DIST 16-bit data distribution

n specifies the number of data to be divided. The range of n is 0 to 4. When 0 is specified by n, this
instruction is not executed.

The programming example provided below can be envisioned thus:

· ·· · · · · · ·15

0 0 0

12

0

11

0 0 0

8

0

7

0 0 0

4

0

3

0 0 0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

· ·· · · · · · ·15

0 1 1

12

1

11

0 0 1

8

1

7

0 0 0

4

1

3

0 0 0

0

0

n: 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1

1

11

Source

Destination

Bit position

Bit position

Value at s

Array[0] at d

X0: ON

Array[1] at d

Array[3] at d

Array[2] at d

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F94_DIST (see page 1326)

Variable Data type Function

s WORD 16-bit area or equivalent constant to be divided (source)

n INT specifies number of data to be divided

d WORD starting 16-bit area for storing divided data (destination)

For Relay T/C Register Constant

s, n WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description Divides the 16-bit data specified by s into 4-bit units and distributes the divided data into the lower
4 bits (bit position 0 to 3) of 16-bit areas starting with d if the trigger EN is in the ON-state.

Data types

Operands

Bitwise Boolean instructions

550

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the area specified using the index
modifier exceeds the limit

 the value at n  5 the last area for the
result exceeds the limit

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. The binary values in the
illustration on main help page serve as the values calculated. In this example, variables are
declared in the POU header. Also, a constant value of 4 is assigned directly at the contact pin for
n_Number.

LD
In this example, (Monitoring) was activated so you can see the results immediately.

 Bitwise Boolean instructions

551

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F182_FILTER Time constant processing

For bits stored in the area specified by s1_InputData a debouncing is executed if the resulting
value for s2_InputMask is "1". The result of the debouncing operation is output to d_OutputData.
The debouncing time is defined via s3_FilterTime (0 to 30000ms). If s2_InputMask is "0" no
debouncing takes place and the corresponding bit at s1_InputData passes unchanged to
d_OutputData.

In the following figure, the bits in d_OutputData and their values will be the same as s1_InputData
after the filter time has elapsed or, for example, if no masking takes place, e.g. s2_InputMask is
assigned the value 0.

1 0 01

0 010

1

3

6

9

12

1

3

6

9

12

0 0

. . .

. . .

. . .

s1_InputData

d_OutputData

s2_InputMask

s3_FilterTime

Bit 0 Bit F

(if InputMask = 1)

Description Filter processing is executed for specified bits and output bitwise. The instruction can be useful to
negate the effects of bounce, e.g. for a switching device.

Bitwise Boolean instructions

552

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Time charts for the filter when the value assigned to s2_InputMask is 1 (16#0001), i.e. bit 0
will be filtered, the other bits will not be filtered, and the value assigned to s3_FilterTime is
500ms.

500 ms

400 ms 500 ms

200 ms

500 ms

OFF

bStart (Trigger)

ON

ON

ON

OFF

OFF

Data is initialized when the system

detects the trigger's rising edge.

Data is initialized when the system

detects the trigger's rising edge.

The instruction does not operate

while the trigger is OFF.

Bit 0 of input

data

Bit 0 of filter

result

Time chart when the value assigned to s2_InputMask is 0 (16#0000), i.e. bit 0 to F will be not
filtered

ON

ON

OFF

OFF

The instruction does not operate while

the trigger is OFF.

Data is initialized when the system

detects the trigger's rising edge.
Data is initialized when the system

detects the trigger's rising edge.Bit 1 to 15 of

input data

Bit 1 to 15 of

filter result

bStart (Trigger)

ON

PLC types Availability of F182_FILTER (see page 1322)

Variable Data type Function

s1_InputData Input data whose bits will be filtered according to the
input mask

s2_InputMask Input mask which specifies which bits will be filtered

s3_FilterTime Specifies the minimum off- and on-time in ms

d_OutputData

ANY16

Filtered data

Pre-
cautions
during
program-
ming

When the system detects a trigger's rising edge, all the bits of the input specified by s1_InputData
are output directly in d_OutputData and the effects of bounce are not prevented. A scan time error
may occur during filter processing, for a maximum of 1 scan.

Data types

 Bitwise Boolean instructions

553

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Const.

s1 WX WY WR WL SV EV DT LD FL -

s2, s3 WX WY WR WL SV EV DT LD FL dec. or hex

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 The filter processing time specified by
s3_FilterTime is less than 0 or greater
than 30000.

Operands

Error flags

Example In this example, the same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

In this example, the input variables wInputData, wInputMask and iFilterTime are declared.
However, for wInputMask and iFilterTime, you can write a constant directly at the input contact of
the function instead. Additionally, the variable bStart is declared to start the filter function and the
variable wOutputData is declared for storing the result.

Body The filtered bits will only be written to wOutputData after the filter time has elapsed (see LD
example). See time charts (see page 550) for a detailed explanation. wOutputdata has the value
16#A9B0 for 100ms, when this time has been elapsed wOutputData has the value 16#A9BC.

LD

ST When programming with structured text, enter the following:

IF bStart Then

 F182_FILTER(wInputData, wInputMask, iFilterTime, wOutputData);

End_If;

Chapter 18

 Bit-shift instructions

Bit-shift instructions

556

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LSR Left shift register

DataInput: specifies the state of new shift-in data:

 new shift-in data 1: when the input is ON

 new shift-in data 0: when the input is OFF

ShiftLeftTrigger: shifts 1 bit to the left when the leading edge of the trigger is detected

Reset: turns all the bits of the data area to 0 if the trigger is in the ON-state

The area available for this instruction is only the word internal relay (WR).

PLC types Availability of LSR (see page 1328)

 Word internal relay (WR) number range, depends on the free area in the Extras
 Options  Compile Options  Address Ranges menu.

Variable Data type Function

DataInput BOOL when ON, shift-in data = 1, when OFF, shift-in data = 0

ShiftLeftTrigger BOOL shifts one bit to the left when ON

Reset BOOL resets data area to 0 when ON

d_WR ANY16 specified data area where data shift takes place

For Relay T/C

DataInput,
ShiftLeftTrigger,
Reset

X Y R L T C

d_WR - - WR - - -

Description Shifts 1 bit of the specified data area (d_WR) to the left (to the higher bit position). When
programming the LSR instruction, be sure to program the data input (DataInput), shift
(ShiftLeftTrigger) and reset triggers (Reset).

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Bit-shift instructions

557

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body

ST When programming with structured text, enter the following:

Output:=LSR(DataInput, ShiftTrigger, ResetTrigger);

Bit-shift instructions

558

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F100_SHR Right shift of 16-bit data in bit units

0 0

· · · · · · · ·
d

15 1211 8 7 4 3 0

· · · · · · · ·
d

15

0

12

0

11 8 7 4 3 0

n

2

1

Bit position

Bit position

When n bits are shifted to the right, the data in the nth bit 1 is transferred to special internal relay
R9009 (carry-flag) and the higher n bits of the 16-bit data area 2 specified by d are filled with 0s.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F100_SHR (see page 1320)

Variable Data type Function

d ANY16 16-bit area to be shifted to the right

n INT number of bits to be shifted

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

Description Shifts n bits of 16-bit data area specified by d to the right (to the lower bit position) if the trigger EN
is in the ON-state.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

 Bit-shift instructions

559

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F100_SHR(n:= 4 ,

 d=> data);

END_IF;

Bit-shift instructions

560

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F101_SHL Left shift of 16-bit data in bit units

0 0 0

· ·· · · · · · ·
D

15 1211 8 7 4 3 0

· · · · · · · ·
D

15 1211 8 7 4 3

0

0

n

1

2

Bit position

Bit position

When n bits are shifted to the left, the data in the nth bit 1 is transferred to special internal relay
R9009 (carry-flag) and n bits 2 starting with bit position 0 are filled with 0s.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F101_SHL (see page 1320)

Variable Data type Function

d ANY16 16-bit area to be shifted to the left

n INT number of bits to be shifted

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

Description Shifts n bits of 16-bit data area specified by d to the left (to the higher bit position) if the trigger EN
is in the ON-state.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

 Bit-shift instructions

561

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F101_SHL(n:= 4,

 d=> data);

END_IF;

Bit-shift instructions

562

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F102_DSHR Right shift of 32-bit data in bit units

31

00000000

0

CY

16 15

Data

[n bits]

The data in the nth bit
is transferred to R9009
(carry flag)The [n bits] are filled with 0s

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F102_DSHR (see page 1320)

Variable Data type Function

n INT number of bits to be shifted (range: 16#0 to 16#FF)

d ANY32 32-bit area to be shifted to the right

For Relay T/C Register Constant

n WX WY WR WL SV EV DT LD FL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9009 %MX0.900.9 for an instant  the bit at position n - 1 has the value 1.

Description The function shifts the value at output d to the right. The number of bits at output d to be shifted to
the right is specified by the value assigned at input n. This shift can lie between 0 and 255 (only the
lower value byte of n is effective). Bits cleared because of the shift become 0. When input n = 0, no
shift takes place. A shifting distance larger than 32 does not make sense, since when n = 32 the
value at output d is already filled with zeros. The bit at position n - 1 (the last bit shifted out to the
right) is simultaneously stored in special internal relay R9009 (carry flag) so that it can be evaluated
accordingly. When n = 0 the content of the carry flag does not change.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

 Bit-shift instructions

563

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

In the POU header, all input and output variables are declared that are used for programming this
function.

POU header

Body When the variable start changes from FALSE to TRUE, the function is carried out. It shifts out 4
bits (corresponds to one position in a hexadecimal representation) to the right. The 4 bits in data
resulting from the shift are filled with zeros. At input n the constant 4 is assigned directly to the
function. You may, however, declare an input variable in the POU header instead.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F102_DSHR(n:= 4 ,

 d=> data);

END_IF;

Bit-shift instructions

564

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F103_DSHL Left shift of 32-bit data in bit units

31

00000000

0

CY

16 15

Daten

[n bits]

The data in the nth
bit is transferred to
R9009 (carry flag). [n bits] starting from bit position 0

are filled with 0s.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F103_DSHL (see page 1320)

Variable Data type Function

n INT number of bits to be shifted (range: 16#0 to 16#FF)

d ANY32 32-bit area to be shifted to the left

For Relay T/C Register Constant

n WX WY WR WL SV EV DT LD FL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9009 %MX0.900.9 for an instant  the bit at position 31 - n has the value 1.

Description The function rotates the value at output d to the left. The number of bits at output d to be shifted to
the left is specified by the value assigned at input n. This shift can lie between 0 and 255 (only the
lower value byte of n is effective). Bits cleared because of the shift become 0. When input n = 0, no
shift takes place. A shifting distance larger than 32 does not make sense, since when n = 32 the
value at output d is already filled with zeros. The bit at position 31 - n (the last bit shifted out to the
left) is simultaneously stored in special internal relay R9009 (carry flag) so that it can be evaluated
accordingly. When n = 0 the content of the carry flag does not change.

Data types

Operands

Error flags

 Bit-shift instructions

565

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out. It shifts out 4
bits (corresponds to one position in a hexadecimal representation) to the left. The 4 bits in data
resulting from the shift are filled with zeros. At input n the constant 4 is assigned directly to the
function. You may, however, declare an input variable in the POU header instead.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F103_DSHL(n:= 4,

 d=> data);

END_IF;

Bit-shift instructions

566

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F105_BSR Right shift of one hexadecimal digit (4 bits) of 16-bit data

0 0 0

0

· ·· · · · · · ·15 1211 8 7 4 3 0

d

· · · · · · · ·15 1211 8 7 4 3 0

d

· · · · · · · ·15 1211 8 7 4 3 0
DT9014/
DT90014

Digit 4Hexadecimal
Bit position

Bit position

Bit position

Digit 1Digit 2Digit 3

Digit 2Digit 3Digit 4

This hexadecimal digit position becomes 0.

Digit 1

Hexadecimal

Hexadecimal

When one hexadecimal digit (4 bits) is shifted to the right,

 hexadecimal digit position 0 (bit position 0 to 3) of the data specified by d is
shifted out and is transferred to the lower digit (bit position 0 to 3) of special data
register DT9014 (DT90014 for FP2/2SH and FP10/10S/10SH).

 hexadecimal digit position 3 (bit position 12 to 15) of the 16-bit area specified by
d becomes 0.

 This instruction is useful when the hexadecimal or BCD data is handled.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F105_BSR (see page 1320)

Variable Data type Function

d ANY16 16-bit area to be shifted to the right

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

Description Shifts one hexadecimal digit (4 bits) of the 16-bit area specified by d to the right (to the lower digit
position) if the trigger EN is in the ON-state.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Bit-shift instructions

567

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F105_BSR(data);

END_IF;

Bit-shift instructions

568

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F106_BSL Left shift of one hexadecimal digit (4 bits) of 16-bit data

· ·· · · · · · ·15 1211 8 7 4 3 0

d

· · · · · · · ·15 1211 8 7 4 3 0

0d

· ·· · · · · · ·15 1211 8 7 4 3 0

0 0 0
DT9014/
DT90014

Bit position

Bit position

Bit position

Hexadecimal

Hexadecimal

Hexadecimal

This hexadecimal digit

position becomes 0.

Digit 4

Digit 4

Digit 3

Digit 3

Digit 2

Digit 2

Digit 1

Digit 1

 When one hexadecimal digit (4 bits) is shifted to the left,

 hexadecimal digit position 3 (bit position 12 to 15) of the data specified by d is
shifted out and is transferred to the lower digit (bit position 0 to 3) of special data
register DT9014 (DT90014 for FP2/2SH and FP10/10S/10SH).

 hexadecimal digit position 0 (bit position 0 to 3) of the 16-bit area specified by d
becomes 0.

This instruction is useful when the hexadecimal or BCD data is handled.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F106_BSL (see page 1320)

Variable Data type Function

d ANY16 16-bit area to be shifted to the left

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

Description Shifts one hexadecimal digit (4 bits) of the 16-bit area specified by d to the left (to the higher digit
position) if the trigger EN is in the ON-state.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header

 Bit-shift instructions

569

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F106_BSL(data);

END_IF;

Bit-shift instructions

570

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F108_BITR Right shift of multiple bits of 16-bit data range

d2 d1

000

Specified data range

start: ON

n bits

n bits are

shifted out

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F108_BITR (see page 1320)

Variable Data type Function

d1 starting 16-bit area

d2 ANY16 ending 16-bit area

n INT number of bits to be shifted

The addresses of the variables at inputs d1 and d2 have to have the same address type.

For Relay T/C Register Constant

d1, d2 - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the address of the variables at the
outputs d1 > d2 or the value at input is n
 16.

Description The function shifts the bits of a specified data range, whose beginning and end are specified by the
outputs d1 and d2 to the right. The number of bits by which the data range is to be shifted to the
right is specified by the value assigned at input n. The value may lie between 0 and 16. Bits
cleared because of the shift become 0. When input n = 0, no shift takes place. When input n = 16,
a shift of one WORD occurs, i.e. the same process takes place as with function F110_WHSL (see
page 573).

Data types

Operands

Error flags

 Bit-shift instructions

571

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

In this example, the input variable number_bits is declared. However, you can write a constant
directly at the input contact of the function instead.

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out. It shifts out 4
bits (corresponds to one position in a hexadecimal representation) to the right. The 4 bits in
data_field[2] resulting from the shift are filled with zeros.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F108_BITR(n:=number_bits,

 d1_Start=> data_field[0],

 d2_End=> data_field[2]);

END_IF;

Bit-shift instructions

572

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F109_BITL Left shift of multiple bits of 16-bit data range

d2 d1

000

Specified data range

ending n bits are

shifted out
start: ON

n bits

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F109_BITL (see page 1320)

Variable Data type Function

d1 starting 16-bit area

d2 ANY16 ending 16-bit area

n INT number of bits to be shifted

The addresses of the variables at inputs d1 and d2 have to have the same address type.

For Relay T/C Register Constant

d1, d2 - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the address of the variables at the
outputs d1 > d2 or the value at input is n
 16.

Description The function shifts the bits of a specified data range, whose beginning and end are specified by the
outputs d1 and d2 to the left. The number of bits by which the data range is to be shifted to the left
is specified by the value assigned at input n. The value may lie between 0 and 16. Bits cleared
because of the shift become 0. When input n = 0, no shift takes place. When input n = 16, a shift of
one WORD occurs, i.e. the same process takes place as with function F111_WSHL (see page
575).

Data types

Operands

Error flags

 Bit-shift instructions

573

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out. It shifts out 4
bits (corresponds to one position in a hexadecimal representation) to the left. The 4 bits in
data_field[0] resulting from the shift are filled with zeros. At input n the constant 4 is assigned
directly to the function. You may, however, declare an input variable in the POU header instead.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F109_BITL(n:=4,

 d1_Start=> data_field[0],

 d2_End=> data_field[2]);

END_IF;

Bit-shift instructions

574

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F110_WSHR Right shift of one word (16 bits) of 16-bit data range

When one word (16 bits) is shifted to the right, the starting word is shifted out and the data in the
ending word becomes 0.

D2

0

D1

D2 D1

Specified data range

The data in the ending

word becomes 0

The starting word is

shifted out

d1 and d2 should be:

 the same type of operand

 d1  d2

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F110_WSHR (see page 1320)

Variable Data type Function

d1 starting 16-bit area

d2 ANY16 ending 16-bit area

The variables d1 and d2 have to be of the same data type.

For Relay T/C Register Constant

d1, d2 - WY WR WL SV EV DT LD FL -

Description Shifts one word (16 bits) of the data range specified by d1 (starting) and d2 (ending) to the right (to
the lower word address) if the trigger EN is in the ON-state.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

 Bit-shift instructions

575

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F110_WSHR(d1_Start=> source_array[1],

 d2_End=> source_array[3]);

END_IF;

Bit-shift instructions

576

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F111_WSHL Left shift of one word (16 bits) of 16-bit data range

When one word (16 bits) is shifted to the left, the ending word is shifted out and the data in the
starting word becomes 0.

D2

0

D1

D2 D1

Specified data range

The ending word

is shifted out

The data in the starting

word becomes 0

d1 and d2 should be:

 the same type of operand

 d1  d2

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F111_WSHL (see page 1320)

Variable Data type Function

d1 starting 16-bit area

d2 ANY16 ending 16-bit area

The variables d1 and d2 have to be of the same data type.

For Relay T/C Register Constant

d1, d2 - WY WR WL SV EV DT LD FL -

Description Shifts one word (16 bits) of the data range specified by d1 (starting) and d2 (ending) to the left (to
the higher word address) if the trigger EN is in the ON-state.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header

 Bit-shift instructions

577

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F111_WSHL(d1_Start=> source_array[1],

 d2_End=> source_array[3]);

END_IF;

Bit-shift instructions

578

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F112_WBSR Right shift of one hex. digit (4 bits) of 16-bit 5 data range

When one hexadecimal digit (4 bits) is shifted to the right:

 the data in the lower hexadecimal digit (bit position 0 to 3) of the 16-bit data
specified by d1 is shifted out.

 the data in the higher hexadecimal digit (bit position 12 to 15) of the 16-bit data
specified by d2 becomes 0.

· · · · · · · ·15 1211 8 7 4 3 0
d2

· · · · · · · ·15 1211 8 7 4 3 0
d1

0
· · · · · · · ·15 1211 8 7 4 3 0

d2
· · · · · · · ·15 1211 8 7 4 3 0

d1

· ·15

· ·15

· · 0

· · 0

Specified data range

The higher hexadecimal

digit (bit positions 12 to

15) becomes 0

The data in the lower

hexadecimal digit (bit

positions 0 to 3) is

shifted out

d1 and d2 should be:

 the same type of operand

 d1  d2

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F112_WBSR (see page 1320)

Variable Data type Function

d1 starting 16-bit area

d2
ANY16

ending 16-bit area

The variables d1 and d2 have to be of the same data type.

Description Shifts one hexadecimal digit (4 bits) of the data range specified by d1 (starting) and d2 (ending) to
the right (to the lower digit position) if the trigger EN is in the ON-state.

Data types

 Bit-shift instructions

579

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

d1, d2 - WY WR WL SV EV DT LD FL -

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F112_WBSR(d1_Start=> source_array[1],

 d2_End=> source_array[3]);

END_IF;

Bit-shift instructions

580

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F113_WBSL Left shift of one hex. digit (4 bits) of 16-bit data range

When one hexadecimal digit (4 bits) is shifted to the left,

 the data in the higher hexadecimal digit (bit position 12 to 15) of the 16-bit data
specified by d2 is shifted out.

 the data in the lower hexadecimal digit (bit position 0 to 3) of the 16-bit data
specified by d1 becomes 0.

· · · · · · · ·15 1211 8 7 4 3 0
d2

· · · · · · · ·15 1211 8 7 4 3 0
d1

0
· · · · · · · ·15 1211 8 7 4 3 0

d2
· · · · · · · ·15 1211 8 7 4 3 0

d1

· ·15

· ·15

· · 0

· · 0

The data in the higher

hexadecimal digit (bit

positions 12 to 15) is

shifted out

Specified data range

The lower hexadecimal digit (bit

positions 0 to 3) becomes 0

d1 and d2 should be:

 the same type of operand

 d1  d2

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F113_WBSL (see page 1320)

Variable Data type Function

d1 starting 16-bit area

d2
ANY16

ending 16-bit area

The variables d1 and d2 have to be of the same data type.

Description Shifts one hexadecimal digit (4 bits) of the data range specified by d1 (starting) and d2 (ending) to
the left (to the higher digit position) if the trigger EN is in the ON-state.

Data types

 Bit-shift instructions

581

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

d1, d2 - WY WR WL SV EV DT LD FL -

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F112_WBSR(d1_Start=> source_array[1],

 d2_End=> source_array[3]);

END_IF;

Bit-shift instructions

582

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F119_LRSR LEFT/RIGHT shift register

Left/right shift is a shift register which shifts 1 bit of the specified data area to the left (to the higher
bit position) or to the right (to the lower bit position).

LeftDirection Left/right trigger; specifies the direction of the shift-out.

LeftDirection = TRUE shifting out to the left.

LeftDirection = FALSE shifting out to the right.

Specifies the new shift-in data.

New shift-in data = TRUE: when the data input is in the TRUE-state.

DataInput

New shift-in data = FALSE: when the data input is in the FALSE-state.

ShiftTrigger Shifts 1 bit to the left or right when the rising edge of the trigger is detected (FALSE 
TRUE).

Reset Turns all the bits of the data range specified by d1_Start and d2_End to 0 if this trigger
is in the TRUE-state.

d1_Start Start of 16-bit area.

d2_End End of 16-bit area.

Carry Shifted-out bit.

Description Shifts 1 bit of the 16-bit data range to the left or to the right.

 Bit-shift instructions

583

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

15 . .1211 . . 8 7 . . 4 3 . . 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

15 . .12 11 . . 8 7 . . 4 3 . . 0
1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0

15 . .1211 . . 8 7 . . 4 3 . . 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

15 . .12 11 . . 8 7 . . 4 3 . . 0
0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0

15 . .12 11 . . 8 7 . . 4 3 . . 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

15 . .12 11 . . 8 7 . . 4 3 . . 0
1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0

15 . .12 11 . . 8 7 . . 4 3 . . 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

15 . .12 11 . . 8 7 . . 4 3 . . 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0

d1_Start

d1_End

d1_Start

Shifted-out bit is

transferred to

R9009 (carry flag).

ShiftTrigger: OFF, ON

When DataInput turns on, “1” is shifted into bit position 0.

ShiftTrigger: OFF, ON

When DataInput turns off, “0” is shifted into bit position 0.

d1_End

LeftDirection: OFF

When DataInput turns off, “0” is shifted into bit

position 15.

When DataInput turns on, “1” is shifted into

bit position 15.

Shifted-out bit is transferred to

R9009 (carry flag)

Bit position

LeftDirection: ON

Left shift operation

Right shift operation

Bit position
Data

Bit position
Data

Data
Bit position

Data

PLC types Availability of F119_LRSR (see page 1320)

  The variables 'd1 and d2' have to be of the same data type.

 This function does not require a variable at the output "Carry".

Variable Data type Function

LeftDirection BOOL specifies direction of shift, TRUE = left, FALSE = right

DataInput BOOL shift-in data, TRUE = 1, FALSE = 0

ShiftTrigger BOOL activates shift

Reset BOOL resets data in area specified by d1 and d2 to 0

Carry BOOL bit shifted out

d1 starting 16-bit area

d2
ANY16

ending 16-bit area

Data types

Bit-shift instructions

584

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

LeftDirection,
DataInput,
ShiftTrigger,
Reset

X Y R L T C - - - -

Carry - Y R L T C - - - -

d1, d2 - WY WR WL SV EV DT LD FL -

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable enable_leftShift is set to TRUE, the function shifts left, else it shifts right.

 Bit-shift instructions

585

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

carry_out_value:=F119_LRSR(LeftDirection:= enable_leftShift,

 DataInput:= input,

 ShiftTrigger:= shift_trigger,

 Reset:= reset,

 d1_Start:= data_array[0],

 d1_End:= data_array[2]);

Bit-shift instructions

586

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F120_ROR 16-bit data right rotate

The following example rotates one bit to the right:

· ·· · · · · · ·
D

15 12 11 8 7 4 3 0

· · · · · · · ·
D

15 1211 8 7 4 3 0

1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

01 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Bit position

Data in bit position 0
Special internal relay
R9009 (carry flag)

Bit position

When n bits are rotated to the right,

 the data in bit position n-1 (nth bit starting from bit position 0) is transferred to the
special internal relay R9009 (carry-flag).

 n bits starting from bit position 0 are shifted out to the right and into the higher bit
positions of the 16-bit data specified by d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F120_ROR (see page 1320)

Variable Data type Function

d ANY16 16-bit area

n INT number of bits to be rotated

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

Description Rotates n bits of the 16-bit data specified by d to the right if the trigger EN is in the ON-state.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Bit-shift instructions

587

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F120_ROR(n:= 4,

 d=> rot_value);

END_IF;

Bit-shift instructions

588

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F121_ROL 16-bit data left rotate

The following example rotates one bit to the left:

· ·· · · · · · ·
D

15 12 11 8 7 4 3 0

· ·· · · · · · ·
D

15 12 11 8 7 4 3 0

0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

01 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Bit position

Bit position

Special internal relay
R9009 (carry flag)

Data in bit position 15

When n bits are rotated to the left,

 the data in bit position 16-n (nth bit starting from bit position 15) is transferred to special internal
relay R9009 (carry-flag).

 n bits starting from bit position 15 are shifted out to the left and into the lower bit positions of the
16-bit data specified by d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F121_ROL (see page 1320)

Variable Data type Function

d ANY16 16-bit area

n INT number of bits to be rotated

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

Description Rotates n bits of the 16-bit data specified by d to the left if the trigger EN is in the ON-state.

Data types

Operands

 Bit-shift instructions

589

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F121_ROL(n:= 4,

 d=> rot_value);

END_IF;

Bit-shift instructions

590

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F122_RCR 16-bit data right rotate with carry-flag data

This example rotates one bit to the right:

· ·· · · · · · ·

D

15 1211 8 7 4 3 0

· ·· · · · · · ·
D

15 1211 8 7 4 3 0

1

00 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Bit position

Bit position

Special internal relay
R9009 (carry flag)

Carry flag data “0”

When n bits with carry-flag data are rotated to the right,

 the data in bit position n-1 (nth bit starting from bit position 0) are transferred to
special internal relay R9009 (carry-flag).

 n bits starting from bit position 0 are shifted out to the right and carry-flag data
and n-1 bits starting from bit position 0 are subsequently shifted into the higher
bit positions of the 16-bit data specified by d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F122_RCR (see page 1320)

Variable Data type Function

d ANY16 16-bit area

n INT number of bits to be rotated

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

Description Rotates n bits of the 16-bit data specified by d including the data of carry-flag to the right if the
trigger EN is in the ON-state.

Data types

Operands

 Bit-shift instructions

591

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F122_RCR(n:= 4,

 d=> rot_value);

END_IF;

Bit-shift instructions

592

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F123_RCL 16-bit data left rotate with carry-flag data

This example rotates one bit to the left:

· · · · · · · ·
D

15 12 11 8 7 4 3 0

· · · · · · · ·
D

15 12 11 8 7 4 3 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

01 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0Special internal relay
R9009 (carry flag)

Carry flag data “0”

Bit position

Bit position

When n bits with carry-flag data are rotated to the left,

the data in bit position 16-n (nth bit starting from bit position 15) is transferred to special internal
relay R9009 (carry-flag).

n bits starting from bit position 15 are shifted out to the left and carry-flag data and n-1 bits starting
from bit position 15 are shifted into lower bit positions of the 16-bit data specified by d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F123_RCL (see page 1320)

Variable Data type Function

d ANY16 16-bit area

n INT number of bits to be rotated

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

Description Rotates n bits of the 16-bit data specified by d including the data of carry-flag to the left if the
trigger EN is in the ON-state.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

 Bit-shift instructions

593

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F123_RCL(n:= 4,

 d=> rot_value);

END_IF;

Bit-shift instructions

594

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F125_DROR 32-bit data right rotate

1 0 1 0 1 1 0 0 1 0 1 1
31 0

1 0 1 1 1 0 1 0 1 1 0 0

28 27 8 7 4 3· · ·

Carry
flag

data

start: ON

data

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F125_DROR (see page 1320)

Variable Data type Function

n INT number of bits to be rotated (range: 0 to 255)

d ANY32 32-bit area

For Relay T/C Register Constant

n WX WY WR WL SV EV DT LD FL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9009 %MX0.900.9 for an instant  the bit at position n - 1 of d has the value
1.

Description The function rotates the value at output d to the right. The number of bits at output d to be rotated
to the right is specified by the value assigned at input n. This shift can lie between 0 and 255 (only
the lower value byte of n is effective). Right rotate means that the bits shifted out of bit position 0
(LSB) are shifted via bit position 31 (MSB) into the value at output d. When input n = 0, no rotation
takes place. When at input n > 32, the same result is achieved as with a number n < 32: e.g. n =
32 produces the same result as when n = 0; n = 33 the same as n = 1. The bit at position n - 1 (the
last bit shifted out to the right) is simultaneously stored in special internal relay R9009 (carry flag)
so that it can be evaluated accordingly.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Bit-shift instructions

595

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start changes from FALSE to TRUE, the function is carried out. It rotates 4 bits
(corresponds to one position in a hexadecimal representation) to the right. At input n the constant 4
is assigned directly to the function. You may, however, declare an input variable in the POU header
instead.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F125_DROR(n:= 4,

 d=> data);

END_IF;

Bit-shift instructions

596

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F126_DROL 32-bit data left rotate

When input n = 0, no rotation takes place.

When at input n > 32, the same result is achieved as with a number n < 32: e.g. n = 33 produces
the same result as when n = 0; n = 34 the same as n = 1.

The bit at position 32 - n (the last bit shifted out to the right) is simultaneously stored in special
internal relay R9009 (carry flag) so that it can be evaluated accordingly.

1 0 1 0 1 1 0 0 1 0 1 1

31 0

1 1 0 0 1 0 1 0

28 27 24 23 4 3· · ·

1 0 1 1

0

data

data
start: ON

Carry flag

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F126_DROL (see page 1321)

Variable Data type Function

n INT number of bits to be rotated (range: 0 to 255)

d ANY32 32-bit area

For Relay T/C Register Constant

n WX WY WR WL SV EV DT LD FL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9009 %MX0.900.9 for an instant  the bit at position 32 - n of d has the
value 1.

Description The function rotates the value at output d to the left. The number of bits at output d to be rotated to
the left is specified by the value assigned at input n. This shift can lie between 0 and 255 (only the
lower value byte of n is effective).Left rotate means that the bits shifted out of bit position 31 (MSB)
are shifted via bit position 0 (LSB) into the value at output d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

 Bit-shift instructions

597

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out. It rotates 4 bits
(corresponds to one position in a hexadecimal representation) to the left. At input n the constant 4
is assigned directly to the function. You may, however, declare an input variable in the POU header
instead.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F126_DROL(n:= 4,

 d=> data);

END_IF;

Bit-shift instructions

598

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F127_DRCR 32-bit data right rotate with carry flag data

The bit value at bit position n - 1 is stored in the carry flag. The function shifts out n bits from bit 0
to the right, and then along with the inverted carry flag first, continues via bit 31 into the higher bit
positions. Position 32 - n now has the inverted value of the carry flag.

When input n = 0, no rotation occurs and the carry flag remains unchanged.

When at input n > 32, the same result is achieved as with a number n < 32: e.g. n = 33 produces
the same result as when n = 0; n = 34 the same as n = 1.

1 0 1 0 1 1 0 0 0 1 1

31 0

0 1 1 1 1 0 1 0 1 1 0 0

28 27 8 7 4 3· · ·

1

0

0@

@
Carry flag

Carry
flag

data

data

start: ON

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F127_DRCR (see page 1321)

Variable Data type Function

d ANY32 32-bit data area

n INT number of bits to be rotated (range: 0 to 255)

For Relay T/C Register Constant

d - DWY DWR DWL DSV DEV DDT DLD DFL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

No. IEC address Set If

R9009 %MX0.900.9 for an instant  the bit at position n - 1 has the value 1.

Description The function rotates the value at output d via the carry flag to the right. The number of bits at output
d to be rotated to the right is specified by the value assigned at input n. This shift can lie between 0
and 255 (only the lower value byte of n is effective).

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

 Bit-shift instructions

599

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out. In this example
the constant (4) is assigned to the function at input n. You may, however, declare a variable in the
POU header instead.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F127_DRCR(n:= 4,

 d=> data);

END_IF;

Bit-shift instructions

600

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F128_DRCL 32-bit data right rotate with carry flag data

The bit value at bit position 32 - n is stored in the carry flag. The function shifts out n bits to the left
via bit 31 (MSB), and then along with the inverted carry flag first, continues via bit 0 (LSB) into the
storage range. Position n - 1 now has the inverted value of the carry flag.

When input n = 0, no rotation occurs and the carry flag remains unchanged.

When at input n > 32, the same result is achieved as with a number n < 32: e.g. n = 33 produces
the same result as when n = 0; n = 34 the same as n = 1.

1 0 1 1 1 0 0 1 0 1 1

31 0

1 1 0 0 1 1 0 1

28 27 24 23 4 3· · ·

1 0 1 1

0

@ 1

@

0

start: ON

data

data

Carry
flag

Carry flag

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F128_DRCL (see page 1321)

Variable Data type Function

d ANY32 32-bit area

n INT number of bits to be rotated (range: 0 to 255)

For Relay T/C Register Constant

d - DWY DWR DWL DSV DEV DDT DLD DFL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

No. IEC address Set If

R9009 %MX0.900.9 for an instant  the bit at position 32 - n has the value 1.

Description The function rotates the value at output d via the carry flag to the left. The number of bits at output
d to be rotated to the left is specified by the value assigned at input n. This shift can lie between 0
and 255 (only the lower value byte of n is effective).

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

 Bit-shift instructions

601

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out. In this example
the constant (4) is assigned to the function at input n. You may, however, declare a variable in the
POU header instead.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F128_DRCL(n:= 4,

 d=> data);

END_IF;

Chapter 19

 Comparison instructions

Comparison instructions

604

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F60_CMP 16-bit data compare

Instead of using this FP instruction, we recommend using the related IEC instruction of the
comparison instructions. Please refer also to Advantages of the IEC instructions in the online help.

Flags Data Comparison
between s1 and s2 R900A

(>flag)
R900B
(=flag)

R900C
(<flag)

R9009
(carry-fl
ag)

s1<s2 Off Off On #

s1=s2 Off On Off Off

16-bit data
with sign

s1>s2 On Off Off #

s1<s2 # Off # On

s1=s2 Off On Off Off

16-bit data
without sign

s1>s2 # Off # Off

turns ON or OFF depending on the conditions

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F60_CMP (see page 1325)

Variable Data type Function

s1, s2 ANY16 16-bit area or 16-bit equivalent constant to be compared

The variables s1 and s2 have to be of the same data type.

For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

Description Compares the 16-bit data specified by s1 with one specified by s2 if the trigger EN is in the
ON-state. The compare operation result is stored in special internal relays R9009, R900A to
R900C.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Comparison instructions

605

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

equal:= FALSE;

greater_or_equal:= FALSE;

IF start THEN

 F60_CMP(value, 2);

 IF R900B THEN

 equal := TRUE;

 END_IF;

 IF NOT(R9009) THEN

 greater_or_equal:= TRUE;

 END_IF;

END_IF;

Comparison instructions

606

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F61_DCMP 32-bit data compare

Instead of using this FP instruction, we recommend using the related IEC instruction of the
comparison instructions. Please refer also to Advantages of the IEC instructions in the online help.

Flags Data Comparison
between s1 and s2 R900A

(>flag)
R900B
(=flag)

R900C
(<flag)

R9009
(carry-fl
ag)

s1<s2 Off Off On #

s1=s2 Off On Off Off

32-bit data
with sign

s1>s2 On Off Off #

s1<s2 # Off # On

s1=s2 Off On Off Off

32-bit data
without sign

s1>s2 # Off # Off

turns ON or OFF depending on the conditions

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F61_DCMP (see page 1325)

Variable Data type Function

s1, s2 ANY32 32-bit area or 32-bit equivalent constant to be compared

The variables s1 and s2 have to be of the same data type.

For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

Description Compares the 32-bit data or 32-bit equivalent constant specified by s1 with one specified by s2 if
the trigger EN is in the ON-state. The compare operation result is stored in special internal relays
R9009, R900A to R900C.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Comparison instructions

607

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

equal:= FALSE;

greater_or_equal:= FALSE;

IF start THEN

 F61_DCMP(value, 2);

 IF R900B THEN

 equal:= TRUE;

 END_IF;

 IF NOT(R9009) THEN

 greater_or_equal:= TRUE;

 END_IF;

END_IF;

Comparison instructions

608

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F62_WIN 16-bit data band compare

Flags Comparison between
s1, s2 and s3 R900A (>flag) R900B

(=flag)
R900C (<flag)

s1_In < s2_Min Off Off On

s2_Min  s1_In 
s3_Max

Off On Off

s1_In > s3 On Off Off

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F62_WIN (see page 1325)

Variable Data type Function

s1_In 16-bit area or 16-bit equivalent constant to be compared

s2_Min lower limit, 16-bit area or 16-bit equivalent constant

s3_Max

ANY16

upper limit, 16-bit area or 16-bit equivalent constant

The variables s1, s2 and s3 have to be of the same data type.

For Relay T/C Register Constant

s1, s2, s3 WX WY WR WL SV EV DT LD FL dec. or hex.

Description Compares the 16-bit equivalent constant or 16-bit data specified by s1_In with the data band
specified by s2_Min and s3_Max if the trigger EN is in the ON-state. This instruction checks that
s1_In is in the data band between s2_Min (lower limit) and s3_Max (higher limit), larger than
s3_Max, or smaller than s2_Min. The compare operation considers +/- sign. Since the BCD data is
also treated as 16-bit data with sign, we recommend using BCD data within the range of 0 to 7999
to avoid confusion. The compare operation result is stored in special internal relays R9009, R900A
to R900C.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Comparison instructions

609

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F62_WIN(s1_In:= test_value,

 s2_Min:= lower_limit,

 s3_Max:= higher_limit);

END_IF;

Comparison instructions

610

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F63_DWIN 32-bit data band compare

Flags Comparison between
s1, s2 and s3 R900A (>flag) R900B

(=flag)
R900C (<flag)

s1_In < s2_Min Off Off On

s2_Min  s1_In 
s3_Max

Off On Off

s1_In > s3 On Off Off

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F63_DWIN (see page 1326)

Variable Data type Function

s1_In 32-bit area or 32-bit equivalent constant to be compared

s2_Min lower limit, 32-bit area or 32-bit equivalent constant

s3_Max

ANY32

upper limit, 32-bit area or 32-bit equivalent constant

The variables s1, s2 and s3 have to be of the same data type.

For Relay T/C Register Constant

s1_In,
s2_Min,
s3_Max

DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

Description Compares the 32-bit equivalent constant or 32-bit data specified by s1_In with the data band
specified by s2_Min and s3_Max if the trigger EN is in the ON-state. This instruction checks that
s1_In is in the data band between s2_Min (lower limit) and s3_Max (higher limit), larger than
s3_Max, or smaller than s2_Min. The compare operation considers +/- sign. Since the BCD data is
also treated as 32-bit data with sign, we recommend using BCD data within the range of 0 to
79999999 to avoid confusion. The compare operation result is stored in special internal relays
R9009, R900A to R900C.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

 Comparison instructions

611

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST inside_the_range:= FALSE;

IF start THEN

 F63_DWIN(s1_In:= test_value,

 s2_Min:= lower_limit,

 s3_Max:= higher_limit);

 IF R900B THEN

 inside_the_range:= TRUE;

 END_IF;

END_IF;

Comparison instructions

612

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F64_BCMP Block data compare

s1 specifications

16# 1 0 04 A = Starting byte position of data block specified by s3

    1: Starting from higher byte

0: Starting from lower byte

 A B C B = Starting byte position of data block specified by s2

 1: Starting from higher byte

0: Starting from lower byte

 C = Number of bytes to be compared

 range: 16#01–16#99 (BCD)

The compare operation result is stored in the special internal relay R900B. When s2 = s3, the
special internal relay is in the ON-state.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F64_BCMP (see page 1326)

 The flag R900B used for the compare instruction is renewed each time a
compare instruction is executed. Therefore the program that uses R900B should
be just after F64_BCMP.

Variable Data type Function

s1_Control WORD control code specifying byte positions and number of bytes to
be compared

s2_Start starting 16-bit area to be compared to s3

s3_Start
ANY16

starting 16-bit area to be compared to s2

The variables s2 and s3 have to be of the same data type.

For Relay T/C Register Constant

s1 WX WY WR WL SV EV DT LD FL dec. or hex.

s2, s3 WX WY WR WL SV EV DT LD FL -

Description Compares the contents of data block specified by s2 with the contents of data block specified by s3
according to the contents specified by s1 if the trigger EN is in the ON-state.

Data types

Operands

 Comparison instructions

613

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F64_BCMP(s1_Control:= ControlCode,

 s2_Start:= DataBlock1[0],

 s3_Start:= DataBlock2[0]);

END_IF;

Comparison instructions

614

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F346_FWIN Floating point data band compare

Flags Comparison between
s1, s2 and s3 R900A (>flag) R900B

(=flag)
R900C (<flag)

s1_In < s2_Min Off Off On

s2_Min  s1_In 
s3_Max

Off On Off

s1_In > s3 On Off Off

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F346_FWIN (see page 1324)

Variable Data type Function

s1_In REAL number data to be compared to s2_Min and s3_Max

s2_Min lower limit

s3_Max

REAL

upper limit

For Relay T/C Register Constant

s1, s2, s3 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the values at inputs s1_In, s2_Min, and
s3_Max are not REAL numbers

 if the value at s2_Min > s3_Max.

Description The function compares a data band whose upper and lower limits are specified at inputs s2_Min
and s3_Max with a value that is entered at input s1_In. The result is returned as follows:

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Comparison instructions

615

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Body The constants -10.0 and 10.0 are assigned to the inputs s2_Min (lower limit) and s3_Max (upper
limit). You may, however, declare two variables in the POU header instead. When the variable
start is set to TRUE, the function is carried out. The values of special internal relays R900A (>
flag), R900B (= flag) and R900C (< flag) are transferred to the variables larger_area, middle_area
and smaller_area. Since the input_value = 3.111 is within the range of the limits set (-10.0 to
10.0), the = relay and hence the variable middle_area are set to TRUE.

LD

ST When programming with structured text, enter the following:

input_value:=3.111;

IF start THEN

 F346_FWIN(s1_In:= input_value , s2_Min:= -10.0 , s3_Max:= 10.0);

END_IF;(* -10.0 =lower limit, 10.0 upper limit *)

IF R900A THEN

 larger_area:=TRUE;

END_IF;

IF R900B THEN

 middle_area:=TRUE;

END_IF;

IF R900C THEN

 smaller_area:=TRUE;

END_IF;

Comparison instructions

616

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F373_DTR 16-bit data revision detection

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F373_DTR (see page 1325)

 The status of the carry flag is updated at each execution of the instruction.
Therefore, programs that use the carry flag should utilize it immediately after
F373_DTR is executed.

Variable Data type Function

s 16-bit area for detecting data changes

d ANY16 area where data of previous execution is stored.

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL -

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9009 %MX0.900.9 to TRUE  the input value at s has changed in
comparison to the former value.

Description The function detects changes in a value at input s by comparing it with its former value that is
stored at output d. If the new input value at s does not coincide with the old value, the function
assigns the new value to output d. To signal the change, the carry flag R9009 is set
simultaneously.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. If the input value present_value
has changed in comparison to the output value old_value the carry flag R9009 is set. The status of
the carry flag is then assigned to the variable changed_value.

 Comparison instructions

617

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

IF start THEN

 F373_DTR(present_value, old_value);

 IF R9009 THEN

 changed_value:=TRUE;

 END_IF;

END_IF;

Comparison instructions

618

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F374_DDTR 32-bit data revision detection

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F374_DDTR (see page 1325)

 The status of the carry flag is updated at each execution of the instruction.
Therefore, programs that use the carry flag should utilize it immediately after
F374_DDTR is executed.

Variable Data type Function

s 32-bit area for detecting data changes

d ANY32 32-bit area where data of previous execution is stored

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL -

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9009 %MX0.900.9 to TRUE  the input value at s has changed in
comparison to the former value.

Description The function detects changes in a value at input s by comparing it with its former value that is
stored at output d. If the new input value at s does not coincide with the old value, the function
assigns the new value to output d. To signal the change, the carry flag R9009 is set
simultaneously.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. If the input value present_value
has changed in comparison to the output value old_value the carry flag R9009 is set. The status of
the carry flag is then assigned to the variable changed_value.

 Comparison instructions

619

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

IF start THEN

 F374_DDTR(present_value, old_value);

 IF R9009 THEN

 changed_value:=TRUE;

 END_IF;

END_IF;

Comparison instructions

620

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

19.1 Further comparison instructions

If you need information on one of the following comparison instructions, please refer to the corresponding
standard operators in the online help:

ST= AN= OR= STD= AND= ORD=

ST<> AN<> OR<> STD<> AND<> ORD<>

ST> AN> OR> STD> AND> ORD>

ST>= AN>= OR>= STD>= AND>= ORD>=

ST< AN< OR< STD< AND< ORD<

ST<= AN<= OR<= STD<= AND<= ORD<=

Chapter 20

 Conversion instructions

Conversion instructions

622

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F71_HEX2A HEX -> ASCII conversion

The two characters that make up one byte are interchanged when stored. Two bytes are converted
as one segment of data.

4 2 4 1

A B C D

4 4 4 3

B A D C

s1[0]

s1[0]

s1[1]

d[1]

d[1]

d[0]

d[0]

d[2]d[3]

1 2 3 4

5 6 7 8

2 1 4 3

6 5 8 7

Hexadecimal data

Converted
result

Hexadecimal
data

Converted result

ASCII HEX codes to express hexadecimal characters:

Hexadecimal
number

ASCII HEX
code

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

16#30
16#31
16#32
16#33
16#34
16#35
16#36
16#37
16#38
16#39
16#41
16#42
16#43
16#44
16#45
16#46

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Description Converts the data byte-wise from the 16-bit area specified by s1_Start to ASCII codes that express
the equivalent hexadecimals if the trigger EN is in the TRUE-state. The number of bytes to be
converted is specified by s2_Number. The converted result is stored in the area starting with the
16-bit area specified by d_Start. ASCII code requires 8 bits (one byte) to express one hexadecimal
character. Upon conversion to ASCII, the data length will thus be twice the length of the source
data.

 Conversion instructions

623

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

PLC types Availability of F71_HEX2A (see page 1326)

Variable Data type Function

s1_Start ANY16 starting 16-bit area for hexadecimal number (source)

s2_Number INT specifies number of source data bytes to be converted

d_Start ANY16 starting 16-bit area for storing ASCII code (destination)

For Relay T/C Register Constant

s1_Start WX WY WR WL SV EV DT LD FL -

s2_Number WX WY WR WL SV EV DT LD FL dec. or hex.

d_Start - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the byte number specified by
s2_Number exceeds the area specified
by s1_Start

 the calculated result exceeds the area
specified by d_Start.

 the data specified by s2_Number is
recognized as "0".

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable Start is set to true, the number of data bytes given in
BytesToConvert in HexInput is converted to ASCII code and stored in ASCOutput. Note that two
characters that make up one byte are interchanged when stored. One Monitor Header shows the
Hex values, and the other the ASCII values.

Conversion instructions

624

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

IF start THEN

 F71_HEX2A(s1_Start:= HexInput[0],

 s2_Number:= BytesToConvert,

 d_Start=> ASCOutput[0]);

END_IF;

 Conversion instructions

625

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F72_A2HEX ASCII -> HEX conversion

The data for two ASCII code characters is converted to two numeric digits for one word. When this
takes place, the characters of the upper and lower bytes are interchanged. Four characters are
converted as one segment of data.

C D dA B

4 4 4 34 2 4 1

s1[1] s1[0]

Converted
result

ASCII code character

Converted results are stored in byte units. If an odd number of characters is being converted, "0"
will be entered for bits 0 to 3 of the final data (byte) of the converted results. Conversion of odd
number of source data bytes:

s1[3] s1[2] s1[1] s1[0]

d[1] d[0]

31 46 45 44 43 42 41

1 F E D C B A

10 EF CD AB

Converted result

ASCII code

7 characters (7 bytes)

F72_AHEX instruction executionThis position is filled
with “0”

Hexadecimal characters and ASCII codes:

Description Converts the ASCII codes that express the hexadecimal characters starting from the 16-bit area
specified by s1 to hexadecimal numbers if the trigger EN is in the ON-state. s2 specifies the
number of ASCII (number of characters) to be converted. The converted result is stored in the area
starting from the 16-bit area specified by d. ASCII code requires 8 bits (one byte) to express one
hexadecimal character. Upon conversion to a hexadecimal number, the data length will thus be half
the length of the ASCII code source data.

Conversion instructions

626

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ASCII HEX code Hexadecimal
number

16#30
16#31
16#32
16#33
16#34
16#35
16#36
16#37
16#38
16#39
16#41
16#42
16#43
16#44
16#45
16#46

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F72_A2HEX (see page 1326)

Variable Data type Function

s1 WORD starting 16-bit area for ASCII code (source)

s2 INT specifies number of source data bytes to be converted

d ANY16 starting 16-bit area for storing converted data (destination)

For Relay T/C Register Constant

s1 WX WY WR WL SV EV DT LD FL -

s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the number of bytes specified by s2
exceeds the area specified by s1.

 the converted result exceeds the area
specified by d.

 the data specified by s2 is recognized as
"0".

 ASCII code, not a hexadecimal number
(0 to F), is specified.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

 Conversion instructions

627

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. In this example, the value for
s2, i.e. the number of bytes to be converted from ASCII code to hexadecimal code, is entered
directly at the contact pin.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F72_A2HEX(s1_Start:= AscInput[0],

 s2_Number:= 4,

 d_Start=> HexOutput);

Conversion instructions

628

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F73_BCD2A BCD -> ASCII conversion

 s2=16# 0 0

1

2

Number of bytes for BCD data
1: 1 byte (BCD code that expresses a 2-digit decimal)
2: 2 bytes (BCD code that expresses a 4-digit decimal)
3: 3 bytes (BCD code that expresses a 6-digit decimal)
4: 4 bytes (BCD code that expresses a 8-digit decimal)

Direction of converted data
0: Normal direction
1: Reverse direction

The two characters that make up one byte are interchanged when stored. Two bytes are converted
as one segment of data:

1 2 3 41 2 3 4

s1

d[1] d[0]

s1

d[1] d[0]

2 1 4 3 4 3 2 1

Normal direction

Converted
result

Reverse direction

The converted result is stored in the area specified by d. ASCII code requires 8 bits (one byte) to
express one BCD character. Upon conversion to ASCII, the data length will thus be twice the
length of the BCD source data.

ASCII HEX code to express BCD character:

BCD character ASCII HEX
code

0
1
2
3
4
5
6
7
8
9

H30
H31
H32
H33
H34
H35
H36
H37
H38
H39

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the

Description Converts the BCD code starting from the 16-bit area specified by s1 to the ASCII code that
expresses the equivalent decimals according to the contents specified by s2 if the trigger EN is in
the ON-state. s2 specifies the number of source data bytes and the direction of converted data
(normal/reverse).

 Conversion instructions

629

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F73_BCD2A (see page 1326)

Variable Data type Function

s1 WORD starting 16-bit area for BCD data (source)

s2 ANY16 specifies number of source data bytes to be converted, and
how it is arranged

d WORD starting 16-bit area for storing converted result (destination)

For Relay T/C Register Constant

s1 WX WY WR WL SV EV DT LD FL -

s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. In this example, the variable
direction_number specifies that from the input variable BCDCodeInput, 2 bytes will be converted
in the reverse direction and stored in ASCOutput.

LD

Conversion instructions

630

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST When programming with structured text, enter the following:

IF start THEN

 F73_BCD2A(s1_Start:= BCDCodeInput ,

 s2_Number:= direction_number ,

 d_Start=> ASCOutput[0]);

END_IF;

 Conversion instructions

631

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F74_A2BCD ASCII -> BCD conversion

s2 = 16# 0 0

1

2

Number of bytes for ASCII characters

Direction of converted data
0: Normal direction
1: Reverse direction

1: 1 byte (1 ASCII character)
2: 2 bytes (2 ASCII characters)
3: 3 bytes (3 ASCII characters)
4: 4 bytes (4 ASCII characters)
5: 5 bytes (5 ASCII characters)
6: 6 bytes (6 ASCII characters)
7: 7 bytes (7 ASCII characters)
8: 8 bytes (8 ASCII characters)

Four characters are converted as one segment of data:

2 1 4 3 4 3 2 1

1 2 3 43 41 2

Normal direction Reverse direction

BCD data

ASCII
code

The converted result is stored in byte units in the area starting from the 16-bit area specified by d.
ASCII code requires 8 bits (1 byte) to express 1 BCD character. Upon conversion to a BCD number,
the data length will thus be half the length of the ASCII code source data.

If an odd number of characters is being converted, "0" will be entered for bit position 0 to 3 of the
final data (byte) of the converted results if data is sequenced in the normal direction, and "0" will be
entered for bit position 4 to 7 if data is being sequenced in the reverse direction:

s1[3] s1[2] s1[1] s1[0]

d[1] d[0]

37 36 35 34 33 32 31

7 6 5 4 3 2 1

01 23 45 67

ASCII code

F74_A2BCD instruction executionThis position is
filled with “0”
Converted result

BCD HEX code

7 ASCII characters (7 bytes)

character

ASCII HEX
code

ASCII HEX code to express BCD character:

Description Converts the ASCII codes that express the decimal characters starting from the 16-bit area
specified by s1 to BCD if the trigger EN is in the ON-state. s2 specifies the number of source data
bytes and the direction of converted code source data.

Conversion instructions

632

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

BCD character ASCII HEX
code

0
1
2
3
4
5
6
7
8
9

H30
H31
H32
H33
H34
H35
H36
H37
H38
H39

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F74_A2BCD (see page 1326)

Variable Data type Function

s1 WORD starting 16-bit area for storing ASCII code (source)s

s2 ANY16 specifies number of source data bytes to be converted, and
how it is arranged

d WORD starting 16-bit area for storing converted result (destination)

For Relay T/C Register Constant

s1 WX WY WR WL SV EV DT LD FL -

s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 ASCII code not corresponding to decimal
numbers (0 to 9) is specified.

 the number of bytes specified by s2
exceeds the area specified by s1.

 the converted result exceeds the area
specified by d.

 the data specified by s2 is recognized as
"0".

 the number of bytes for ASCII characters
in s2 is more than 16#8.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

 Conversion instructions

633

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. For the variable at s1, you
define an ARRAY with a minimum of four word elements because 8 ASCII characters require 8
bytes of memory and the function cannot convert more than 8 bytes. In this example, the value for
s2 is entered directly at the contact pin.

Conversion instructions

634

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

IF start THEN

 F74_A2BCD(s1_Start:= ASCInput[0] ,

 s2_Number:= 16#8 ,

 d_Start=> BCDOutput[0]);

END_IF;

 Conversion instructions

635

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F75_BIN2A 16-bit BIN -> ASCII conversion

 If a positive number is converted, the "+" sign is not converted.

 When a negative number is converted, the "-" sign is also converted to ASCII
code (ASCII HEX code: 16#2D).

 If the area specified by s2 is more than that required by the converted data, the
ASCII code for "SPACE" (ASCII HEX code: 16#20) is stored in the extra area.

 Data is stored in the direction towards the final address, so the position of the
ASCII code may change, depending on the size of the data storage area.

2D313030 2020 2020

d[2] d[1] d[0]

0 0 1

d[3]

When s2 = 8 (8 bytes)

Extra bytesASCII code

Range specified by s2

(Space) (Space) (Space)(Space)

 If the number of bytes of ASCII codes following conversion (including the minus

sign) is larger than the number of bytes specified by the s2, an operation error
occurs. Make sure the sign is taken into consideration when specifying the object
of conversion for the s2.

The following illustrations show conversions from 16-bit decimal data to ASCII codes.

When a negative number is converted:

2D

d[2] d[1] d[0]

31

–

3030

0 0 1

2020

s1

–100

9CFF

Converted
result

F75_BIN2A instruction execution

ASCII code Extra bytes

Range specified by s2 (6 bytes)

(Space)(Space)

16-bit data

Description Converts the 16-bit data specified by s1 to ASCII codes that express the equivalent decimal value.
The converted result is stored in the area starting from the 16-bit area specified by d as specified
by s2. Specify the number of bytes in decimal number in s2. (This specification cannot be made
with BCD data.)

Conversion instructions

636

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

When a positive number is converted

d[2] d[1] d[0]

s1

2132

2 1

3334

4 3

2020

1234

D204

Range specified by s2 (6 bytes)

ASCII code Extra bytes

Converted
result

F75_BIN2A instruction execution

bit data

(Space)(Space)

Decimal characters to express ASCII HEX code:

Decimal
characters

ASCII HEX
code

SPACE
-
0
1
2
3
4
5
6
7
8
9

16#20
16#2D
16#30
16#31
16#32
16#33
16#34
16#35
16#36
16#37
16#38
16#39

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F75_BIN2A (see page 1326)

Variable Data type Function

s1 ANY16 16-bit area to be converted (source)

s2 INT specifies number of bytes used to express destination data
(ASCII codes)

d WORD 16-bit area for storing ASCII codes (destination)

For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Data types

Operands

 Conversion instructions

637

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the number of bytes specified by s2
exceeds the area specified by d.

 the data specified by s2 is recognized as
"0".

 the converted result exceeds the area
specified by d.

 the number of bytes of converted result
exceeds the number of bytes specified
by s2.

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. This programming example is
based on the example for the conversion of a negative number outlined above. The monitor value
icon is activated for both the LD and IL bodies; the monitor header icon is activated for the LD
body.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F75_BIN2A(s1:= DataInput ,

 s2_Number:= 6 ,

 d_Start=> ASCOutput[0]);

END_IF;

Conversion instructions

638

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F76_A2BIN ASCII -> 16-bit BIN conversion

 The ASCII codes being converted should be stored in the direction of the last
address in the specified area.

 If the area specified by s1 and s2 is more than that required for the data you
want to convert, place "0" (ASCII HEX code: 16#30) or "SPACE" (ASCII HEX
code: 16#20) into the extra bytes.

 ASCII codes with signs (such as +: 16#2B and -: 16#2D) are also converted. The
+ codes can be omitted.

Example of converting an ASCII code indicating a negative number

2D

s1[2] s1[1] s1[0]

31

–

3030

0 0 1

3030

d

– 100

9CFF

(0) (0)

Range specified by s2

ASCII code Extra bytes

Converted result

F76_A2BIN instruction execution

ASCII code

Example of converting an ASCII code indicating a positive number

s[2] s[1] s1[0]

2031

1

3030

0 0

2020

d

100

6400

Converted result

ASCII code

ASCII code

Extra bytes

Range specified by s2

F76_A2BIN instruction execution

(Space)(Space)(Space)

ASCII HEX code to express decimal characters:

Description Converts the ASCII codes that express the decimal digits, starting from the 16-bit area specified by
s1 to 16-bit data as specified by s2. The converted result is stored in the area specified by d. s2
specifies the number of source data bytes to be converted using decimal number. (This
specification cannot be made with BCD data.)

 Conversion instructions

639

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ASCII HEX
code

Decimal
characters

16#20
16#2B
16#2D
16#30
16#31
16#32
16#33
16#34
16#35
16#36
16#37
16#38
16#39

SPACE
+
-
0
1
2
3
4
5
6
7
8
9

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F76_A2BIN (see page 1326)

Variable Data type Function

s1 WORD 16-bit area for ASCII code (source)

s2 INT specifies number of source data bytes to be converted

d ANY16 16-bit area for storing converted data (destination)

For Relay T/C Register Constant

s1 WX WY WR WL SV EV DT LD FL -

s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the number of bytes specified by s2
exceeds the area specified by s1.

 the data specified by s2 is recognized as
"0".

 the converted result exceeds the 16-bit
area specified by d.

 ASCII code not corresponding to decimal
numbers (0 to 9) or ASCII characters (+,
-, and SPACE) is specified.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Conversion instructions

640

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start is set to TRUE, the function is carried out. The number of bytes to be
converted is entered directly at the contact pin for s2. This programming example is based on the
example for the conversion of a negative number on the main page of F76_A2BIN.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F76_A2BIN(s1_Start:= ASCInput[0] ,

 s2_Number:= 6 ,

 d=> DataOutput);

END_IF;

 Conversion instructions

641

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F77_DBIN2A 32-bit BIN -> ASCII conversion

 When a positive number is converted, the "+" sign is not converted.

 When a negative number is converted, the "-" sign is also converted to ASCII
code (ASCII HEX code: 16#2D).

 If the area specified by s2 is more than that required by the converted data, the
ASCII code for "SPACE" (ASCII HEX code: 16#20) is stored in the extra area.

 Data is stored in the direction of the last address, so the position of the ASCII
code may change depending on the size of the data storage area.

 If the number of bytes of ASCII codes following conversion (including the minus
sign) is larger than the number of bytes specified by the s2, an operation error
occurs. Make sure the sign is taken into consideration when specifying the object
of conversion for the s2.

Example of converting a negative number from 32–bit decimal format to ASCII codes

2D

d[2] d[1] d[0]

31

1 –

3233

3 2

20

–12345678

B29E

s1

d[3]

3435

5 4

d[4]

3637

7 6

38

8

43FF

Converted
result

32-bit data

F77_DBIN2A instruction execution

Code Extra byte

Range specified by s2 (10 bytes)

(Space)

Decimal characters to express ASCII HEX code:

Decimal
characters

ASCII HEX
code

SPACE
+
-
0
1
2
3
4
5
6
7
8
9

16#20
16#2B
16#2D
16#30
16#31
16#32
16#33
16#34
16#35
16#36
16#37
16#38
16#39

Description Converts the 32-bit data specified by s1 to ASCII code that expresses the equivalent decimals. The
converted result is stored in the area starting from the 16-bit area specified by d as specified by s2.
s2 specifies the number of bytes used to express the destination data using decimal.

Conversion instructions

642

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F77_DBIN2A (see page 1326)

Variable Data type Function

s1 ANY32 32-bit data area to be converted (source)

s2 INT specifies number of bytes to express destination data (ASCII
codes)

d WORD 16-bit area for storing ASCII codes (destination)

For Relay T/C Register Constant

s1 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007

R9008

%MX0.900.7

%MX0.900.8

permanently

for an instant

 the number of bytes specified by s2 exceeds
the area specified by d.

 the data specified by s2 is recognized as "0".

 the converted result exceeds the area
specified by d.

 the number of bytes of converted result
exceeds the number of bytes specified by
s2.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. The number of bytes to be
converted is entered directly at the contact pin for s2.

LD

 Conversion instructions

643

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST When programming with structured text, enter the following:

IF start THEN

 F77_DBIN2A(s1:= DINT_input ,

 s2_Number:= 10 ,

 d_Start=> ASCII_output[0]);

END_IF;

Conversion instructions

644

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F78_DA2BIN ASCII -> 32 bit BIN conversion

 The ASCII codes being converted should be stored in the direction of the last
address in the specified area.

 If the area specified by s1 and s2 is more than that required by the data you want
to convert, place "0" (ASCII HEX code: 16#30) or "SPACE" (ASCII HEX code:
16#20) in the extra bytes.

 ASCII codes with signs (such as +: 16#2B and -: 16#2D) are also converted. The
+ codes can be omitted.

Example of converting an ASCII code indicating a negative number

35 2D

s[2] s1[1] s1[0]

31

1 –

3233

3 2

20

s1[3]

34

5 4

s1[4]

3637

7 6

38

8

d

-12345678

B29E43FF

ASCII code

Code Extra byte

Range specified by s2 (10 bytes)

F78_DA2BIN instruction execution

Converted result

(Space)

ASCII HEX code to express decimal characters:

ASCII HEX
code

Decimal
characters

16#20
16#2B
16#2D
16#30
16#31
16#32
16#33
16#34
16#35
16#36
16#37
16#38
16#39

SPACE
+
-
0
1
2
3
4
5
6
7
8
9

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears

Description Converts ASCII code that expresses the decimal digits, starting from the 16-bit area specified by s1
to 32-bit data as specified by s2. The converted result is stored in the area starting from the 32-bit
area specified by d. s2 specifies the number of bytes used to express the destination data using
decimals.

 Conversion instructions

645

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F78_DA2BIN (see page 1326)

Variable Data type Function

s1 WORD starting 16-bit area for ASCII code (source)

s2 INT specifies number of source data bytes to be converted

d ANY32 area for 32-bit data storage (destination)

For Relay T/C Register Constant

s1 WX WY WR WL SV EV DT LD FL -

s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the number of bytes specified by s2
exceeds the area specified by s1.

 the data specified by s2 is recognized as
"0".

 the converted result exceeds the area
specified by d.

 the converted result exceeds the 32-bit
area.

 ASCII code not corresponding to decimal
numbers (0 to 9) or ASCII characters (+,
-, and SPACE) is specified.

Data types

Operands

Error flags

Conversion instructions

646

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable Enable is set to TRUE, the function is executed. The number of bytes to be
converted is entered directly at the contact pin for s2. This programming example is based on the
example for the conversion of a negative number outlined above.

LD

ST When programming with structured text, enter the following:

IF Enable THEN

 F78_DA2BIN(s1_Start:= ASCII_input[0] ,

 s2_Number:= 10 ,

 d=> DINT_output);

END_IF;

 Conversion instructions

647

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F80_BCD 16-bit BIN -> 4-digit BCD conversion

· ·· · · · · · ·15

0 0 0

12

0

11

0 0 0

8

0

7

0 0 0

4

1

3

0 0 0

0

0

16

· ·· · · · · · ·15

0 0 0

12

0

11

0 0 0

8

0

7

0 0 0

4

1

3

0 1 1

0

0

0 0 1 6

Source [s]: 16

Bit position

Bit position

Binary data

Binary data

BCD Hex code

Decimal

Conversion (to BCD code)

Destination [d]: 16#16 (BCD)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

See also: BCD data in the online help

PLC types Availability of F80_BIN (see page 1326)

Variable Data type Function

s ANY16 binary data (source), range: 0 to 9999

d WORD 16-bit area for 4-digit BCD code (destination)

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 16-bit binary data outside the range of 0
(16#0) to 9999 (16#270F) is converted

Description Converts the 16-bit binary data specified by s to the BCD code that expresses 4-digit decimals if
the trigger EN is in the ON-state. The converted data is stored in d. The binary data that can be
converted to BCD code are in the range of 0 (0 hex) to 9999 (270F hex).

Data types

Operands

Error flags

Conversion instructions

648

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable Enable is set to TRUE, the function is executed. The decimal value in
DecimalInput is converted to a BCD hexadecimal value and stored in the variable BCD_output.

LD

ST When programming with structured text, enter the following:

IF Enable THEN

 F80_BCD(DecimalInput, BCD_output);

END_IF;

 Conversion instructions

649

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F81_BIN 4-digit BCD -> 16-bit BIN conversion

· ·· · · · · · ·15

0 0 0

12

0

11

0 0 0

8

0

7

0 0 0

4

0

3

1 1 1

0

1

· ·· · · · · · ·15

0 0 0

12

0

11

0 0 0

8

0

7

0 0 0

4

1

3

0 1 0

0

1

0 0 1 5

15

Source [s]: 16#15 (BCD)

Destination [d]: 15
Conversion (to binary data)

Decimal
Binary data
Bit position

BCD Hex
code

BCD code
Bit position

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

See also: BCD data

PLC types Availability of F81_BIN (see page 1326)

Variable Data type Function

s WORD 16-bit area for 4-digit BCD data (source)

d ANY16 16-bit area for storing 16-bit binary data (destination)

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the data specified by s is not BCD data.

Description Converts the BCD code that expresses 4-digit decimals specified by s to 16-bit binary data if the
trigger EN is in the ON-state. The converted result is stored in the area specified by d.

Data types

Operands

Error flags

Conversion instructions

650

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable Enable is set to TRUE, the function is executed. The BCD value assigned to the
variable BCD_input is converted to a decimal value and stored in the variable DecimalOutput.
The monitor value icon is activated for both the LD and IL bodies.

LD

ST When programming with structured text, enter the following:

IF Enable THEN

 F81_BIN(BCD_Input, DecimalOutput);

END_IF;

 Conversion instructions

651

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F82_DBCD 32-bit BIN -> 8-digit BCD conversion

· ·· · · · · · ·15

0 0 0

12

0

11

0 1 0

8

0

7

0 1 0

4

1

3

0 1 1

0

1

· ·· · · · · · ·15

0 1 1

12

1

11

0 0 1

8

0

7

1 0 0

4

0

3

0 0 0

0

1

7 2 8 1

· ·· · · · · · ·15

0 0 0

12

0

11

0 1 0

8

0

7

1 1 0

4

1

3

0 0 1

0

0

· ·· · · · · · ·15

0 0 0

12

1

11

0 1 1

8

1

7

0 0 1

4

1

3

0 0 0

0

0

1 7 3 0

72811730

Source [s]: 72811730

Destination [d]: 16#72811730

Bit position

Bit position

BCD code
BCD Hex code

Binary data
Decimal

32-bit area

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

See also: BCD data

PLC types Availability of F82_DBCD (see page 1326)

Variable Data type Function

s ANY32 binary data (source), range: 0 to 99,999,999

d DWORD 32-bit area for 8-digit BCD code (destination)

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 32-bit data specified by s outside the
range of 0 (16#0) to 99999999
(16#5F5E0FF) is converted.

Description Converts the 32-bit binary data specified by s to the BCD code that expresses 8-digit decimals if
the trigger EN is in the ON-state. The converted data is stored in d. The binary data that can be
converted to BCD code are in the range of 0 (0 hex) to 99,999,999 (5F5E0FF hex).

Data types

Operands

Error flags

Conversion instructions

652

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable Enable is set to TRUE, the function is executed. The decimal value in
DINT_input is converted to a BCD hexadecimal value and stored in the variable BCD_output. You
may also assign a decimal, binary (prefix 2#), or hexadecimal (prefix 16#) value directly at the
contact pin for s.

LD

ST When programming with structured text, enter the following:

IF Enable THEN

 F82_DBCD(DINT_input, BCD_output);

END_IF;

 Conversion instructions

653

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F83_DBIN 8-digit BCD -> 32-bit BIN conversion

· ·· · · · · · ·15

0 0 0

12

0

11

0 1 0

8

0

7

0 1 0

4

1

3

0 1 1

0

1

· ·· · · · · · ·15

0 1 1

12

1

11

0 0 1

8

0

7

1 0 0

4

0

3

0 0 0

0

1

7 2 8 1

· ·· · · · · · ·15

0 0 0

12

0

11

0 1 0

8

0

7

1 1 0

4

1

3

0 0 1

0

0

· ·· · · · · · ·15

0 0 0

12

1

11

0 1 1

8

1

7

0 0 1

4

1

3

0 0 0

0

0

1 7 3 0

72811730

Source [s]: 16#72811730 (BCD)

Destination [d]: 72811730

32-bit area

Bit position

Bit position

Binary data
Decimal

BCD code
BCD Hex code

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

See also: BCD data

PLC types Availability of F83_DBIN (see page 1326)

Variable Data type Function

s DWORD area for 8-digit BCD data (source)

d ANY32 32-bit area for storing 32-bit data (destination)

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the data specified by s is not BCD data.

Description Converts the BCD code that expresses 8-digit decimals specified by s to 32-bit binary data if the
trigger EN is in the ON-state. The converted result is stored in the area specified by d.

Data types

Operands

Error flags

Conversion instructions

654

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable Enable is set to TRUE, the function is executed. The BCD value assigned to the
variable BCD_input is converted to a decimal value and stored in the variable DINT_output.

LD

ST When programming with structured text, enter the following:

IF Enable THEN

 F83_DBIN(BCD_input, DINT_Output);

END_IF;

 Conversion instructions

655

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F89_EXT 16-bit data sign extension, INT -> DINT

If the sign bit (bit position 15) of the 16-bit data specified by s is 0, all higher 16 bits in the variable
assigned to d will be 0. If the sign bit of s is 1, the higher 16 bits of d will be 1.

· ·· · · · · · ·31 2827 2423 2019 16 · ·· · · · · · ·15

1

1211

1 1

8

1

7

1 1

4

1

3

1 0

0

· ·· · · · · · ·15

1

1211

1 1

8

1

7

1 1

4

1

3

1 0

0

s

1 1 1 1 1 1 1

–2

1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 1

–2

d

Source

Destination
Bit position

Bit position
Binary data

Binary data
Decimal data

Decimal data

Sign bit (0: positive, 1: negative)

Higher (extended) 16-bit area Lower 16-bit area

start: ON

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F89_EXT (see page 1326)

Variable Data type Function

s ANY16 16-bit source data area, bit 15 is sign bit

d ANY32 32-bit destination area, s copied to lower 16 bits, higher 16
bits filled with sign bit of s

For Relay T/C Register Constant

s - WY WR WL SV EV DT LD FL -

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description 16-bit data is converted to 32-bit data without signs and values being changed. F89 copies the sign
bit of the 16-bit data specified in s to all the bits of the higher 16-bit area (extended 16-bit area) in
d.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Conversion instructions

656

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F89_EXT(Var_16bit, Var_32bit);

END_IF;

 Conversion instructions

657

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F90_DECO Decode hexadecimal -> bit state

n specifies the starting bit position and the number of bits to be decoded using hexadecimal data:

 Bit No. 0 to 3: number of bits to be decoded

 Bit No. 8 to 11: starting bit position to be decoded

(The bits No. 4 through No. 7 and No. 12 through No. 15 are invalid.)

e.g. when n = 16#0404, four bits beginning at bit position four are decoded.

Relationship between number of bits and occupied data area for decoded result:

Number of bits to
be decoded

Data area required for
the result

Valid bits in the area for
the result

1 1-word 2-bit*

2 1-word 4-bit*

3 1-word 8-bit*

4 1-word 16-bit

5 2-word 32-bit

6 4-word 64-bit

7 8-word 128-bit

8 16-word 256-bit

*Invalid bits in the data area required for the result are set to 0.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F90_DECO (see page 1326)

Variable Data type Function

s source 16-bit area or equivalent constant to be decoded

n control data to specify the starting bit position and number of
bits to be decoded

d

ANY16

starting 16-bit area for storing decoded data (destination)

The variables s, n and d have to be of the same data type.

Description Decodes the contents of 16-bit data specified by s according to the contents of n if the trigger EN is
in the ON-state. The decoded result is stored in the area starting with the 16-bit area specified by
d.

Data types

Conversion instructions

658

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s, n WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F90_DECO(s:= input_value ,

 n:= specify_n ,

 d=> output_value);

END_IF;

 Conversion instructions

659

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F91_SEGT 16-bit data 7-segment decode

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F91_SEGT (see page 1326)

Variable Data type Function

s ANY16 16-bit area or equivalent constant to be converted to
7-segment indication (source)

d ANY32 32-bit area for storing 4-digit data for 7-segment indication
(destination)

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description Converts the 16-bit equivalent constant or 16-bit data specified by s to 4-digit data for 7-segment
indication if the trigger EN is in the ON-state. The converted data is stored in the area starting with
the 16-bit area specified by d. The data for 7-segment indication occupies 8 bits (1 byte) to express
1 digit.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F91_SEGT(input_value, output_value);

END_IF;

Conversion instructions

660

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F92_ENCO Encode bit state -> hexadecimal

b specifies the starting bit position of destination data d and the number of bits to be encoded using
hexadecimal data:
Bit No. 0 to 3 number of bits to be encoded

Bit No. 8 to 11 starting bit position of destination data to be encoded

(The bits No. 4 through No. 7 and No. 12 through No. 15 are invalid.)

  Put at least one bit into the area to be checked to avoid an error message
from the PLC.

 When several bits are set, the uppermost bit is evaluated.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F92_ENCO (see page 1326)

Variable Data type Function

s starting 16-bit area to be encoded (source)

n control data to specify the starting bit position and number of
bits to be encoded

d

ANY16

16-bit area for storing encoded data (destination)

The variables s, n and d have to be of the same data type.

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description Encodes the contents of data specified by s according to the contents of n if the trigger EN is in the
ON-state. The encoded result is stored in the 16-bit area specified by d starting with the specified
bit position. Invalid bits in the area specified for the encoded result are set to 0.

Data types

Operands

 Conversion instructions

661

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F92_ENCO(s:= input_value ,

 n:= specify_n ,

 d=> output_value);

END_IF;

Conversion instructions

662

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F95_ASC 12 Character -> ASCII transfer

d[5]

F

d[4]

E D

d[3]

0

d[2]

3 2

2 0 4 6 4 5 4 4 2 0 3 0 3 3 3 2

d[1]

1 C

d[0]

B A

3 1 4 3 4 2 4 1

[s]

[d]

 A B C 1 2 3 0 D E FCharacter constants

SPACE

ASCII character

Data register

ASCII HEX code

 If the number of character constants specified by s is less than 12, the ASCII code
16#20 (SPACE) is stored in the extra destination area, e.g. s = ’12345’, d[0] = 3231,
d[1] = 3433, d[2] = 2035, d[3] = 2020, d[4] = 2020, d[5] = 2020.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F95_ASC (see page 1326)

Variable Data type Function

s constant, no
variables possible

Character constants, max. 12 letters (source).

d ANY16 Starting 16-bit area for storing 6-word ASCII code
(destination).

For Relay T/C Register Constant

s - - - - - - - - - dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the last area for ASCII code exceeds the
limit
(6 words: six 16-bit areas).

Description Converts the character constants specified by s to hexadecimal ASCII code. The hexadecimal
code is stored in 6 words starting from the 16-bit area specified by d.

Data types

Operands

Error flags

 Conversion instructions

663

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

HT

BS

BEL

ACK

ENQ

EOT

ETX

STX

SOH

DELNUL0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

b3 b2 b1 b0b6 b5 b4

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

b4

b5

b6

SP AC E

?

DEL

LF

VT

FF

CR

SO

SI

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

~

}

{

!

”

#

$

%

&

’

(

)

*

+

,

–

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

b7

b7

Most significant digit

L
e

a
s
t

s
ig

n
if
ic

a
n

t
d

ig
it

ASCII
HEX code

ASCII
Hex-Code

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable Enable is enabled, the character constants entered at the input s are converted
to ASCII code and stored in the variable ASCII_Output.

Conversion instructions

664

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

IF Enable THEN

 F95_ASC(s:= 'ABC1230 DEF' ,

 d_Start=> ASCII_Output[0]);

END_IF;

 Conversion instructions

665

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F235_GRY 16-bit data -> 16-bit Gray code

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F235_GRY (see page 1323)

Variable Data type Function

s source data to be converted

d ANY16 destination for storing gray codes

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Description The function converts a value at input s to a gray code value. The result of the conversion is
returned at output d.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F235_GRY(input_value, output_value);

END_IF;

Conversion instructions

666

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F236_DGRY 32-bit data -> 32-bit Gray code

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F236_DGRY (see page 1323)

Variable Data type Function

s source data to be converted

d
ANY32

destination for storing gray code

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Description The function converts a value at input s to a gray code value. The result of the conversion is
returned at output d.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F236_DGRY(input_value, output_value);

END_IF;

 Conversion instructions

667

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F237_GBIN 16-bit Gray code -> 16-bit binary data

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F237_GBIN (see page 1323)

Variable Data type Function

s source area to gray code

d ANY16 destination for storing converted data

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Description The function converts a gray-code value at input s to binary data. The result of the conversion is
returned at output d.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F237_GBIN(input_value, output_value);

END_IF;

Conversion instructions

668

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F238_DGBIN 32-bit Gray code -> 32-bit binary data

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F238_DGBIN (see page 1323)

Variable Data type Function

s source area for gray code

d
ANY32

destination area for storing converted data

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Description The function converts a gray-code value at input s to binary data. The result of the conversion is
returned at output d.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F238_DGBIN(input_value, output_value);

END_IF;

 Conversion instructions

669

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F240_COLM Bit line to bit column conversion

The bits of the ARRAY that are not overwritten by the input value (input s) are not effected.

0 0 0 1 1 1 01 0 1 0 1 0 1 0 1

15 0

1

15 0

0

10

0

1

1

0

1

1

1

0

0

0

1

0

1

0

d

datafield[0]

datafield[15]

position n = 10

bit combination s

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F240_COLM (see page 1323)

Variable Data type Function

s source

n
ANY16

specifies bit position

d ARRAY [0..15] of
ANY16

destination area that will be rewritten with bit column

Description The function creates a bit column out of a value given at input s that is returned within an ARRAY
at output d. The position of the column in the ARRAY is specified at input n. The value assigned at
n can be between 0 and 15.

Data types

Conversion instructions

670

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s, n WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the bit position specified at input n is not
between 0 and 15

 the conversion operation results in an
overflow of the address area at output d.

In this example bit_combination and position are declared as input variables. However, you can
write constants directly at the input contact of the function instead.

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F240_COLM(s:= bit_combination,

 n:= position,

 d=> data_field);

END_IF;

 Conversion instructions

671

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F241_LINE Bit column to bit line conversion

0 0 0 1 1 1 01 0 1 0 1 0 1 0 1
15 0

1
15 0

0

10

0

1

1

0

1

1

1

0

0

0

1

0

1

0

s

datafield[0]

datafield[15]

Position n = 10

Bit combination d

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F241_LINE (see page 1323)

Variable Data type Function

s ARRAY [0..15] OF
ANY16

source area where bit column will be read

n specifies bit position

d
ANY16

destination area for storing converted data

Description The function converts a bit column out of an ARRAY at input s and returns it at output d. The
position at which the conversion takes place is specified at input n. The value assigned at input n
should be between 0 and 15.

Data types

Conversion instructions

672

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the bit position specified at input n is
not between 0 and 15

 an overflow of the address area at
input s occurs.

In this example bit_combination and position are declared as input variables. However, you can

write constants directly at the input contact of the function instead.

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F241_LINE(s:= data_field ,

 n:= position ,

 d=> bit_combination);

END_IF;

 Conversion instructions

673

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F250_BTOA Binary -> ASCII conversion

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F250_BTOA (see page 1323)

Variable Data type Function

s1_Control STRING Control string

D16

+
-

D:
H:

converts to decimal ASCII data
converts to hexadecimal ASCII data

Reverse direction
Normal direction

16: converts in 16-bit (1-word) units
32: converts in 32-bit (2-word) units

s2_BinaryData ANY Starting area for storing binary data

n_Conversion
Method

ANY16 Conversion method

16#

Number of ASCII characters per converted unit

Offset in ASCII character units (8-bit)

Number of 16-bit (1-word) or 32-bit (2-word)
units converted

(for details, see explanation following the tables)

d_AsciiData ANY Starting area for storing ASCII data

For Relay T/C Register Constant

s1_Control WX WY WR WL SV EV DT LD - -

s2_BinaryData WX WY WR WL SV EV DT LD - -

n_Conversion
Method

- WY WR WL SV EV DT LD - dec. or hex.

d_AsciiData - WY WR WL SV EV DT LD - -

Description Converts 16-bit/32-bit binary data stored in the area specified by s2_BinaryData to ASCII code.
The conversion method is specified by n_ConversionMethod according to the four control
characters of s1_Control. The converted result is stored in the area specified by d_AsciiData.

Data types

Operands

Conversion instructions

674

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 there is an error in the control string
specified by s1_Control.

 normal direction (+) is specified in
s1_Control when the format is decimal.

 the number of ASCII characters per
converted unit specified by
n_ConversionMethod exceeds 4 for
16-bit data or 8 for 32-bit data when
hexadecimal format is specifed by
s1_Control.

 0 is specified for the no. of 16- or 32-bit
(1- or 2-word) units to be converted in
n_ConversionMethod.

 the number of 16- or 32-bit decimal
numbers to be converted specified by
n_ConversionMethod exceeds the area
for storing ASCII data.

 the converted result exceeds the area.

 Explanation of the conversion method, e.g. n_ConversionMethod = 16#0214

16 # 0 2 1 4

3 6 3 5 2 D 2 0 3 4 3 3 3 2 3 1

'6 5 - _ 4 3 2 1'

F F C 8 0 4 D 2

-56 1234

Number of ASCII characters per converted unit

(See notes for restrictions.)

16#0 to 16#F (0 to 15)

Register content (hex.)

Character string (see notes)

Offset in ASCII character units (8-bit) for storing the result
(X values do not change)

Register content (hex.)

Values (dec.)

Number of 16-bit (1-word) or 32-bit
(2-word) units to be converted

16#0 to 16#FF (0 to 255)

Error flags

 Conversion instructions

675

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 About the number of ASCII characters (8-bit) per converted unit

 When converting 16-bit binary units to hexadecimal ASCII data:

 Range: 16#1 to 16#4.

 When a range of less than 16#4 is set, the specified number of characters from the lower
bytes are stored. If the original binary unit data cannot be accommodated by a setting less
than 16#4, an error occurs.

 When converting 32-bit binary units to hexadecimal ASCII data:

 Range: 16#1 to 16#8.

 When a range of less than 16#8 is set, the specified number of characters from the lower
bytes are stored. If the original binary data cannot be accommodated by a setting less than
16#8, an error occurs.

 When converting binary units to decimal ASCII data:

 Range: 16#1 to 16#F.

 Source data is treated as signed binary data. If it is a negative number, a minus sign "-" is
added. A space " " will be stored in the leading blanks if the area specified in d_AsciiData is
larger than the number of ASCII characters per converted unit.

Conversion examples:

Binary data s1_
Con-
trol

n_Con-
version
Method

Result ASCII data Comment

Data
type

Offs. in
16-bit
word units

Hex. value D+
3

D+
2

D+
1

D

0 16#5678 16+H 16#204 21 43 65 87INT,
WORD

1 16#1234

Normal
direction.

2 x 4 ASCII
characters.

0 16#5678 16-H 16#204 43 21 87 65INT,
WORD

1 16#1234

Reverse
direction.

2 x 4 ASCII
characters.

0 16#0456 16+H 16#203 XX 13 24 65INT,
WORD

1 16#0123

Normal
direction.

2 x 3 ASCII
characters.

0 16#0456 16-H 16#203 XX 32 16 54INT,
WORD

1 16#0123

Reverse
direction.

2 x 3 ASCII
characters.

DINT,
DWORD

0 16#123456
78

32+H 16#108 21 43 65 87 Normal
direction.

1 x 8 ASCII
characters.

DINT,
DWORD

0 16#123456
78

32-H 16#108 87 65 43 21 Reverse
direction.

1 x 8 ASCII
characters.

DINT,
DWORD

0 16#000123
45

32+H 16#105 XX X1 32 54 Normal
direction.

1 x 5 ASCII
characters.

DINT,
DWORD

0 16#000123
45

32-H 16#105 XX X5 43 21 Reverse
direction.

1 x 5 ASCII
characters.

'X' values do not change.

Conversion instructions

676

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When bExecute is set to TRUE, the instruction is carried out. It converts two 16-bit units to 2 x 4
decimal ASCII data. Offset = 1 ASCII character (8-bit).

LD

ST When programming with structured text, enter the following:

IF DF(bExecute) THEN

 F250_BTOA(s1_Control := '16-D',

 s2_BinaryData := iArray1,

 n_ConversionMethod := 16#214,

 d_AsciiData => iAscii1);

END_IF;

 Conversion instructions

677

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F251_ATOB ASCII -> Binary conversion

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F251_ATOB (see page 1323)

Variable Data type Function

s1_Control STRING Control string

D 16

16:

32:

D:
H:

+
-

converts decimal ASCII data
converts hexadecimal ASCII dat

Normal direction
Reverse direction

converts the ASCII data to 16-bit
-32,768 to +32,767 (16#0 to 16#F
converts the ASCII data to 32-bit
-2,147,483,648 to +2,147,483,647
16#FFFFFFFF)

s2_AsciiData ANY Starting area for storing ASCII data

n_ConversionMethod ANY16 Conversion method

16#

Number of ASCII characters pe

Offset in ASCII character units

Number of 16-bit (1-word) or 32
uni

(for details, see explanation following the tables)

d_BinaryData ANY Starting area for storing binary data

Description Converts ASCII code stored in the area specified by s2_AsciiData to 16-bit/32-bit binary data. The
conversion method is specified by n_ConversionMethod according to the four control characters
of s1_Control. The converted result is stored in the area specified by d_BinaryData.

Data types

Conversion instructions

678

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s1_Control WX WY WR WL SV EV DT LD - -

s2_AsciiData WX WY WR WL SV EV DT LD - -

n_Conversion
Method

- WY WR WL SV EV DT LD - dec or hex

d_BinaryData - WY WR WL SV EV DT LD - -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 there is an error in the control string
specified by s1_Control.

 normal direction (+) is specified in
s1_Control when the format is decimal.

 the number of ASCII characters per
converted unit specified by
n_ConversionMethod exceeds 4 for
16-bit data or 8 for 32-bit data when
hexadecimal format is specifed by
s1_Control.

 0 is specified for the no. of 16- or 32-bit
(1- or 2-word) units to be converted in
n_ConversionMethod.

 the number of 16- or 32-bit decimal
numbers to be converted specified by
n_ConversionMethod exceeds the area
for storing ASCII data.

 the converted result exceeds the area.

 Explanation of the conversion method, e.g. n_ConversionMethod = 16#0413 for
ASCII data '0123456789012'

16 # 0 4 1 3

3 2 3 1 3 0 3 9 3 8 3 7 3 6 3 5

'2 1 0 9 8 7 6 5

3 4 3 3 3 2 3 1

4 3 2 1'

Number of 16-bit (1-word) or 32-bit (2-word) units to be converted

Number of ASCII characters per
converted unit

Offset in ASCII character units (8-bit) for
storing the result

For comma-delimited data, specify the maximum
number for numeric data. For decimal ASCII data,
spaces, symbols and a decimal point are
included. The data range is restricted by the
control character string s1_Control.

Register content (hex.)
Character string

16#0 to 16#FF (0 to 255)

16#0 to 16#F (0 to 15)

Operands

Error flags

 Conversion instructions

679

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Conversion examples for ASCII data '0123456789ABCDEF'

Binary data n_Conver
sion
method

s1_Cont
rol

ASCII
data Data

type
Offs. in
16-bit word
units

Hex. value

Comment

0 16#2301

1 16#6745

2 16#AB89

H+16

16#404

INT,
WORD

3 16#EFCD

Normal direction

4 x 4 ASCII characters

0 6#0123

1 16#4567

2 16#89AB

H+16

16#404

INT,
WORD

3 16#CDEF

Reverse direction

4 x 4 ASCII characters

0 16#*201

1 16#*534

2 16#*867

H+16

16#403

INT,
WORD

3 16#*B9A

Normal direction

3 x 4 ASCII characters

0 16#*012

1 16#*345

2 16#*678

H-16

16#403

INT,
WORD

3 6#*9AB

Reverse direction

3 x 4 ASCII characters

0 16#67452301 H+32

16#208

DINT,
DWORD

2 16#EFCDAB89

Normal direction

8 x 2 ASCII characters

0 16#01234567 H-32

16#208

DINT,
DWORD

2 16#89ABCDEF

Reverse direction

8 x 2 ASCII characters

0 16#***42301 H+32

16#205

0123
4567
89AB
CDEF

DINT,
DWORD

2 16#***97856

Reverse direction

8 x 2 ASCII characters

0 16#***01234 H-32 16#205 DINT,
DWORD

2 16#***56789

Reverse direction

5 x 2 ASCII characters

*The extra characters become '0'.

Conversion instructions

680

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When bExecute is set to TRUE, the instruction is carried out. It converts 2 x 4 decimal ASCII
characters to binary data. Offset = 1 ASCII character (8-bit)

 Conversion instructions

681

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

IF DF(bExecute) THEN

 F251_ATOB(s1_Control := 'D-16',

 s2_AsciiData := iAscii1,

 n_ConversionMethod := 16#214,

 d_BinaryData => iArray2);

END_IF;

Conversion instructions

682

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F252_ACHK ASCII data check

 If the results are correct, the special internal relay (R900B) turns on.

 If the results are incorrect, the special internal relay (R900B) turns off.

For an detailed description of s1_Control and n_ConversionMethod, please refer to F251_ATOB.

PLC types Availability of F252_ACHK (see page 1323)

Variable Data type Function

s1_Control STRING Control string

D16

+
-

D:
H:

converts to decimal ASCII data
converts to hexadecimal ASCII data

Reverse direction
Normal direction

16: converts in 16-bit (1-word) units
32: converts in 32-bit (2-word) units

s2_AsciiData ANY Starting area for storing ASCII data

n_Conversion Method ANY16 16-bit equivalent constant or 16-bit area for storing conversion method

For Relay T/C Register Constant

s1_Control WX WY WR WL SV EV DT LD - -

s2_AsciiData WX WY WR WL SV EV DT LD FL -

n_Conversion Method WX WY WR WL SV EV DT LD - dec or hex

No. IEC
address

Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 there is an error in the control string specified by s1_Control.

 normal direction (+) is specified in s1_Control when the format is
decimal.

 the number of ASCII characters per converted

 unit specified by n_ConversionMethod exceeds 4 for 16-bit data or 8
for 32-bit data when hexadecimal format is specifed by s1_Control.

 0 is specified for the no. of 16- or 32-bit (1- or 2-word) units to be
converted in n_ConversionMethod.

 the number of 16- or 32-bit decimal numbers to be converted specified

 by n_ConversionMethod exceeds the area for storing ASCII data.

 the converted result exceeds the area.

Description Checks whether the ASCII codes stored in the area specified by s2_AsciiData can be converted
correctly using the conversion method specified in by n_ConversionMethod and the 4 control
characters specified by s1_Control.

Data types

Operands

Error flags

 Conversion instructions

683

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When bExecute is set to TRUE, the instruction checks whether the data connected at
s2_AsciiData can be converted when the control string is 'D-16' and the conversion method
16#214.

LD

ST When programming with structured text, enter the following:

IF DF(bExecute) THEN

 F252_ACHK(s1_Control := 'D-16', s2_AsciiData := Adr_Of_VarOffs(Var
:= sString1, Offs := 2), n_ConversionMethod := 16#214);

 IF (sys_bIsEQ) THEN

 bAsciiDataAreCorrect := TRUE;

 END_IF;

END_IF;

Conversion instructions

684

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F325_FLT 16-Bit Integer Data to Floating Point Data Conversion

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F325_FLT (see page 1324)

  F325_FLT cannot be programmed in the interrupt program.

 Instead of using F325_FLT, you can use variables of the type REAL
with the more flexible instruction INT_TO_REAL (see page 193).

Variable Data type Function

s INT 16-bit integer data (source).

d REAL Floating point real number data for result (destination).

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  the result of processing is recognized as
"0".

Description Converts the 16-bit integer data with sign specified by s to real number data. The converted data is
stored in d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable Start is set to TRUE, the integer value entered for the variable IntegerInput is
converted to floating point data, and the result is stored at the address assigned by the compiler to
the variable RealNumberResult. The monitor value icon is activated for both the LD and IL bodies.

LD

 Conversion instructions

685

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F326_DFLT 32-Bit Integer Data to Floating Point Data Conversion

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F326_DFLT (see page 1324)

  F326_DFLT cannot be programmed in the interrupt program.

 Instead of using F326_DFLT, you can use variables of the type REAL
with the more flexible instruction DINT_TO_REAL (see page 194).

Variable Data type Function

s DINT 32-bit integer data (source).

d REAL Floating point real number data for result (destination).

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R900B %MX0.900.11 for an instant  there are too many significant digits in
mantissa of converted real number data.

R9009 %MX0.900.9 for an instant  the result of processing is recognized as
"0".

Description Converts the 32-bit integer data with sign specified by s to real number data. The converted data is
stored in d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable Start is set to TRUE, the double integer value entered for the variable
DINT_input is converted to floating point data, and the result is stored at the address assigned by
the compiler to the variable RealNumberResult. The monitor value icon is activated for both the
LD and IL bodies.

Conversion instructions

686

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

 Conversion instructions

687

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F327_INT Floating point data -> 16-bit integer data (the largest integer not
exceeding the floating point data)

The converted integer value at output d is always less than or equal to the floating point value at
input s:

 When there is a positive floating point value at the input, a positive pre-decimal
value is returned at the output.

 When there is a negative floating point value at the input, the next smallest
pre-decimal value is returned at the output.

 If the floating point value has only zeros after the decimal point, its pre-decimal
point value is returned.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F327_INT (see page 1324)

Variable Data type Function

s REAL source REAL number data (2 words)

s2 INT, WORD destination for storing converted data

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the value at input s is not a REAL
number, or the converted result exceeds
the 16-bit area at output d.

R900B %MX0.900.11 for an instant  the result is 0.

Description The function converts a floating point data at input s in the range -32767.99 to 32767.99 into
integer data (including +/- sign). The result of the function is returned at output d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

Conversion instructions

688

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Body When the variable start is set to TRUE, the function is carried out. It converts the floating point
value -1.234 into the whole number value -2, which is transferred to the variable output_value at
the output. Since the whole number may not exceed the floating point value, the function rounds
down here.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F327_INT(input_value, output_value);

END_IF;

 Conversion instructions

689

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F328_DINT Floating point data -> 32-bit integer data (the largest integer not
exceeding the floating point data)

The converted integer value at output d is always less than or equal to the floating point value at
input s:

 When there is a positive floating point value at the input, a positive pre-decimal
value is returned at the output.

 When there is a negative floating point value at the input, the next smallest
pre-decimal value is returned at the output.

 If the floating point value has only zeros after the decimal point, its pre-decimal
point value is returned.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F328_DINT (see page 1324)

Variable Data type Function

s REAL source REAL number data (2 words)

d DINT, DWORD destination for storing converted data

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the value at input s is not a REAL
number, or the converted result exceeds
the 32-bit area of output d.

R900B %MX0.900.11 for an instant  the result is 0.

Description The function converts a floating point data at input s in the range -2147483000 to 214783000 into
integer data (including +/- sign). The result of the function is returned at output d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

Conversion instructions

690

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. It converts the floating point
value -1234567.89 into the whole number value -1234568, which is transferred to the variable
output_value at the output. Since the whole number may not exceed the floating point value, the
function rounds down here.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F328_DINT(input_value, output_value);

END_IF;

 Conversion instructions

691

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F333_FINT Rounding the first decimal point down

The converted whole-number value at output d is always less than or equal to the floating-point
value at input s:

 If a positive floating-point value is at the input, a positive pre-decimal point value
is returned at the output.

 If a negative floating-point value is at the input, the next smallest pre-decimal
point value is returned at the output.

 If the negative floating-point value has only zeros after the decimal point, its
pre-decimal point position is returned.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F333_FINT (see page 1324)

Variable Data type Function

s REAL source

d REAL destination

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the value at input s is not a REAL
number.

R900B %MX0.900.11 to TRUE  the result is 0.

R9009 %MX0.900.9 for an instant  the result causes an overflow.

Description The function rounds down the decimal part of the real number data and returns it at output d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

Conversion instructions

692

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The value 1234.888 is assigned to the variable input_value. When the variable start is set to
TRUE, the function is carried out. It rounds down the input_value after the decimal point and
returns the result (here: 1234.000) at the variable output_value.

LD

ST When programming with structured text, enter the following:

input_value:=1234.888;

IF start THEN

 F333_FINT(input_value, output_value);

END_IF;

 Conversion instructions

693

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F334_FRINT Rounding the first decimal point off

If the first post-decimal digit is between 0..4, the pre-decimal value is rounded down. If the first
post-decimal digit is between 5..9, the pre-decimal value is rounded up.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F334_FRINT (see page 1324)

Variable Data type Function

s REAL source

d REAL destination

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant
 the value at input s is not a REAL

number.

R900B %MX0.900.11 to TRUE  the result is 0.

R9009 %MX0.900.9 for an instant  the result causes an overflow.

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Description The function rounds off the decimal part of the real number data and returns it at output d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. It rounds off the input_value =
1234.567 after the decimal point and returns the result (here: 1235.000) at the variable
output_value.

Conversion instructions

694

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

IF start THEN

 F334_FRINT(input_value, output_value);

END_IF;

 Conversion instructions

695

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F335_FSIGN Floating point data sign changes (negative/positive conversion)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F335_FSIGN (see page 1324)

Variable Data type Function

s REAL source

d REAL destination

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the value at input s is not a REAL
number.

R9009 %MX0.900.9 for an instant  the result causes an overflow.

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Description The function changes the sign of the floating point value at input s and returns the result at output
d.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The value 333.4 is assigned to the variable input_value. When the variable start is set to TRUE,
the function is carried out. The output_value is then -333.4.

Conversion instructions

696

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

input_value:=333.444;

IF start THEN

 F335_FSIGN(input_value, output_value);

END_IF;

 Conversion instructions

697

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F337_RAD Conversion of angle units (Degrees -> Radians)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F337_RAD (see page 1324)

Variable Data type Function

s REAL source angle data (degrees), 2 words

d REAL destination for storing converted data

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the value at input s is not a REAL
number.

R900B %MX0.900.11 to TRUE  the result is 0.

R9009 %MX0.900.9 for an instant  the result causes an overflow.

Description The function converts the value of an angle entered at input s from degrees to radians and returns
the result at output d.

Data types

Operands

Error flags

Conversion instructions

698

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F337_RAD(input_value, output_value);

END_IF;

 Conversion instructions

699

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F338_DEG Conversion of angle units (Radians -> Degrees)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F338_DEG (see page 1324)

Variable Data type Function

s REAL source angle data (radians), 2 words

d REAL destination for storing converted data

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the value at input s is not a REAL
number.

R900B %MX0.900.11 to TRUE  the result is 0.

R9009 %MX0.900.9 for an instant  the result causes an overflow.

Description The function converts the value of an angle entered at input s from radians to degrees and returns
the result at output d.

Data types

Operands

Error flags

Conversion instructions

700

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F338_DEG(input_value, output_value);

END_IF;

Chapter 21

 Counter instructions

Counter instructions

702

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

CT_FB Down Counter

For the CT_FB function block declare the following:
Count count contact

each time a rising edge is detected at Count, the value 1 is subtracted from the elapsed value EV
until the value 0 is reached

Reset reset contact

each time a rising edge is detected at Reset, the value 0 is assigned to EV and the signal output C
is reset; each time a falling edge is detected at Reset, the value at SV is assigned to EV

SV set value

value of EV after a reset procedure

C signal output

is set when EV becomes 0

EV elapsed value

current counter value

PLC types Availability of CT_FB (see page 1319)

Variable Data type Function

Count count contact (down)

Reset
BOOL

reset contact

SV INT set value

C BOOL set when EV = 0

EV INT elapsed value

Time chart Count

Reset

SV

EV

C

10

0

10

0

download

PROG mode

ON

OFF

RUN mode

ON

OFF

ON
OFF

Description Counters realized with the CT_FB function block are down counters. The count area SV (set value)
is 1 to 32767.

Data types

 Counter instructions

703

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

  In order to work correctly, the CT_FB function block needs to be reset
each time before it is used.

 The number of available counters is limited and depends on the
settings in the system registers 5 and 6. The compiler assigns a NUM*
address to every counter instance. The addresses are assigned
counting downwards, starting at the highest possible address.

 The basic CT (see page 704) function (down counter) uses the same
NUM* address area (Num* input). In order to avoid errors (address
conflicts), the CT function and the CT_FB function block should not be
used together in a project.

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block CT_FB are
declared in the POU header. This also includes the function block (FB) itself. By declaring the FB
you create a copy of the original FB. This copy is saved under copy_name, and a separate data
area is reserved.

Counter instructions

704

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body This example uses variables. You may also use constants for the input variables. Each rising edge
detected at count_contact the value 1 is subtracted from the elapsed value EV. Signal_output is
set to TRUE if the elapsed value EV becomes zero.

LD

 Counter instructions

705

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

CT Counter

1. When the Reset input is on, the elapsed value is reset to 0.

2. When the Reset input changes from on to off, the set value (SV) is preset to the
value assigned to it. The set value can be set to a decimal constant from 0 to 32767.

3. Each time the Count input changes from off to on, the value 1 is subtracted from
the set value SV. When the elapsed value reaches 0, the output C turns on.

4. If the Count input and Reset input both turn on at the same time, the Reset input
is given priority.

5. If the Count input rises and the Reset input falls at the same time, the count
input is ignored and preset is executed.

PLC types Availability of CT (see page 1319)

 This function does not require a variable at the output C.

Variable Data type Function

Count BOOL subtracts 1 from the set value each time it is activated

Reset BOOL  resets the elapsed value when it is ON

 presets the set value when changing from on to off

Num* ANY16  Must be a constant

 number assigned to the counter (see System Register
5)

SV ANY16 set value is the number the counter starts subtracting from

C BOOL the counter turns on when it reaches the SV

For Relay T/C Register Constant

Count X Y R L T C - - - -

Reset X Y R L T C - - - -

Num* - - - - - - - - - ANY16

C - Y R L - - - - - -

SV - - - - SV - - - - -

Description Decrements a preset counter. The function has the following parameters: Count, Reset, Num*,
SV, and C. Their functions are listed in the Data types table below.

Data types

Operands

Counter instructions

706

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 Details about points of Down Counter CT:

Type Number of points Nos. that can be used

FP-e 44 100–143

FP0 C10, C14, C16

Non-hold type

Hold type

44

40

4

100–143

100–139
140–143

FP0 C32

Non-hold type

Hold type

44

28

16

100–143

100–127

128–143

FP2SH/FP10SH 72 3000–3071

FP3 56 200–255

FP2 24 1000–1023

FP-Sigma 24 1000–1023

The number of counter points can be changed using System Register 5. The number of points can
be increased up to 3,072 with the FP2SH and FP10SH, up to 256 with the FP-C and FP3, up to
1,024 with the FP-Sigma and up to 1,024 with the FP2 and up to 144 with the FP0. Be aware that
increasing the number of counter points decreases the number of timer points.

For all models except for the FP0 C10, C14, C16 and C32, there is a hold type, in which the
counter status is retained even if the power supply is turned off, or if the mode is switched from
RUN to PROG, and a non-hold type, in which the counter is reset under these conditions. System
register 6 can be used to specify a non-hold type.

 Set Value and Elapsed Value area

At the fall time when the reset input goes from on to off, the value of the set value area (SV) is
preset in the elapsed value area (EV).

When the reset input is on, the elapsed value is reset to 0.

Each time the count input changes from off to on, the value 1 is subtracted from the set value and
when the elapsed value reaches 0, the counter contact Cn (n is the counter number) turns on.

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The set value SV is set to 10 when Reset_input is activated. Each time Count_input is activated,
the value of SV decreases by 1. When this value reaches 0, Counter100 turns on. Num* is
assigned the counter number, which must be equal to or greater to the number assigned to Data in
System Register 5.

 Counter instructions

707

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

Counter100:=CT(Count:= Count_input ,

 Reset:= Reset_input ,

 Num:= 100 ,

 SV:= Setvalue);

 (* Num*, 100 in this example, must be a constant *)

Counter instructions

708

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F118_UDC UP/DOWN counter

CountTrigger: Adds or subtracts one count at the rising edge of this trigger.

Reset_Preset: The condition is reset when this signal is on.

The area for the elapsed value d becomes 0 when the rising edge of the trigger is detected (OFF
 ON). The value in s_PresetValue is transferred to d when the falling edge of the trigger is
detected (ON  OFF).

s_PresetValue: Preset (Set) value or area for Preset (Set) value.

d: Area for count (elapsed) value.

PLC types Availability of F118_UDC (see page 1320)

Variable Data type Function

UpDirection BOOL sets counter to count up (ON) or down (0FF)

CountTrigger BOOL starts counter

Reset_Preset BOOL resets counter

s_PresetValue 16-bit area or equivalent constant for counter preset value

d
ANY16

16-bit area for counter elapsed value

The variables s and d have to be of the same data type.

For Relay T/C Register Constant

UpDirection,
CountTrigger,
Reset_Preset

X Y R L T C - - - -

s_PresetValue WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description DOWN counting if the trigger UpDirection is in the OFF state. UP counting if the trigger
UpDirection is in the ON state.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

 Counter instructions

709

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

A rising edge at the input Count_Trigger activates the counter. The boolean variable at the input
UpDirection sets the direction of the counter (TRUE = up, FALSE =down). TRUE at the input
Reset_Preset resets the counter to the starting value.

LD

ST When programming with structured text, enter the following:

output_value:=F118_UDC(UpDirection:= up, Count_Trigger:= count,
Reset_Preset:= reset, s_PresetValue:= set_value);

(* output_value contains the count value *)

Chapter 22

 Data transfer via communication ports

Data transfer via communication ports

712

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

22.1 Description of the communication modes

Data transmission and reception can be carried out using the following communication modes. The
communication mode is set in the system registers of the PLC.

MEWTOCOL-COM

This communication mode uses the proprietary MEWTOCOL-COM protocol to exchange data between a
master and one or more slaves. This is called 1:1 or 1:N communication. A 1:N network is also known as a
C-NET. There is a MEWTOCOL-COM master function and a MEWTOCOL-COM slave function. The side that
issues commands is called master. The slave receives the commands, executes the process and sends back
responses. The slave answers automatically to the commands received from the master, so no program is
necessary on the slave. The MEWTOCOL-COM master function is not supported by all PLCs.

The master can be a PLC or any external device supporting the master function. To use the built-in master
functionality of the PLC, select MEWTOCOL-COM Master/Slave in the system registers and implement a PLC
program. The applicable instructions are F145_WRITE_DATA (see page 766) and F146_READ_DATA.

The slave can be a PLC or any external device which supports the MEWTOCOL-COM protocol. To use the
built-in slave functionality of the PLC, select MEWTOCOL-COM Master / Slave in the system registers. For 1:N
communication in a C-NET, the station number must be specified in the system registers of the slave.

Modbus RTU

This communication mode uses the Modbus RTU protocol to exchange data between a master and one or more
slaves. This is called 1:1 or 1:N communication. There is a Modbus RTU master function and a Modbus RTU
slave function. The side that issues commands is called master. The slave receives the commands, executes
the process and sends back responses. The slave answers automatically to the commands received from the
master, so no program is necessary on the slave.

The Modbus protocol supports both ASCII mode and RTU binary mode. However, the PLCs of the FP Series
only support the RTU binary mode.

Program controlled mode

With program controlled communication, the user generates a program which governs the data transfer
between a PLC and one or more external devices connected to the communication port. By this, any standard
or user protocol can be programmed.

Typically, such a user program consists of sending and receiving the data. The data to be sent and the data
received are stored in data register areas defined as send and receive buffers.

Sending can be controlled by the "transmission done" flag. For detailed information, see Flag Operation in
Program Controlled Communication (see page 757).

For all PLC types Sending includes generating the data for the send buffer and sending it using the
instruction F159_MTRN (see page 741). For detailed information, see Sending Data to
External Devices (see page 733).

The "transmission done" flag can be evaluated using the IsTransmissionDone (see page
763) function. Or use the system variable sys_bIsComPort1TransmissionDone,
sys_bIsComPort2TransmissionDone, or sys_bIsToolPortTransmissionDone, depending on
the port.

Receiving includes processing the data in the receive buffer and preparing the system to receive further data.
Reception can be controlled by the "reception done" flag or by directly evaluating the receive buffer. For detailed
information, see Flag Operation in Program Controlled Communication (see page 757).

For all PLC types The "reception done" flag can be evaluated using the IsReceptionDone (see page 760)
function. Or use the system variable sys_bIsComPort1ReceptionDone,
sys_bIsComPort2ReceptionDone, or sys_bIsToolPortReceptionDone, depending on the
port. The end of reception can also be determined by time-out using the
IsReceptionDoneByTimeOut (see page 761) function or by checking the contents of the
receive buffer.

 Data transfer via communication ports

713

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

CPU
communication
ports

Data is automatically received in the receive buffer defined in the system registers. For
detailed information, see Receiving Data from External Devices (see page 747).

MCU
communication
ports

Data is automatically received in the MCU unit. The data received can be moved to the
CPU receive buffer using the instruction F161_MRCV (see page 755).

PLC link mode

PLC Link is an economic way of linking PLCs using a twisted-pair cable and the MEWNET protocol. Data is
shared with all PLCs by means of dedicated internal relays called link relays (L) and data registers called link
registers (LD). The statuses of the link relays and link registers of one PLC are automatically fed back to the
other PLCs on the same network. The link relays and link registers of the PLCs contain areas for sending and
areas for receiving data. Station numbers and link areas are allocated using the system registers.

For detailed information on setting the communication parameters and the link area, please refer to the
hardware manuals of the corresponding units.

Data transfer via communication ports

714

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

22.2 Setting the communication parameters

CPU: Setting the communication parameters for the COM ports

 During PROG mode:  via system registers (see page 714)

 via DIP switches (see page 715) (for FP10SH only)

 During RUN time:  F159_MTRN (switch communication mode (see page
717) with 16#8000)

 SYS1 (see page 980) with FP-Sigma and FP-X

 SYS2 (see page 993) with FP-Sigma and FP-X

MCU: Setting the communication parameters for the COM ports
 During PROG mode:  via MCU dialog

 via DIP switches (see page 718) (for FP2/2SH MCU
only)

 During RUN time:  via F159_MWRT_PARA (see page 719)

 F159 (see page 717) (switch communication mode
with 16#8000)

 Getting the COM Ports via the Input (X) Flags (see
page 732)

 Setting the COM Ports via the Output (Y) Flags (see
page 722)

Setting the CPU's Communication Parameters

22.2.1.1 Setting the CPU's COM Ports in PROG Mode via System Registers

For a general description on setting the system registers, please refer to the online help under setting the
system registers.

 1.
2.
3.

Procedure

1. Double-click "PLC" in the navigator

2. Double-click "System Registers"

3. Double-click "COM Port"

The communication ports occupy different bit positions of the same system register, so individual
settings for each communication port are possible.

To make settings for the TOOL port, select "TOOL Port" under "System Registers".

The number of the system register for the respective settings may vary according to the PLC type
used.

Make settings for the communication mode, communication format, baud rate, station number, and receive
buffer if necessary.

 Data transfer via communication ports

715

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Communication mode

Select a communication mode. The factory setting for the communication mode is "MEWTOCOL-COM
Master/Slave".

Station number

The station number must be set for MEWTOCOL-COM Master/Slave, Modbus RTU, and for PLC Link.

MEWTOCOL-COM and Modbus RTU: The station number can be set within a range of 1 to 99.

PLC Link: The station number can be set within a range of 1 to 16.

For detailed information on setting the station number with the station number setting switch, please refer to the
hardware manuals of the corresponding units.

Baud rate

The setting must match the external device connected to the communication port.

Communication format setting

Default settings:

Data length: 8 bits

Parity: Odd

Stop bit: 1 bit

Start code No STX

End code: CR

The setting must match the external device connected to the communication port.

MEWTOCOL-COM and Modbus RTU: The end code setting must always be "CR", and the start code setting
must be "No STX".

PLC Link: The communication format settings are fixed.

For details on the format of the data in the send buffer and in the receive buffer, please see "Format of send and
receive data" on page 745.

Receive buffer

For program controlled communication, a receive buffer must be specified in the system registers. Set a value
for receive buffer starting address and receive buffer capacity.

22.2.1.2 Setting the CPU's COM Ports in PROG Mode via DIP Switches (FP10SH)

 1.
2.
3.

Procedure

1. Set the communication format

Default settings:

Data length: 8 bits

Parity: Odd

Stop bit: 1 bit

Start code No STX

Data transfer via communication ports

716

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

End code: CR

The setting must match the external device connected to the communication port. Use the upper
row of operation mode switches:

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Upper DIP switches

Lower DIP switches

off
on

off
on

Operation mode switches (upper row)

Settings Functions
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8

Disabled off MODEM control

Enabled on

STX (16#02)
invalid

 off Start code

STX (16#02)
valid

 on

None off off

CR (16#0D) and
LF (16#0A)

 on off

CR (16#0D) off on

End code

EXT (16#03) on on

2 bits off Stop bit

1 bit on

None off off

Even on off

Parity check

Odd on on

7 bits off Data length
(character bit)

8 bits on

2. Set the baud rate

The default baud rate is 9600bit/s.

The setting must match the external device connected to the communication port. Use the lower
row of operation mode switches:

Operation mode switches (lower row)

Functions Settings

Baud rate [bit/s] SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8

115200 - - - - - off off off

57600 - - - - - on off off

38400 - - - - - off on off

19200 - - - - - on on off

9600 - - - - - off off on

4800 - - - - - on off on

2400 - - - - - off on on

1200 - - - - - on on on

 Data transfer via communication ports

717

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

22.2.1.3 Setting in RUN Mode with SYS instructions (FP-Sigma, FP-X)

Please refer to the description of SYS1, communication condition setting (see page 980) and to the description
of SYS2 (see page 993).

22.2.1.4 Changing the communication mode in RUN mode

 � NOTE

When the power is turned on, the communication mode selected in the system registers is set.

It is not possible to change to the Modbus RTU mode using F159_MTRN.

The communication mode of the CPU's communication ports can be changed during RUN mode.
You can toggle between program controlled mode and MEWTOCOL-COM mode by executing
F159_MTRN and setting the variable n_Number (the number of bytes to be sent) to 16#8000.

POU
Header and

LD Body

The communication mode flag turns on when program controlled mode is active. It turns off when
MEWTOCOL-COM mode is active. The flag can be evalutated using the system variable
sys_bIsComPort1ProgramControlled, sys_bIsComPort2ProgramControlled, or
sys_bIsToolPortProgramControlled.

ST Body

Data transfer via communication ports

718

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

SetCommunication
Mode

Switch communication mode between 'Program controlled' and
'MEWTOCOL-COM'

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types see see page 1330

Variable Data type Function

Port INT Specifies the CPU or MCU port number

bSetProgramControlled

Sets the communication mode:

 TRUE: Program controlled mode

 FALSE: MEWTOCOL-COM Slave [Computer Link] mode

Setting the MCU's COM Ports in PROG Mode via DIP Switches (FP2/2SH)

Use the DIP switches that are located at the back of the unit to set the operation mode and communication
speed.

Description Sets the communication mode to the mode indicated by the value applied at
bSetProgramControlled. If this value is TRUE then the communication mode is set to Program
controlled mode (see page 712), if it is FALSE it is set to "MEWTOCOL-COM (see page 712) Slave
[Computer Link]".

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST SetCommunicationMode(Port := SYS_COM1_PORT,

 bSetProgramControlled := bSetMode);

 Data transfer via communication ports

719

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

DIP switch settings

Port COM 1 COM 2

Switch No. SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8

Spare OFF OFF - - OFF OFF - -

PLC link ON OFF - - ON OFF - -

Program controlled
communication

OFF ON - - OFF ON - -

Operation
mode

MEWTOCOL-COM
Slave

ON ON - - ON ON - -

115200bit/s - - OFF OFF - - OFF OFF

19200bit/s - - ON OFF - - ON OFF

9600bit/s - - OFF ON - - OFF ON

Baud rate

Memory switch - - ON ON - - ON ON

 � NOTE

The factory setting for all DIP switches is ON.

Setting the MCU's COM Ports in PROG Mode via the MCU Dialog

Please refer to the description of the MCU parameter settings in the online help.

Setting the MCU's communication ports in RUN Mode with F159_MWRT_PARA

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears

Communication parameters in the predefined DUT MCU_PARA_DUT are written to the specified
port of a Multi-Communication Unit.

DUT
settings

Example

Data transfer via communication ports

720

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Configuration of communication parameters:

1. UnitNumber (station 1 to 99)

2. BaudrateValue (0 to 10) *2

*2. Baud rate setting value

Storage value Baud rate

0 300

1 600

2 1200

3 2400

4 4800

5 9600

6 19200

7 38400

8 57600

9 115K

10 230K

3. CharacterBitsValue (0=7 bits, 1=8 bits)

4. ParityValue (0=no parity, 1=parity 0, 2=odd, 3=even)

5. StopBitLengthValue (0=1 bit, 1=2 bits)

6. RS_CS_IsValid (0=disable, 1=enable)

7. SendWaitingTime (0=time for about three characters/effective time=n*0.01ms (0 to 100ms))

8. SendingHeaderValue (0=No STX, 1=STX)

9. SendingTerminator_ReceptionDoneCriterion_Value (0=CR, 1=CR+LF, 2=No SendingTerminator,
ReceptionDone by Timeout (24 bits), 3 =EXT)

10. ReceptionDoneTimeOut (0=immediate/effective time=n*0.01 ms (0 to 100 ms)

11. InitModemWhenPowerTurnsOn (0=not initialized, 1=initialized)

Variable Data type Function

s_Para MCU_PARA_DUT Communication parameters defined in the predefined
DUT

d_Port ANY16 Specification of slot number (high byte) and port number
(low byte) of the MCU to which the data is transmitted.

16#xx01: COM1 on MCU in slot 16#xx

16#xx02: COM2 on MCU in slot 16#xx

Data types

 Data transfer via communication ports

721

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s_Para WX WY WR WL SV EV DT LD FL -

d_Port - WY WR WL SV EV DT LD FL dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant the MCU unit does not exist in the specified slot

Operands

Error flags

Data transfer via communication ports

722

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Setting the MCU's communication ports during RUN mode via the output (Y) flags

16 I/Os for Y are allocated. I/O numbers are determined depending on the installation location and
the I/O allocations of the other units.

Output signal

COM 1 COM 2

Name Description (0: OFF, 1: ON) Effective
operation
mode

Y10-Y17 Y10-Y17 Undefined Default setting: 0 (Do not change)

None

Y18 Y19 RTS signal
output

The transmission from the devices
communicating with the MCU can be
controlled by turning this output on.

Permit transmission from communicating
devices: 0

Prohibit the transmission from
communicating devices: 1

The CTS signal sent from the
communicating devices can be monitored
via X8 and X9.

Effective only
when setting the
RS/CS to be
valid and using
the

RS232C
communication
cassette.

Y1A-Y1D Y1A-Y1D Undefined Default setting: 0 (Do not change)

None

Y1E Y1F Request to
reset CH

Communication channels can be reset by
turning on Y1E or Y1F.

No request to reset: 0

Request to reset: 1

After 1 is output and the completion of the
reset is confirmed by XE/XF, return to 0.
The reset is performed only once when this
signal rises.

During reset, the following operations are
performed:

1: Transmission discontinued

2: Reception discontinued

3: Receive buffer cleared

4: Communication parameters reset

5: Error information cleared (for errors
which can be cleared)

This function can be used to delete
unnecessarily received data or to clear
errors before starting normal reception.

Program
controlled
communication

 � NOTE

The channel reset can be automatically performed by one of the following (in these cases, the
reset done signal by XE/YF does not turn on):

- Setting/changing communication parameters using the instruction F159_MWRT_PARA
(see page 719).

 Data transfer via communication ports

723

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

- Changing operation modes (see page 717) (switching between program controlled
communication and MEWTOCOL-COM Slave) using F159_MTRN.

- Turning on the PLC power supply or changing from PROG to RUN mode if the MCU
settings have been made via software.

Data transfer via communication ports

724

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

22.3 Getting the communication mode

You can check during RUN mode which communication mode has been set on the PLC. The following
communication modes can be determined: PLC Link (see page 724), program controlled communication (see
page 725), and MEWTOCOL-COM Master / Slave (see page 726).

There are three different ways to get the communication mode:

1. Using PLC-independent system variables. There are different system variables for each port. For
detailed information on using system variables, please refer to Data transfer to and from special data
registers (see page 859).

2. Using PLC-independent functions: The port number must be specified in a variable. The functions
IsPlcLink (see page 724) and IsProgramControlled (see page 726) are available.

3. Using special relays: The relay numbers vary depending on the COM port and the PLC type!

For details on getting the communication mode of an MCU, please refer to Getting the MCU communication
parameters (see page 729).

22.3.1 Checking for PLC link mode

PLC Link mode can be checked for the following devices:

FP, FP-X:

Port
name

Port
number

Special
internal relay

Function
name

System variable name Bit status

COM1 1 R9041 IsPlcLink (see
page 724)

sys_bIsComPort1PlcLink TRUE

MCU:

Port
name

Port number Function name DUT

COM1 16#xx01

COM2 16#xx02

IsPlcLink (see page
724)

MCU-STATUS_DUT.CommunicationMode=2 (see page
729)

xx = slot number (hexadecimal)

 Data transfer via communication ports

725

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

IsPlcLink Evaluation of "PLC Link" flag for all ports

22.3.2 Checking for program controlled mode

Program controlled mode can be checked for the following devices:

FP0:

Port
name

Port
number

Special
internal
relay

Function name System variable name Bit status

COM 1 R9032 IsProgramControlled (see
page 726)

sys_bIsComPort1ProgramC
ontrolled

TRUE

FP, FP-X:

Port
name

Port
number

Special
internal
relay

Function name System variable name Bit status

TOOL 0 R9040 sys_bIsToolPortProgramCo
ntrolled

COM1 1 R9032 sys_bIsComPort1ProgramC
ontrolled

COM2 2 R9042

IsProgramControlled (see
page 726)

sys_bIsComPort2ProgramC
ontrolled

FALSE

FP2/FP2SH/FP10SH:

Port
name

Port
number

Special
internal
relay

Function name System variable name Bit status

COM 0 R9032 IsProgramControlled (see
page 726)

sys_bIsComPort1ProgramC
ontrolled

TRUE

MCU:

Port name Port number Function name DUT

COM1 16#xx01

COM2 16#xx02

IsProgramControlled (see
page 726)

MCU-STATUS_DUT.CommunicationMode
=1 (see page 729)

xx = slot number (hexadecimal)

Description This instruction returns the value of the "PLC Link" flag. The "PLC Link" flag is TRUE if the
communication port of the PLC has been set to PLC Link communication mode.

Symbol:

Example

Data transfer via communication ports

726

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

IsProgramControlled Evaluates the "program controlled" flag

22.3.3 Checking for MEWTOCOL-COM master / slave mode

MEWTOCOL-COM Master / Slave mode can be checked for the following devices:

FP0:

Port
name

Port
number

Special
internal
relay

Function name System variable name Bit status

COM 1 R9032 IsProgramControlled (see
page 726)

sys_bIsComPort1ProgramC
ontrolled

FALSE

FP, FP-X:

Port
name

Port
number

Special
internal
relay

Function name System variable name Bit status

TOOL 0 R9040 sys_bIsToolPortProgramCo
ntrolled

COM1 1 R9032 sys_bIsComPort1ProgramC
ontrolled

COM2 2 R9042

IsProgramControlled (see
page 726)

sys_bIsComPort2ProgramC
ontrolled

FALSE

FP2/FP2SH/FP10SH:

Port
name

Port
number

Special
internal
relay

Function name System variable name Bit status

COM 0 R9032 IsProgramControlled (see
page 726)

sys_bIsComPort1ProgramC
ontrolled

FALSE

MCU:

Port name Port number Function name DUT

COM1 16#xx01

COM2 16#xx02

IsProgramControlled (see
page 726)

MCU-STATUS_DUT.CommunicationMode
=0 (see page 729)

Description This instruction returns the value of the "program controlled" flag. The "program controlled" flag is
TRUE if the communication port of the PLC has been set to program controlled communication
mode. It is FALSE if it has been set to "MEWTOCOL-COM Master / Slave".

Symbol:

Example

 Data transfer via communication ports

727

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

xx = slot number (hexadecimal)

Getting the MCU's Communication Parameters

In this section:

- F161_MRD_PARA (see page 728)

- F161_MRD_STATUS (see page 730)

- Getting in RUN Mode via the Input (X) Flags (see page 732)

Data transfer via communication ports

728

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F161_MRD_PARA Getting the communication modes in RUN mode from MCU's COM port

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Configuration of communication parameters:

1. UnitNumber (station 1 to 99)

2. BaudrateValue (0 to 10) *2

*2. Baud rate setting value

Description Communication parameters in the predefined DUT MCU_PARA_DUT are received from a port of a
Multi-Communication Unit in a certain slot.

DUT
settings

Example

 Data transfer via communication ports

729

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Storage value Baud rate

0 300

1 600

2 1200

3 2400

4 4800

5 9600

6 19200

7 38400

8 57600

9 115K

10 230K

3. CharacterBitsValue (0=7 bits, 1=8 bits)

4. ParityValue (0=no parity, 1=parity 0, 2=odd, 3=even)

5. StopBitLengthValue (0=1 bit, 1=2 bits)

6. RS_CS_IsValid (0=disable, 1=enable)

7. SendWaitingTime (0=time for about three characters/effective time=n*0.01ms (0 to 100ms))

8. SendingHeaderValue (0=No STX, 1=STX)

9. SendingTerminator_ReceptionDoneCriterion_Value (0=CR, 1=CR+LF, 2=No SendingTerminator,
ReceptionDone by Timeout (24 bits), 3 =EXT)

10. ReceptionDoneTimeOut (0=immediate/effective time=n*0.01 ms (0 to 100 ms)

11. InitModemWhenPowerTurnsOn (0=not initialized, 1=initialized)

PLC types Availability of F161_MRD_PARA (see page 1321)

Variable Data type Function

s_Port

ANY16

Specification of slot number (high byte) and port number
(low byte) of the MCU to which the data is transmitted.

16#xx01: COM1 on MCU in slot 16#xx

16#xx02: COM2 on MCU in slot 16#xx

d1_Para MCU_PARA_DUT Communication parameters defined in the predefined DUT

For Relay T/C Register Constant

s_Port WX WY WR WL SV EV DT LD FL dec. or hex.

d1_Para - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the specified address using the index
modifier exceeds a limit

 the MCU unit does not exist in the
specified slot

 the specified communication port does
not exist

Data types

Operands

Error flags

Data transfer via communication ports

730

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F161_MRD_STATUS Getting the statuses in RUN mode from MCU's COM port

The DUT MCU_STATUS_DUT is predefined in the FP Library.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Configuration of monitor data

1. CommunicationMode (0 to 7)

(0=MEWTOCOL-COM Slave, 1=Program controlled serial communication, 2=PLC Link, 7=modem
initialization)

2. CommunicationCassette

(0=no communication cassette, 232=RS232C, 422=RS422, 485=RS485)

3. ReceptionErrorCode

(Bit 0=receive buffer overrun (hardware), bit 1=stop bit not detected, bit 2=parity unmatched)

(Bit 8=receive buffer overflow, bit 9=receive buffer full)

4. NumberReceptionErrors (number of times the reception error stored in the lower byte of
ReceptionErrorCode is detected)

5. SettingErrorCode

(Bit0=error in the DIP switch setting of the operation mode, bit1=operation mode setting exceeds the
usable limit of the unit)

(Bit 8=error in the communication parameter setting, bit 9=error in the number of transmitted data)

6. ErrorParameterNumber (0 to 11)

7. ModemInitializationStatus

Description Status data is read from the specified COM port of a Multi-Communication Unit.

DUT
settings

Example

 Data transfer via communication ports

731

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

(16#0000=deinitialized, 16#0100=now initializing, 16#0200=initialization completed,
16#02FF=initialization failed.)

Variable Data type Function

s_Port ANY16 Specification of slot number (high byte) and port number
(low byte) of the MCU to which the data is transmitted.

16#xx01: COM1 on MCU in slot 16#xx

16#xx02: COM2 on MCU in slot 16#xx

d1_Status MCU_STATUS_DUT Communication parameters defined in the predefined
DUT

For Relay T/C Register Constant

s_Port WX WY WR WL SV EV DT LD FL dec. or hex.

d1_Status - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the specified address using the index
modifier exceeds a limit

 the MCU unit does not exist in the
specified slot

 the specified communication port does
not exist

Data types

Operands

Error flags

Data transfer via communication ports

732

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

22.3.3.1 Getting the communication modes and statuses via the input (X) flags from the MCU's COM
ports in RUN mode

16 I/Os for X are allocated. I/O numbers are determined depending on the installation location and
the I/O allocations of the other units.

Input signal

COM 1 COM 2

Name Description (0: OFF, 1: ON) Effective operation mode

X0 X2 Reception
done flag

When the MCU completes the data reception,
it turns on.

When waiting for the end of data reception: 0

When data reception completed: 1

X1 X3 PLC data
reception
done flag

When F161_MRCV (see page 755) is
completed, it is set/reset.

Reading completed: 1

Data not yet read: 0 Note 1)

X4 X5 Transmissi
on done
flag

When transmission is available: 1

During transmission: 0 Note 2)

When transmission is completed: 1

X6 X7 Reception
error

When F161_MRCV (see page 755) is
completed, it is set/reset.

Errors exist in the data read: 1

No error exists in the data read: 0 Note 1)

Program controlled communication

X8 X9 CTS signal
monitor

Status of the CTS signal sent from the device
being communicated with.

Transmission from MCU is possible: 0

Transmission from MCU is not possible: 1

The RTS signal from the MCU is controllable
by Y18 and Y19.

Effective only when setting the
RS/CS to be valid and using the
communication block AFP2803

XA XC Latest
reception
error

Set when an error occurs during the
reception of data by the MCU

No reception error: 0

Reception error: 1

The details of the reception error can be
confirmed by reading them to the PLC using
the F161_MRD_STATUS (see page 729)
instruction.

Check X6/X7 to see whether or not there are
errors in each receive buffer during multiple
reception.

Program controlled communication
(Reception)

XB XD Setting
error

Operation mode switch setting error

Usage restrictions for the unit

All operation modes

XE XF CH reset
done

Communication channels can be reset by
turning on Y1E or Y1F. The flag is reset upon
completion.

At completion: 1

When Y1E/Y1F is off: 0

Program controlled communication

 Data transfer via communication ports

733

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

22.4 Data transfer in program controlled mode

For all PLC types and all COM ports (including the COM ports of the Multi-Communication Unit) the following
instructions are available:

 Tool instructions:

- SendCharacters (see page 737)

- SendCharactersAndClearString (see page 739)

- ReceiveData (see page 750)

- ReceiveCharacters (see page 752)

- ClearReceiveBuffer (see page 753)

 FP instructions

- F159_MTRN (see page 741), sending (see page 733) in program controlled mode

- F161_MRCV (see page 755), receiving (see page 747) in program controlled mode

 Flag evaluation:

- IsTransmissionDone (see page 763)

- IsReceptionDone (see page 760)

- IsReceptionDoneByTimeOut (see page 761)

- IsCommunicationError (see page 764)

 � NOTE

F159_MTRN (see page 741) allows multiple communication ports to be accommodated. This
instruction is an updated version of F144_TRNS. Both instructions are compatible with all PLCs:
PLCs with multiple communication ports will compile F144_TRNS s, n to F159_MTRN s_Start,
n_Number, d_Port*=1. PLCs with only one communication port will compile F159_MTRN to
F144_TRNS s, n.

22.4.1 Sending data to external devices

Steps for sending data to external devices:

1. Setting the communication parameters to match the external device

2. Generating the data in the send buffer

3. Sending the data using the instruction F159_MTRN

 � NOTE

F159_MTRN (see page 741) allows multiple communication ports to be accommodated. This
instruction is an updated version of F144_TRNS. Both instructions are compatible with all PLCs:
PLCs with multiple communication ports will compile F144_TRNS s, n to F159_MTRN s_Start,
n_Number, d_Port*=1. PLCs with only one communication port will compile F159_MTRN to
F144_TRNS s, n.

Data transfer via communication ports

734

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

1. Setting the communication parameters (see)

2. Generating the data in the send buffer

To generate the data in the send buffer, define a variable in the program and copy the data to the send buffer
using a transfer instruction, e.g. F10_BKMV (see page 819).

The storage area for the data to be sent starts with the second word of the send buffer (offset 1). Offset 0
contains the number of bytes to be sent.

1 Storage area for the number of bytes to be sent

2 Storage area for the data to be sent 0

1

2

n

Offset

2

�

�

1

34

2n 2n-1

Bold numbers indicate the order of transmission.

The maximum volume of data that can be sent is 2048 bytes.

 � EXAMPLE

Define a send buffer for 30 bytes (ARRAY [0...15] OF WORD) and copy 8 characters of a string ("ABCDEFGH")
into the buffer.

Send buffer layout:

 0

1

2

4

16#42(B) 16#41(A)

16#44(D) 16#43(C)

16#48(H) 16#47(G)

16#46(F) 16#45(E)

8

3

Offset

15

The first word of the send buffer (offset 0) is reserved for the number of bytes to be sent. Therefore, copy the
data into offset 1 (SendBuffer[1]).

When sending begins (the execution condition for F159_MTRN (see page 741) turns to TRUE), the value in
offset 0 is set to 8. At the end of transmission, the value in offset 0 is automatically reset to 0. The data in offset
1 to offset 4 is sent in order from the low order byte.

 Data transfer via communication ports

735

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU Header and LD Body

ST Body

When the variable bSend is set to TRUE, the function F10_BKMV copies the characters of the string
sSendData to the buffer awSendBuffer beginning at awSendBuffer[1].

The first two words of a string contain the string header information (maximum number of characters and the
current number of characters). The string header must not be copied into the buffer. Therefore, enter an offset
of 2 to the starting address of the string before copying the data.

Make sure that the send buffer is big enough for all the data to be sent. To determine its size you must take into
account that two characters of the string SendString can be copied into each element of the array SendBuffer.
SendBuffer[0] is reserved for the total number of bytes to be sent by F159_MTRN.

3. Sending the data using the instruction F159_MTRN

Execute F159_MTRN (see page 741) to

- specify the amount of data to be sent

- specify the communication port to be used

- output the data from the communication port to the external device.

When the execution condition of F159_MTRN turns to TRUE and the "transmission done" flag is TRUE,
transmission starts. (For details on flag operation, see page 757.)

When sending data, operation is as follows:

- The number of bytes to be sent is set in offset 0 of the send buffer.

- The "transmission done" flag turns to FALSE.

- The data in the send buffer is sent starting with the low order byte in offset 1.

- The start and end codes specified in the system registers are automatically added to the data sent.

- During transmission, F159_MTRN cannot be executed again.

- The "reception done" flag turns to FALSE.

- The number of bytes received is set to 0 in offset 0 of the receive buffer.

- Data received is written into the receive buffer

When the specified number of bytes has been sent, the "transmission done" flag turns to TRUE. The end code
is automatically added to the data sent. At the end of transmission, the value in offset 0 is automatically reset to
0.

Data transfer via communication ports

736

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 � EXAMPLE

Transmit the characters "ABCDEFGH" to an external device connected to COM port 1. For start code and end
code the default settings "No-STX" and "CR" are selected.

(CR)

ON

OFF

ON

OFF

0 2 3 4

A B C D E F G H

Offset

Transmission data

Execution condition

TransmissionF159_MTRN execution

“Transmission done” flag

POU Header and LD Body

ST Body

When the variable bSend is set to TRUE, the function F10_BKMV copies the characters of the string
sSendData to the buffer awSendBuffer beginning at awSendBuffer[1].

Then, F159_MTRN sends the data from the first element of the send buffer (awSendBuffer[0]) as specified by
s_Start. The length of the string to be sent (8 bytes) is set at n_Number (using the function LEN to calculate
the number of bytes). The data is output from COM port 1 as specified by d_Port.

 Data transfer via communication ports

737

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 � NOTE

For details on the operation of the "reception done" flag, the "transmission done" flag, and the
communication error flag, see page 757.

For details on the format of the data in the send buffer and in the receive buffer, please see "Format of
send and receive data" on page 745.

Data cannot be sent unless the pin CS (Clear to Send) is on. When connecting to a three-wire port,
short-circuit the RS and CS pins.

Data transfer via communication ports

738

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

SendCharacters Send characters to CPU or MCU port

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

See also:

 ReceiveCharacters (see page 752)

 ClearReceiveBuffer (see page 753)

PLC types see see page 1330

Variable Data type Function

Port

ANY16

 Communication port

 Must be a constant

FP-X, FP and FP2, FP2SH (V1.4 or later):

 PLC communication ports:
Value: SYS_COM1_PORT or SYS_COM2_PORT or
SYS_TOOL_PORT

 MCU communication port:
Value: 16#xx01 (COM1), 16#xx02 (COM2)

xx = slot number (hexadecimal) of the MCU (e.g. 16#0001: COM1
in slot 0, 16#0A02: COM2 in slot 10, 16#1401: COM1 in slot 20)

Other PLCs:

The command will be compiled to F144_TRNS, which works on
the COM port of the CPU (the parameter d_Port will be ignored)

sString STRING Stores the send string

bSuppressEndCode
BOOL

When set to TRUE, the instruction does not append the sending
end code character even if specified in the respective system
register.

Input/output variable

SendBuffer ANY Stores the send string temporarily

Description This instruction first fills the send buffer applied at the VAR_INOUT variable SendBuffer with the
relevant characters of the variable at sString according to the required data format for sending
data "Sending data to external devices" on page 733. Then the send data instruction F159_MTRN
(see page 741) is executed using the data of the send buffer. Setting the variable
bSuppressEndCode to TRUE does not append the sending end code character even when
specified in the according system register. In contrast to the instruction
SendCharactersAndClearString (see page 739) the string variable applied at sString remains
unchanged.

Data types

 Data transfer via communication ports

739

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the MCU unit does not exist in the
specified slot

 16#8000 is specified in
MEWTOCOL-COM Master/Slave mode

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD If bSend changes from FALSE to TRUE, the instruction sends the characters from sSendData to
the MCU port 1. The characters are copied to the array awSendBuffer. awSendBuffer[0] is
reserved for the length of the string to send.

ST if (DF(bSend)) then

 sResult:=SendCharacters(1, sSendData, awSendBuffer);

end_if;

Data transfer via communication ports

740

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

SendCharactersAnd
ClearString

Send characters and clesr string

In contrast to the instruction SendCharacters (see page 737), the string variable applied at sString
is cleared after execution.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see see page 1330

Variable Data type Function

Port

INT

 Communication port

 Must be a constant

FP-X, FP and FP2, FP2SH (V1.4 or later):

 PLC communication ports:
Value: SYS_COM1_PORT or SYS_COM2_PORT or
SYS_TOOL_PORT

 MCU communication port:
Value: 16#xx01 (COM1), 16#xx02 (COM2)

xx = slot number (hexadecimal) of the MCU (e.g. 16#0001:
COM1 in slot 0, 16#0A02: COM2 in slot 10, 16#1401: COM1 in
slot 20)

Other PLCs:

The command will be compiled to F144_TRNS, which works on
the COM port of the CPU (the parameter d_Port will be ignored)

bSuppressEndCode
BOOL

When set to TRUE, the instruction does not append the sending
end code character even if specified in the respective system
register.

VAR_INOUT

sString STRING Stores the send string

Description This instruction directly executes the send data instruction F159_MTRN (see page 741) on the
applied string without requiring an additional send buffer.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Data transfer via communication ports

741

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST SendCharactersAndClearString(Port := 1,

 bSuppressEndCode := bSuppressEndCode,

 sString := sSendData);

Data transfer via communication ports

742

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F159_MTRN Serial data communication to CPU or MCU port

 F159_MTRN is encapsulated in the following instructions:

 SendCharacters (see page 737)

 SendCharactersAndClearString (see page 739)

 ClearReceiveBuffer (see page 753)

 SetCommunicationMode (see page 717)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

REFERENCE

- Data transfer in program controlled mode (see page 733)

- Changing the communication mode in RUN mode (see page 717)

Description This instruction is used to send data when an external device (computer, measuring instrument,
bar code reader, etc.) has been connected to the specified RS232C port. If applied to the CPU's
COM port, it also clears the receive buffer (see page 746), resets the "reception done flag" and
allows further reception of data.

 Data transfer via communication ports

743

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

PLC types Availability of F159_MTRN (see page 1321)

Variable Data
type

Function

s_Start Send buffer

n_Number Bytes to send:

 Positive value: the end code is added in transmission.

 Negative value: the end code is not added in transmission.

 16#8000: the communication mode of the specified communication port is
changed.

d_Port  Communication port

 Must be a constant

FP-X, FP and FP2, FP2SH (V1.4 or later):

 PLC communication ports:
Value: SYS_COM1_PORT or SYS_COM2_PORT or SYS_TOOL_PORT

 MCU communication port:
Value: 16#xx01 (COM1), 16#xx02 (COM2)

xx = slot number (hexadecimal) of the MCU (e.g. 16#0001: COM1 in slot 0,
16#0A02: COM2 in slot 10, 16#1401: COM1 in slot 20)

Other PLCs:

The command will be compiled to F144_TRNS, which works on the COM port of
the CPU (the parameter d_Port will be ignored)

For Relay T/C Register Constant

s_Start WX WY WR WL SV EV DT LD FL -

n_Number WX WY WR WL SV EV DT LD FL dec. or hex.

d_Port - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the specified address using the index
modifier exceeds a limit

 the number of bytes to be sent specified
by 'n_Number' is outside of the specified
area.

Flags only for the MCU:

 the MCU unit does not exist in the
specified slot

 16#8000 is specified in
MEWTOCOL-COM Master/Slave mode

Data types

Operands

Error flags

Data transfer via communication ports

744

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example the characters of the string sSendData are transmitted.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable bSend is set to TRUE, the function F10_BKMV copies the characters of the
string sSendData to the buffer awSendBuffer beginning at awSendBuffer[1].

The first two words of a string contain the string header information (maximum number of
characters and the current number of characters). The string header must not be copied into the
buffer. Therefore, enter an offset of 2 to the starting address of the string before copying the data.

Make sure that the send buffer is big enough for all the data to be sent. To determine its size you
must take into account that two characters of the string SendString can be copied into each
element of the array SendBuffer. SendBuffer[0] is reserved for the total number of bytes to be
sent by F159_MTRN.

Then, F159_MTRN sends the data from the first element of the send buffer (awSendBuffer[0]) as
specified by s_Start. The length of the string to be sent (8 bytes) is set at n_Number (using the
function LEN to calculate the number of bytes). The data is output from COM port 1 as specified by
d_Port.

LD

 Data transfer via communication ports

745

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Further information:

22.4.1.1 Format of send and receive data

Remember the following when accessing data in the send and receive buffers:

 The format of the data in the send buffer depends on the data type of the transmission data (e.g.
STRING) and on the conversion function used in the PLC program (e.g. F95_ASC (see page 661)).
There is no conversion when data in the send buffer is sent.

 The start and end codes specified in the system registers are automatically added to the data sent.
The start code is added at the beginning, the end code at the end of the send string. Do not include
start or end codes in the send string.

 The format of the data in the receive buffer depends on the data format used by the external device.
Use a conversion function to convert the data into the desired format, e.g. F27_AHEX.

 Start and end codes in the data received are recognized if the corresponding start and end codes
have been specified in the system registers. Start and end codes are not stored in the receive
buffer. The end code serves as a reception done condition, i.e., the "reception done" flag turns to
TRUE when the end code is received. The start code resets the receive buffer.

 If "None" is selected for the start code, a start code is not added to the data sent and is not
recognized in the data received. Without start code, the receive buffer can only be reset by
executing F159_MTRN.

 If "None" is selected for the end code, an end code is not added to the data sent and is not
recognized in the data received. Without end code, the "reception done" flag does not turn to TRUE.
The end of reception can only be determined by a time-out using the IsReceptionDoneByTimeOut
function or by evaluating the data in the receive buffer.

Different end code settings for sending and receiving

Sometimes you do not want to send an end code, but need an end code in the data received to set the
"reception done" flag to TRUE. In this case, select the desired end code in the system registers and execute
F159_MTRN specifying a negative number for n_Number.

ST When programming with structured text, enter the following:

if (DF(bSend)) then

 (* Copy all characters of the SendString to the SendBuffer from position
1 *)

 F10_BKMV(s1_Start := Adr_Of_VarOffs(Var := sSendData, Offs := 2),

 s2_End := AdrLast_Of_Var(sSendData),

 d_Start => awSendBuffer[1]);

 (* Send the data of the SendBuffer via the COM Port 2 of the MCU unit
in slot 3 *)
 (* In SendBuffer[0] the number of bytes not yet transmitted is stored
*)

 F159_MTRN(s_Start := SendBuffer[0], n_Number := LEN(sSendData), d_Port
:= 16#0302);

end_if;

IsTransmissionDone (see page 763)

Data transfer via communication ports

746

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 � EXAMPLE

Send 4 bytes of data without adding an end code:

POU Header

LD Body

ST Body

Preparing the system for the reception of further data

 Communication port of the CPU

In order to receive the next data, reset the receive buffer. This is done automatically when sending
the next data with F159_MTRN:

 Resetting the receive buffer sets the number of bytes received in offset 0 to 0
and moves the write pointer back to offset 1. Subsequent data will be stored in
the receive buffer starting at offset 1. (The receive buffer is not cleared).

 The "reception done" flag turns to FALSE.

To reset the receive buffer without sending further data, execute F159_MTRN (see page 741) with
n_Number = 0.

 Data transfer via communication ports

747

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 You can only execute F159_MTRN with the number of bytes equal to
zero for the COM ports of a CPU; otherwise an operation error will
occur.

 Communication port of the MCU:

Receiving data from the MCU using F161_MRCV (see page 755) implicitly clears the reception
area and resets the "reception done flag". Hence the communication port can again receive data.

22.4.2 Receiving data from external devices

Steps for receiving data from external devices:

1. Setting the communication parameters and specifying the receive buffer

2. Receiving the data

3. Processing the data in the receive buffer

4. Preparing the system to receive subsequent data

 � NOTE

Data received via the communication ports of an MCU has to be moved to the CPU receive buffer
using the instruction F161_MRCV (see page 755).

1. Setting the communication parameters (see)

2. Receiving the data

Data is automatically received in the receive buffer defined in the system registers. Reception can be controlled
by the "reception done" flag or by directly evaluating the receive buffer. (For details on flag operation, see page
757.) When this flag is FALSE and data is sent to the communication port from an external device, operation
takes place as follows. (The "reception done" flag turns to FALSE after switching to RUN mode.)

POU
Header and

LD Body

All input and output variables which are required for programming the function are declared in the
POU header.

ST Body if (DF(ClearTheReceiveBuffer)) then

 (* Clears the receive buffer of the COM1 port of the FP-SIGMA *)

 F159_MTRN(s_Start := wDummy, n_Number := 0, d_Port := 1);

end_if;

Data transfer via communication ports

748

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 Incoming data is stored in the receive buffer. Start and end codes are not stored in the receive
buffer. The storage area for the data received starts with the second word of the receive buffer
(offset 1). Offset 0 contains the number of bytes received. The initial value of offset 0 is 0.

1 Storage area for the number of bytes received

2 Storage area for the data received 0

1

2

n

Offset

2

�

�

1

34

2n 2n-1

Bold numbers indicate the order of reception.

 When the end code is received, the "reception done" flag turns to TRUE. Reception of any further
data is prohibited. The "reception done" flag only turns to TRUE if an end code, e.g. CR, has been
selected in the system registers.

3. Processing the data in the receive buffer

 Verify the end of reception.

 Copy the data in the receive buffer to a target area defined in the program using a transfer
instruction, e.g. F10_BKMV (see page 819).

 � NOTE

For details on the operation of the "reception done" flag, see page 757

4. Preparing the system for the reception of further data

In order to receive the next data, reset the receive buffer. This is done automatically when sending the next data
with F159_MTRN:

 Resetting the receive buffer sets the number of bytes received in offset 0 to 0 and moves the write
pointer back to offset 1. Subsequent data will be stored in the receive buffer starting at offset 1. (The
receive buffer is not cleared).

 The "reception done" flag turns to FALSE.

To reset the receive buffer without sending further data, execute F159_MTRN (see page 741) with n_Number =
0.

 Data transfer via communication ports

749

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 � EXAMPLE

Receive a string of 8 bytes containing the characters "ABCDEFGH" via COM port 1. The characters are stored
in ASCII HEX code without start and end codes.

(C
R)A B T U V

TRUE

FALSE

TRUE

FALSE

Reception continuedBeginning of reception

Data received

“Reception done” flag

Execution condition

Reception

possible

Reception

not possible

Reception

possible

Execution of F159_MTRN

Receive buffer layout:

 0

1

2

4

16#42(B) 16#41(A)

16#44(D) 16#43(C)

16#48(H) 16#47(G)

16#46(F) 16#45(E)

8

3

Offset

When reception begins, the value in offset 0 is 8. At the end of reception, the value in offset 0 is 0. The data in
offset 1 to offset 4 is received in order from the low order byte.

System register settings:

In order to use the data in the receive buffer, define a global variable having the same starting address and
capacity. In this example, the starting address is 200 (VAR_GLOBAL ReceivedData) and the receive buffer
capacity is 5 (ARRAY [0..4] OF WORD).

GVL

Data transfer via communication ports

750

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU Header and LD Body

ST Body

Data can be received when the "reception done" flag is FALSE. The "reception done" flag is evaluated by the
system variable sys_bIsComPort1ReceptionDone. When the reception of the data is complete (the end code
has been received), the "reception done" flag turns to TRUE, and subsequently, receiving data is prohibited. To
prepare the system to receive the next data without immediately sending further data, the receive buffer is reset
by executing F159_MTRN with n_Number = 0.

 � NOTE

The status of the "reception done" flag may change while a scan is being carried out. For example, if the
flag is used more than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay should be copied to a
variable at the beginning of the program.

The start code "STX" resets the receive buffer. Resetting the receive buffer sets the number of bytes
received in offset 0 to 0 and moves the write pointer back to offset 1. Subsequent data will be stored in
the receive buffer starting at offset 1.

For details on the format of the data in the send buffer and in the receive buffer, please see "Format of
send and receive data" on page 745.

 Data transfer via communication ports

751

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ReceiveData Receive data from CPU or MCU port

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

See also:

 ReceiveCharacters (see page 752)

 ClearReceiveBuffer (see page 753)

PLC types see see page 1330

Input variable Data type Function

Port

ANY16

 Communication port

 Must be a constant

FP-X, FP and FP2, FP2SH (V1.4 or later):

 PLC communication ports:
Value: SYS_COM1_PORT or SYS_COM2_PORT or SYS_TOOL_PORT

 MCU communication port:
Value: 16#xx01 (COM1), 16#xx02 (COM2)

xx = slot number (hexadecimal) of the MCU (e.g. 16#0001: COM1 in slot 0,
16#0A02: COM2 in slot 10, 16#1401: COM1 in slot 20)

Other PLCs:

The command will be compiled to F144_TRNS, which works on the COM port
of the CPU (the parameter d_Port will be ignored)

Output variable

aBuffer ANY stores the receive data

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant
 the MCU unit does not exist at the slot no.

specified by 'Port'.

Description This instruction copies the received data of the port specified by the variable at Port into the data
applied at aBuffer.

Data types

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

Data transfer via communication ports

752

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST When programming with structured text, enter the following:

if (bReadReceiveData) then

 aiReceiveBuffer:=ReceiveData(1);

end_if;

 Data transfer via communication ports

753

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ReceiveCharacters Receive characters from CPU or MCU port

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see see page 1330

Input variable Data type Function

Port

ANY16

 Communication port

 Must be a constant

FP-X, FP and FP2, FP2SH (V1.4 or later):

 PLC communication ports:
Value: SYS_COM1_PORT or SYS_COM2_PORT or SYS_TOOL_PORT

 MCU communication port:
Value: 16#xx01 (COM1), 16#xx02 (COM2)

xx = slot number (hexadecimal) of the MCU (e.g. 16#0001: COM1 in slot 0,
16#0A02: COM2 in slot 10, 16#1401: COM1 in slot 20)

Other PLCs:

The command will be compiled to F144_TRNS, which works on the COM port
of the CPU (the parameter d_Port will be ignored)

Output variable

sString STRING string to be received

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant
 the MCU unit does not exist at the slot no.

specified by 'Port'.

Description This instructions receives characters from a variable port number Port and stores the string in the
variable sString.

Data types

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST If (bReceive) Then

 sString:=ReceiveCharacters(1);

End_if;

Data transfer via communication ports

754

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ClearReceiveBuffer Reset the receive buffer

 The "reception done" flag turns to FALSE.

PLC types see see page 1318

Variable Data type Function

Port

ANY16

 Communication port

 Must be a constant

FP-X, FP and FP2, FP2SH (V1.4 or later):

 PLC communication ports:
Value: SYS_COM1_PORT or SYS_COM2_PORT or
SYS_TOOL_PORT

 MCU communication port:
Value: 16#xx01 (COM1), 16#xx02 (COM2)

xx = slot number (hexadecimal) of the MCU (e.g. 16#0001:
COM1 in slot 0, 16#0A02: COM2 in slot 10, 16#1401: COM1
in slot 20)

Other PLCs:

The command will be compiled to F144_TRNS, which works
on the COM port of the CPU (the parameter d_Port will be
ignored)

For Relay T/C Register Constant

Port WX WY WR WL SV EV DT LD FL dec. or hex.

No. IEC address Set If

R900B %MX0.900.11 for an instant

R9009 %MX0.900.9 for an instant

 the communication port specified by Port
does not exist.

Description This instruction resets the receive buffer to be ready for the next data at the port number Port.

Data types

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

 Data transfer via communication ports

755

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST if (DF(bClearReceiveBuffer)) then

 ClearReceiveBuffer(1);

end_if;

Data transfer via communication ports

756

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F161_MRCV Read serial data from the MCU's COM port

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Do not execute F161_MRCV unless the end of reception has been verified by evaluating the
"reception done" flag. Polling the data using F161_MRCV does not work correctly! The "reception
done" flag can be evaluated using the IsReceptionDone (see page 760) function. Or use the
system variable sys_bIsComPort1ReceptionDone, sys_bIsComPort2ReceptionDone, or
sys_bIsToolPortReceptionDone, depending on the port. The end of reception can also be
determined by time-out using the IsReceptionDoneByTimeOut (see page 761) function or by
checking the contents of the receive buffer.

The number of bytes received is stored in the initial address specified by d1_Start of the receive
buffer. If the data received exceeds the ending address specified by b2_End, an operation error is
detected. The data which has been received up to d2_End will be stored. F161_MRCV also clears
the receive buffer (see page 746), resets the "reception done flag" and allows further reception of
data.

F161_MRCV is supported by all PLCs: If suitable functions and system variables are used instead
of flags, PLC-independent programs can be created which handle communication for CPU
communication ports as well as for MCU ports. PLCs not using MCU ports simply do not translate
the F161_MRCV instruction.

1 Storage area for the number
of bytes received

�

�d1_start

d1_start + 1

d1_start + 2

d1_start + 3

d1_start + 4

d2_end

d2_end - 1

d2_end - 2

d2_end - 3

2 Storage area for the data
received

Description Use this instruction to copy the data received in the MCU from the external device to the specified
receive buffer in the CPU. The receive buffer is defined by d1_Start and d2_End.

Receive
buffer

 Data transfer via communication ports

757

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Variable Data type Function

s_Port Specification of slot number (high byte) and port number (low byte)
of the MCU to which the data is transmitted.

16#xx01: COM1 on MCU in slot 16#xx

16#xx02: COM2 on MCU in slot 16#xx

d1_Start Starting address of the receive buffer

d2_End

ANY16

Ending address of the receive buffer

For Relay T/C Register Constant

s_Port WX WY WR WL SV EV DT LD FL dec. or hex.

d1_Start - WY WR WL SV EV DT LD FL -

d2_End - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the specified address using the index
modifier exceeds a limit

 the MCU unit does not exist in the
specified slot

 the specified communication port does
not exist

22.4.3 Flag operation in program controlled communication

Program controlled communication provides for half duplex communication, i.e. communication is possible in
both directions, but not simultaneously. Sending can be controlled by the "transmission done" flag. Reception
can be controlled by the "reception done" flag or by directly evaluating the receive buffer.

The flags are special internal relays which turn to TRUE or to FALSE under specific conditions. They can be
evaluated using special functions or system variables.

Data types

Operands

Error flags

Example In this example the function is programmed in ladder diagram (LD). The same POU header is used
for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

Data transfer via communication ports

758

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

"Reception done" flag

When the end code is received, the "reception done" flag turns to TRUE. Reception of any further data is
prohibited. F159_MTRN (see page 741) turns the "reception done" flag to FALSE.

The "reception done" flag can be evaluated using the IsReceptionDone (see page 760) function. Or use the
system variable sys_bIsComPort1ReceptionDone, sys_bIsComPort2ReceptionDone, or
sys_bIsToolPortReceptionDone, depending on the port. The end of reception can also be determined by
time-out using the IsReceptionDoneByTimeOut (see page 761) function or by checking the contents of the
receive buffer.

The status of the "reception done" flag may change while a scan is being carried out. For example, if the flag is
used more than once as an input condition, different statuses may exist within one scan. To ensure proper
execution of the program, the status of the special internal relay should be copied to a variable at the beginning
of the program.

FP0:

Port
name

Port
number

Special
internal
relay

Function name System variable name Bit
status

COM 1 R9038 IsReceptionDone (see
page 760)

sys_bIsComPort1ReceptionDone TRUE

FP0R:

Port
name

Port
number

Special
internal
relay

Function name System variable name Bit
status

TOOL 0 R903E sys_bIsToolPortReceptionDone

COM1 1 R9038

IsReceptionDone (see
page 760)

sys_bIsComPort1ReceptionDone

TRUE

FP, FP-X:

Port
name

Port
number

Special
internal
relay

Function name System variable name Bit
status

TOOL 0 R903E sys_bIsToolPortReceptionDone

COM1 1 R9038 sys_bIsComPort1ReceptionDone

COM2 2 R9048

IsReceptionDone (see
page 760)

sys_bIsComPort2ReceptionDone

TRUE

FP2/FP2SH/FP10SH:

Port
name

Port
number

Special
internal
relay

Function name System variable name Bit
status

COM 0 R9038 IsReceptionDone (see
page 760)

sys_bIsComPort1ReceptionDone TRUE

MCU:

Port name Port number Input Function name Bit
status

COM1 16#xx01 X0

COM2 16#xx02 X2

IsReceptionDone (see page 760) TRUE

xx = slot number (hexadecimal)

For detailed information on the MCU input (X) flags, see Getting in RUN Mode via the Input (X) Flags (see page
732).

 Data transfer via communication ports

759

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

"Transmission done" flag

When the specified number of bytes has been sent, the "transmission done" flag turns to TRUE. New data may
be sent or received. F159_MTRN (see page 741) turns the "transmission done" flag to FALSE. While
F159_MTRN is executed, no data can be received.

The "transmission done" flag can be evaluated using the IsTransmissionDone (see page 763) function. Or use
the system variable sys_bIsComPort1TransmissionDone, sys_bIsComPort2TransmissionDone, or
sys_bIsToolPortTransmissionDone, depending on the port.

FP0:

Port
name

Port
number

Special
internal
relay

Function name System variable name Bit
status

COM 1 R9039 IsTransmissionDone
(see page 763)

sys_bIsComPort1TransmissionDone TRUE

FP0R:

Port
name

Port
number

Special
internal
relay

Function name System variable name Bit
status

TOOL 0 R903F sys_bIsToolPortTransmissionDone

COM1 1 R9039

IsTransmissionDone
(see page 763)

sys_bIsComPort1TransmissionDone

TRUE

FP, FP-X:

Port
name

Port
number

Special
internal
relay

Function name System variable name Bit
status

TOOL 0 R903F sys_bIsToolPortTransmissionDone

COM1 1 R9039 sys_bIsComPort1TransmissionDone

COM2 2 R9049

IsTransmissionDone
(see page 763)

sys_bIsComPort2TransmissionDone

TRUE

FP2/FP2SH/FP10SH:

Port
name

Port
number

Special
internal
relay

Function name System variable name Bit
status

COM 0 R9039 IsTransmissionDone
(see page 763)

sys_bIsComPort1TransmissionDone TRUE

MCU:

Port name Port numbert Input Function name Bit
status

COM1 16#xx01 X4

COM2 16#xx02 X5

IsTransmissionDone (see page 763) TRUE

xx = slot number (hexadecimal)

For detailed information on the MCU input (X) flags, see Getting in RUN Mode via the Input (X) Flags (see page
732).

xx = slot number (hexadecimal)

Communication error flag

If the communication error flag turns to TRUE during reception, reception continues. Execute F159_MTRN (see
page 741) to turn the error flag to FALSE and to move the write pointer back to offset 1.

The communication error flag can be evaluated using the IsCommunicationError function. Or use the system
variable sys_bIsComPort1CommunicationError, sys_bIsComPort2CommunicationError, or

Data transfer via communication ports

760

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

sys_bIsToolPortCommunicationError, depending on the port.

FP0:

Port
name

Port
number

Special
internal
relay

Function name System variable name Bit
status

COM 1 R9037 IsCommunicationError
(see page 764)

sys_bIsComPort1CommunicationError TRUE

FP0R:

Port
name

Port
number

Special
internal
relay

Function name System variable name Bit
status

TOOL 0 R900E sys_bIsToolPortCommunicationError

COM1 1 R9037

IsCommunicationError
(see page 764)

sys_bIsComPort1CommunicationError

TRUE

FP, FP-X:

Port
name

Port
number

Special
internal
relay

Function name System variable name Bit
status

TOOL 0 R900E sys_bIsToolPortCommunicationError

COM1 1 R9037 sys_bIsComPort1CommunicationError

COM2 2 R9047

IsCommunicationError
(see page 764)

sys_bIsComPort2CommunicationError

TRUE

FP2/FP2SH/FP10SH:

Port
name

Port
number

Special
internal
relay

Function name System variable name Bit
status

COM 0 R9037 IsCommunicationError
(see page 764)

sys_bIsComPort1CommunicationError TRUE

MCU:

Port name Port numbert Input Function name Bit
status

COM1 16#xx01 X6

COM2 16#xx02 X7

IsCommunicationError (see page 764) TRUE

xx = slot number (hexadecimal)

For detailed information on the MCU input (X) flags, see Getting in RUN Mode via the Input (X) Flags (see page
732).

 Data transfer via communication ports

761

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

IsReceptionDone Evaluation of "reception done" flag for all ports

See also: IsReceptionDoneByTimeOut (see page 761)

Input variable Data type Function

Port ANY16  Communication port

 Must be a constant

FP-X, FP and FP2, FP2SH (V1.4 or later):

 PLC communication ports:
Value: SYS_COM1_PORT or SYS_COM2_PORT or
SYS_TOOL_PORT

 MCU communication port:
Value: 16#xx01 (COM1), 16#xx02 (COM2)

xx = slot number (hexadecimal) of the MCU (e.g. 16#0001: COM1 in slot
0, 16#0A02: COM2 in slot 10, 16#1401: COM1 in slot 20)

Other PLCs:

The command will be compiled to F144_TRNS, which works on the COM
port of the CPU (the parameter d_Port will be ignored)

Output variable

IsDone BOOL set to TRUE, if the end code has been received. The end code is
specified in the corresponding system register under COM port settings.

Description This function returns the value of the "reception done" flag. The "reception done" flag is TRUE if
the end code has been received at the assigned communication port of the PLC.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST bIsDone:=IsReceptionDone(Port := iPort);

Data transfer via communication ports

762

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

IsReceptionDone
ByTimeout

Evaluation of "reception done" condition by time-out for all ports

The output IsDone is set to TRUE if the receive buffer is not empty and no more characters are
received before the time-out specified at TimeOutForCPU.

Using this function block, connect the first word of the receive buffer to NoOfBytesReceived
(number of bytes received).

If a communication port of an MCU is selected, the MCU's "reception done" flag (see page 757) is
evaluated. The timeout for this communication port must be entered via the "MCU Setting" dialog or
during RUN mode via F159_MWRT_PARA (see page 719).

Input variable Data type Function

Port ANY16  Communication port

 Must be a constant

FP-X, FP and FP2, FP2SH (V1.4 or later):

 PLC communication ports:
Value: SYS_COM1_PORT or SYS_COM2_PORT or
SYS_TOOL_PORT

 MCU communication port:
Value: 16#xx01 (COM1), 16#xx02 (COM2)

xx = slot number (hexadecimal) of the MCU (e.g. 16#0001: COM1 in slot
0, 16#0A02: COM2 in slot 10, 16#1401: COM1 in slot 20)

Other PLCs:

The command will be compiled to F144_TRNS, which works on the
COM port of the CPU (the parameter d_Port will be ignored)

TimeOutForCPU TIME Set the time-out. If no further data is received before the time-out,
reception is done and IsDone is set to TRUE.

NoOfBytesReceived ANY16 Connect the start address of the receive buffer. This address contains
the number of bytes received.

Output variable

IsDone BOOL Indicates that one or more bytes have been received and the number of
bytes received was constant as specified in TimeOutForCPU.

Description Depending on the PLC type and the input parameter Port, this function evaluates the "reception
done" condition if no end code is expected in the data stream, e.g when transferring binary data.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Data transfer via communication ports

763

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST IsReceptionDone1(Port := iPort,

 TimeOutForCPU := T#20ms,

 NoOfBytesReceived := g_awReceiveBuffer[0],

 IsDone => bIsRecDone1);

Data transfer via communication ports

764

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

IsTransmissionDone Evaluation of "transmission done" flag for all ports

Description This function returns the value of the "transmission done" flag. The "transmission done" flag (see
page 757) is TRUE if the specified number of bytes has been sent from the assigned
communication port of the PLC.

Example

 Data transfer via communication ports

765

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

IsCommunicationError Evaluation of communication error flag for all ports

Description This instruction returns the value of the communication error flag. The communication error flag is
TRUE if an error has occurred at the specified port during serial communication.

Symbol:

Example

Data transfer via communication ports

766

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

22.5 Data transfer in master/slave mode (MEWTOCOL/Modbus RTU)

General Programming Information for F145 and F146

 It is not possible to execute multiple F145_WRITE_DATA (see page 766) and
F146_READ_DATA instructions for the same communication port simultaneously.
The program should be set up so that these instructions are executed when the
SEND/RECV execution enabled flag (R9044: COM1/R904A: COM2) is ON.
COM1 sys_bIsComPort1F145F146NotActive R9044

COM2 sys_bIsComPort2F145F146NotActive R904A

0: Execution inhibited. (SEND/RECV
instruction being executed.)

1: Execution enabled.

 The SEND (i.e. F145_WRITE_DATA) instruction only requests that data be sent,
but the actual processing takes place when the ED instruction is executed. The
SEND/RECV execution end flag (R9045: COM1, R904B: COM2) can be used to
check whether or not the transmission has been completed.
COM1 sys_bIsComPort1F145F146Error R9045 0: Completed normally.

1: Completed with error. (The error code
is stored in DT90045.)

COM1 sys_wComPort1F145F146ErrorCode DT90124 If the transmission has been completed
with an error (R9045 is ON), the contents
of the error (error code) are stored.

COM2 sys_bIsComPort2F145F146Error R904B 0: Completed normally.

1: Completed with error. (The error code
is stored in DT90125.)

COM2 sys_wComPort2F145F146ErrorCode DT90125 If the transmission has been completed
with an error (R904B is ON), the contents
of the error (error code) are stored.

 For detailed information, please refer to error codes (see page 1306). If the error
code is 16#73, a communication time-out error has occurred. The time-out length
can be set from 10.0ms to 81.9s (in units of 10ms) using system register 32. The
default value is 10s.

Error code Description

16#73 Time-out: waiting for response

 For global transmission (the transmission performed by specifying 16#00 for the
unit no.), the program should be set up so that the transmission is executed after
the maximum scan time has elapsed.

 The F145 or F146 instruction cannot be executed if the target address is a
special internal relay (from R9000) or a special data register (from DT90000).

 The compiler will use file registers in case the data registers are occupied.

 For the table of available Modbus commands, please refer to
F145F146_MODBUS_COMMAND (see page 777) or
F145F146_MODBUS_MASTER (see page 779).

 Data transfer via communication ports

767

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F145_WRITE_DATA Write Data to Slave

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

The data specfied by MasterWordAddress for the master is written to the slave area specified by
SlaveWordAddress. The variable SlaveAddress determines the slave's station number and the
slave's COM port (1 or 2).

General programming information for F145 and F146 (see page 766)

PLC types Availability of F145_WRITE_DATA (see page 1321)

Variable Data
type

Function

Port ANY16 Specifies the slave's COM port (1 or 2) via system variable:

SYS_COM1_PORT

SYS_COM2_PORT

SlaveAddress ANY16 Address of the remote station (1-99).

MasterData ANY The master data which is written to the slave.

SlaveData ANY  The data of the slave to which the data is written.

 MasterData and SlaveData have to be of the same data type.

 To establish external data access from the master to the slave
data please assign fixed user addresses (same addresses as
slave data) in the global variable list.

For Relay T/C Register Constant

Port WX WY WR WL - - DT LD FL -

Slave
Address

WX WY WR WL - - DT LD FL dec. or hex.

Master
Data

WX WY WR WL - - DT LD FL -

Slave Data WX WY WR WL - - DT LD FL -

Description Use this instruction to write data from a master to a slave via the serial port (COM1 or COM2) using
MEWTOCOL or Modbus RTU protocol (see communication mode (see page 712)), as defined in
the system register settings (see page 1273) of port used. Master and slave must both use the
same protocol. The master must be configured in Master/Slave mode. The slave can be configured
either in Master/Slave mode or in Slave mode only.

Data types

Operands

Data transfer via communication ports

768

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 permanently

 port 0 (global transmission) gets no
response from COM1 or COM2.

 slave data or master data exceeds
the available address range.

 the communication mode (see page
712) is not set to
MEWTOCOL-COM Master/Slave or
Modbus RTU Master/Slave.

 the COM port selected requires a
communication cassette that has not
been installed.

  If the slave data is not available in the user area of the
master, please use either the instruction
F145_WRITE_DATA_TYPE_OFFS (see page 769) or the
F145F146_MODBUS_COMMAND (see page 777).

 For another station number outside the range (0-99) or
another start register as available in the table of modbus
commands (see page 777), please use the modbus function
blocks of the Modbus Library for FPWIN Pro
(NCL-MODBUS-LIB).

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

GVL In the global variable list you define variables that can be accessed by all POUs in the project.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The system variable sys_bPulse1s is copied to bBool1. If bWrite1 and
sys_bIsComPort1F145F146NotActive are set to TRUE, bBool1 is written to the output Y38 of
slave 2.

LD

 Data transfer via communication ports

769

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST When programming with structured text, enter the following:

bBool1 := sys_bPulse1s;

if (bWrite1 and sys_bIsComPort1F145F146NotActive) then

 F145_WRITE_DATA(Port := SYS_COM1_PORT,

 SlaveAddress := 2,

 MasterData := bBool1,

 SlaveData => Slave2_g_bR15);

 bRead1 := true;

 bWrite1 := false;

end_if;

Data transfer via communication ports

770

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F145_WRITE_DATA_
TYPE_OFFS

Write Data to Slave with Type and Offset

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

The master data specfied by MasterWordData and by NumberOfWords_ BitsInWords is written
to the slave area specified by SlaveWordAddressType and SlaveAddressOffs.

General programming information for F145 and F146 (see page 766)

PLC types Availability of F145_WRITE_DATA_TYPE_OFFS (see page 1321)

Variable Data type Function

Port Specifies the slave's COM port (1 or 2) via system variable:

SYS_COM1_PORT

SYS_COM2_PORT

SlaveAddress

ANY16

Address of the remote station (1-99).

MasterWordData ANY The master data which is written to the slave.

SlaveWordAddressType Address type in the slave to which data is written. The offset
must be zero e.g. DT0, WL0...

SlaveWordAddressOffs The offset for the starting slave address whose type is
defined by SlaveWordAddressType and to which the data
is written.

NumberOfWords_
BitsInWords

ANY16

Number of word units to be sent to the master (if the highest
bit is not set) or bits in words (if the highest bit is set). Is
identical to the lower word of s1_ControlData.

Description Use this instruction to write data from a master to a slave via the serial port (COM1 or COM2) using
MEWTOCOL or Modbus RTU protocol (see communication mode (see page 712)), as defined in
the system register settings (see page 1273) of port used. Master and slave must both use the
same protocol. The master must be configured in Master/Slave mode. The slave can be configured
either in Master/Slave mode or in Slave mode only.

Data types

 Data transfer via communication ports

771

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

8 1 001 7Hex

CRC16 (H)

CRC16 (L)

07

05

00

11

FF

00

DC

59

1
2
3
4
5
6
7
8

16#10078100

16#0000
WY0

1

s1_ControlData

-

-

Higher word Lower word

0 fixed

COM port

(16#1 or 16#2)

0 fixed

Unit No.

(16#00 to 16#63)

(0 to 99)

Bit unit

transmission
Bit No. of Slave

(16#0 to 16#F)

Bit No. of Master

(16#0 to 16#F)

To generate function code 05, bit unit transmission (16#8) must be specified.

Modbus command

Slave address
Function code (16#05)

Coil No. (H)

Coil No. (L)

Setting status (L)

Setting status (H)

s1_ControlData:

s2_MasterStartAddr:

d_SlaveStartAddrType:

d_SlaveStartAddrOffs: Command

conversion

After the ON or OFF value of bit 0 of s2_MasterStartAddr has been read in the master, this value is set in the

slave (ON=FF00, OFF=0000).

  The compiler calculates the higher word from Port and SlaveAddress. The
higher word is set implicitely.

 The lower word is specified by NumberOfWords_BitsInWords.

For Relay T/C Register Constant

Port WX WY WR WL - - DT LD FL -

Slave Address WX WY WR WL - - DT LD FL dec or hex

Master WordData WX WY WR WL - - DT LD FL -

SlaveWord Address
Type

WX WY WR WL - - DT LD FL -

SlaveWord
AddressOffs

WX WY WR WL - - DT LD FL dec or hex

NumberOfWords_
BitsInWords

WX WY WR WL - - DT LD FL dec or hex

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 permanently

 port 0 (global transmission) gets no
response from COM1 or COM2.

 slave data or master data exceeds the
available address range

 SlaveWordAddressType: Offset  0

 the communication mode (see page 712)
is not set to MEWTOCOL-COM
Master/Slave or Modbus RTU
Master/Slave.

 the selected COM port requires a
communication cassette that has not
been installed.

Operands

Error flags

Data transfer via communication ports

772

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The system variable sys_bPulse1s is copied to bBool1 and Bool16_OverlappingDut_1.b0. If
bWrite1 and sys_bIsComPort1F145F146NotActive are set to TRUE, bBool1 is written to the
output Y38 of slave 2 via Bool16_OverlappingDut_1.b0.

LD

ST When programming with structured text, enter the following:

bBool1 := sys_bPulse1s;

Bool16_OverlappingDut_1.b0 := bBool1;

if (bWrite1 and sys_bIsComPort1F145F146NotActive) then

 F145_WRITE_DATA_TYPE_OFFS(Port := SYS_COM1_PORT,

 SlaveAddress := 2,

 MasterWordData :=
Bool16_OverlappingDut_1.w0,

 SlaveWordAddressType := WY0,

 SlaveWordAddressOffs := 3,

 NumberOfWords_BitsInWords :=
16#8800);

 bRead1 := true;

 bWrite1 := false;

end_if;

 Data transfer via communication ports

773

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F146_READ_DATA Read Data from Slave

The data specfied by MasterWordAddress is requested by the master from the slave area
specified by SlaveWordAddress. The variable SlaveAddress determines the slave's station
number and the slave's COM port (1 or 2).

General programming information for F145 and F146 (see page 766)

PLC types Availability of F146_READ_DATA (see page 1321)

Variable Data
type

Function

Port Specifies the slave's COM port (1 or 2) via system
variable:

SYS_COM1_PORT

SYS_COM2_PORT

SlaveAddress

ANY16

Address of the remote station (1-99).

SlaveData The data of the slave to which the data is written.

MasterData ANY The data of the master to which the data (read by the
slave) is written.

For Relay T/C Register Constant

Port WX WY WR WL - - DT LD FL -

Slave
Address

WX WY WR WL - - DT LD FL dec. or hex.

Master
Data

WX WY WR WL - - DT LD FL -

Slave Data WX WY WR WL - - DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 permanently

 port 0 (global transmission) gets no
response from COM1 or COM2.

 slave data or master data exceeds the
available address range.

 the communication mode (see page 712)
is not set to MEWTOCOL-COM
Master/Slave or Modbus RTU
Master/Slave.

 the COM port selected requires a
communication cassette that has not
been installed.

Description Use this instruction to request data from a slave via the serial port (COM1 or COM2) using
MEWTOCOL or Modbus RTU protocol (see communication mode (see page 712)), as defined in
the system register settings (see page 1273) of port used. Master and slave must both use the
same protocol. The master must be configured in Master/Slave mode. The slave can be configured
either in Master/Slave mode or in Slave mode only.

Data types

Operands

Error flags

Data transfer via communication ports

774

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

GVL In the global variable list you define variables that can be accessed by all POUs in the project.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body If bRead1 and sys_bIsComPort1F145F146NotActive are set to TRUE, the global variable
Slave2_g_bY38, which is assigned to Y38 of slave 2, is read and stored in bBool2.

LD

ST When programming with structured text, enter the following:

if (bRead1 and sys_bIsComPort1F145F146NotActive) then

 F146_READ_DATA(Port := SYS_COM1_PORT,

 SlaveAddress := 2,

 SlaveData := Slave2_g_bY38,

 MasterData => bBool2);

 bRead1 := false;

 bWrite1 := true;

end_if;

 Data transfer via communication ports

775

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F146_READ_DATA_
TYPE_OFFS

Read Data from Slave with Type and Offset

The data is read from the memory area of the slave specified by SlaveAddressType and
SlaveAddressOffs. It is stored in the area of the master specified by MasterWordAddress.

General programming information for F145 and F146 (see page 766)

PLC types Availability of F146_READ_DATA_TYPE_OFFS (see page 1321)

Variable Data type Function

Port Specifies the slave's COM port (1 or 2) via system variable:

SYS_COM1_PORT

SYS_COM2_PORT

SlaveAddress Address of the remote station (1-99).

SlaveWordAddressType Address type in the slave from which data is read.

SlaveWordAddressOffs The offset for the starting slave address whose type is
defined by SlaveWordAddressType and to which the data
is written.

NumberOfWords_
BitsInWords

ANY16

Number of word units to be read by the master (if the
highest bit is not set) or bits in word (if the highest bit is set).
Is identical to the lower word of s1_ControlData.

MasterWordData ANY The master data which is written to the slave.

Description Use this instruction to request data from a slave via the serial port (COM1 or COM2) using
MEWTOCOL or Modbus RTU protocol (see communication mode (see page 712)), as defined in
the system register settings (see page 1273) of port used. Master and slave must both use the
same protocol. The master must be configured in Master/Slave mode. The slave can be configured
either in Master/Slave mode or in Slave mode only.

Data types

Data transfer via communication ports

776

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

08 5 711 1Hex

16#10118507

WY0
1

16#0000

CRC16 (H)

CRC16 (L)

11

01

00

17

00

01

DC

59

1

2

3

4

5

6

7

8

s1_ControlData

-

-

-

Higher word Lower word
0 fixed

COM port

(16#1 or 16#2)

Unit No.

(16#00 to 16#63)

(0 to 99)

Bit unit

transmission

Bit No. of Master

(16#0 to 16#F)
Bit No. of Slave

(16#0 to 16#F)

To generate function code 01, bit unit transmission (16#8) must be specified.

s1_ControlData:

s2_SlaveStartAddrType:

s2_SlaveStartAddrOffs:

d_MasterStartAddr:

Modbus command

Command
conversion

Slave address

Function code (16#01)

Starting No. (H)

Starting No. (L)

No. of coils to read (H)

No. of coils to read (L)
Starting No. is the first coil to read in the

slave (here: Y17)

The No. of coils to read must be 1

  The compiler calculates the higher word from Port and SlaveAddress. The
higher word is set implicitely.

 The lower word is specified by NumberOfWords_BitsInWords.

For Relay T/C Register Constant

Port WX WY WR WL DT LD FL -

Slave Address WX WY WR WL - - DT LD FL dec or hex

SlaveWord Address
Type

WX WY WR WL - - DT LD FL -

SlaveWord
AddressOffs

WX WY WR WL - - DT LD FL dec or hex

NumberOfWords_
BitsInWords

WX WY WR WL - - DT LD FL dec or hex

Master WordData WX WY WR WL - - DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 permanently

 port 0 (global transmission) gets no
response from COM1 or COM2.

 slave data or master data exceeds the
available address range

 SlaveWordAddressType: Offset  0

 the communication mode (see page 712)
is not set to MEWTOCOL-COM
Master/Slave or Modbus RTU
Master/Slave.

 the selected COM port requires a
communication cassette that has not
been installed.

Operands

Error flags

 Data transfer via communication ports

777

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body If bRead1 and sys_bIsComPort1F145F146NotActive are set to TRUE, the output Y38 of slave 2
is read and written to bit 1 of Bool16_OverlappingDut_1.w0. This bit can be accessed by
Bool16_OverlappingDut_1.b1 and is copied to bBool2.

LD

ST

When programming with structured text, enter the following:

if (bRead1 and sys_bIsComPort1F145F146NotActive) then

 F146_READ_DATA_TYPE_OFFS(Port := SYS_COM1_PORT,

 SlaveAddress := 2,

 SlaveWordAddressType := WY0,

 SlaveWordAddressOffs := 3,

 NumberOfWords_BitsInWords := 16#8108,

 MasterWordData =>
Bool16_OverlappingDut_1.w0);

end_if;

bBool2 := Bool16_OverlappingDut_1.b1;

Data transfer via communication ports

778

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F145F146_MODBUS
_COMMAND

Write data to slave or read data from slave

For slave addresses higher than 99 or start register numbers outside the allowed range, use the
instruction F145F146_MODBUS_MASTER (see page 779).

In contrast to other F145 or F146 instructions, the required Modbus command can directly be set
by the parameter FunctionCode*.

General programming information for F145 and F146 (see page 766)

Commands supported by the master:

Function
code

System constant Start register Number of
registers

Reference
numbers

01 SYS_MODBUS_01_R
EAD_COIL

0–9998 1 or multiple
of 16

000001–009999

02 SYS_MODBUS_02_R
EAD_INPUT

0–9998 1 100001–109999

03 SYS_MODBUS_03_R
EAD_HOLDING_REGI
STERS

0–32764 1 400001–432765

04 SYS_MODBUS_04_R
EAD_INPUT_REGIST
ERS

0–127

2000–2255
1 300001–300128

302001–302256

05 SYS_MODBUS_05_F
ORCE_COIL

0–9998 1 000001–009999

06 SYS_MODBUS_06_P
RESET_REGISTER

0–32764 1 400001–432765

15 SYS_MODBUS_15_F
ORCE_COILS

0–9998 multiple of 16 000001–009999

16 SYS_MODBUS_16_P
RESET_REGISTERS

0–32764 1 400001–432765

Modbus specifications for Panasonic PLCs:

Reference numbers Address area of Panasonic PLCs

From 000001 From Y0

From 002049 From R0

From 100001 From X0

From 400001 From DT0

Description Write data from a master to a slave or read data from a slave via the serial port (COM1 or COM2)
depending on the function code. The Modbus RTU protocol (see communication mode (see page
712)) must be set in the system registers (see page 1273). Select "Modbus RTU Master/Slave" for
the desired port.

 Data transfer via communication ports

779

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Reference numbers Address area of Panasonic PLCs

From 300001 From WL0

From 302001 From LD0

For reference number and address area ranges supported by the Panasonic PLCs, please refer to the User's
Manual of the PLC. If the reference number is outside the supported range, an error is returned.

PLC types Availability of F145F146_MODBUS_COMMAND (see page 1321)

Variable Data
type

Function

Port Specifies the slave's COM port (1 or 2) via system variable:

SYS_COM1_PORT

SYS_COM2_PORT

SlaveAddress Address of the remote station (1-99).

FunctionCode* SYS_MODBUS_01_READ_COIL

SYS_MODBUS_02_READ_INPUT

SYS_MODBUS_03_READ_HOLDING_REGISTERS

SYS_MODBUS_04_READ_INPUT_REGISTERS

SYS_MODBUS_05_FORCE_COIL

SYS_MODBUS_06_PRESET_REGISTER

SYS_MODBUS_15_FORCE_COILS

SYS_MODBUS_16_PRESET_REGISTERS

StartRegister Starting address. The address type depends on the command
specified by FunctionCode*.

NumberOfRegisters*

ANY16

Number of transmission bits or words.

MasterData ANY The master data which is written to the slave.

For Relay T/C Register Constant

Port WX WY WR WL - - DT LD FL -

Slave Address WX WY WR WL - - DT LD FL -

Function Code* - - - - - - - - - system
defined

Start Register WX WY WR WL - - DT LD FL -

NumberOf
Registers*

- - - - - - - - - dec. or hex.

Master Data WX WY WR WL - - DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 permanently

 port 0 (global transmission) gets no
response from COM1 or COM2.

 slave data or master data exceeds the
available address range.

 the communication mode (see page 712)
is not set to MEWTOCOL-COM
Master/Slave or Modbus RTU
Master/Slave.

 the COM port selected requires a
communication cassette that has not
been installed.

Data types

Operands

Error flags

Data transfer via communication ports

780

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F145F146_MODBUS
_MASTER

Write data to slave or read data from slave

This instruction is identical to F145F146_MODBUS_COMMAND (see page 777), but it also
supports slave addresses higher than 99 and a wider range for the start register.

In contrast to other F145 or F146 instructions, the required Modbus command can directly be set
by the parameter FunctionCode*.

General programming information for F145 and F146 (see page 766)

Commands supported by the master:

Function
code

System constant Start register Number of
registers

Reference
numbers
(depending on
Modbus slave)

01 SYS_MODBUS_01_READ_COIL 0–65535 1–2040 000001–065536

02 SYS_MODBUS_02_READ_INPUT 0–65535 1–2040 100001–165536

03 SYS_MODBUS_03_READ_HOLDING_REGISTER 0–65535 1–127 400001–465536

04 SYS_MODBUS_04_READ_INPUT_REGISTERS 0–65535 1–127 300001–365536

5 SYS_MODBUS_05_FORCE_COIL 0–65535 1 000001–065536

6 SYS_MODBUS_06_PRESET_REGISTER 0–65535 1 400001–465536

15 SYS_MODBUS_15_FORCE_COILS 0–65535 2–2040 000001–065536

16 SYS_MODBUS_16_PRESET_REGISTERS 0–65535 2–127 400001–465536

Modbus specifications for Panasonic PLCs:

Reference numbers Address area of Panasonic PLCs

From 000001 From Y0

From 002049 From R0

From 100001 From X0

From 400001 From DT0

From 300001 From WL0

From 302001 From LD0

For reference number and address area ranges supported by the Panasonic PLCs, please refer to the User's
Manual of the PLC. If the reference number is outside the supported range, an error is returned.

Description Write data from a master to a slave or read data from a slave via the serial port (COM1 or COM2)
depending on the function code. The Modbus RTU protocol (see communication mode (see page
712)) must be set in the system registers (see page 1273). Select "Modbus RTU Master/Slave" for
the desired port.

 Data transfer via communication ports

781

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

PLC types: Availability of F145F146_MODBUS_MASTER (see page 1321)

Variable Data
type

Function

Port Specifies the slave's COM port (1 or 2) via system variable:

SYS_COM1_PORT, SYS_COM2_PORT

SlaveAddress Address of the remote station (0–255).

FunctionCode* SYS_MODBUS_01_READ_COIL

SYS_MODBUS_02_READ_INPUT

SYS_MODBUS_03_READ_HOLDING_REGISTER

SYS_MODBUS_04_READ_INPUT_REGISTERS

SYS_MODBUS_05_FORCE_COIL

SYS_MODBUS_06_PRESET_REGISTER

SYS_MODBUS_15_FORCE_COILS

SYS_MODBUS_16_PRESET_REGISTERS

StartRegister Starting address (0–65535). The address type depends on the
command specified by FunctionCode*.

NumberOfRegisters*

ANY16

Number of transmission bits or words.

1–2040 for function codes 01, 02

2–2040 for function code 15

1–127 for function codes 03, 04

2–127 for function code 16

MasterData ANY The master data which is written to the slave.

For Relay T/C Register Constant

Port WX WY WR WL DT LD FL -

Slave Address WX WY WR WL - - DT LD FL -

Function Code* - - - - - - - - - system

Start Register WX WY WR WL - - DT LD FL -

NumberOf Registers* - - - - - - - - - dec. or hex.

Master Data WX WY WR WL - - DT LD FL -

No. IEC
address

Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 permanently

 port 0 (global transmission) gets no response from COM1 or
COM2.

 slave data or master data exceeds the available address range.

 the communication mode (see page 712) is not set to
MEWTOCOL-COM Master/Slave or Modbus RTU Master/Slave.

 the COM port selected requires a communication cassette that
has not been installed.

22.5.1 Evaluation of IsF145146NotActive flag

In this section:

- Is145F146NotActive (see page 787)

Data types

Operands

Error flags

Data transfer via communication ports

782

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Is145F146NotActive for all ports via a general function

This flag varies depending on the PLC type:

PLC

Port
number

Port name

Flag

System variable

0

TOOL port

(not for FP-Sigma 12k)

returns
always
TRUE

-

1 COM1 port R9044 sys_bIsComPort1F145F146_
NotActive

FP-Sigma,
FP-X

2 COM2 port R904A sys_bIsComPort2F145F146_
NotActive

FP0, FP-e
- - returns

always
TRUE

-

0 CPU COM port returns
always
TRUE

-

16#xx01 MCU COM1 port of MCU
unit in slot xx

FP2,
FP2SH

16#xx02 MCU COM2 port of MCU
unit in slot xx

returns
always
TRUE

-

For detailed information on using system variables, please refer to data transfer to and from special
data registers (see page 859).

IsReceptionDone for a special COM port via the corresponding System Variable

You can use the following system variables to evaluate the IsF145F146NotActive flag for a special COM port:

- sys_bIsComPort1F145F146NotActive

- sys_bIsComPort2F145F146NotActive

Description This instruction returns the value of the "F145F146 Not Active" flag of the PLC's serial
communication interface.

Example

 Data transfer via communication ports

783

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

IsF145F146Error Returns the value of the "F145F146 Error" flag

This flag varies depending on the PLC type:

PLC

Port
number

Port name

Flag

System variable

0 TOOL port

(not for FP-Sigma 12k)

returns
always
FALSE

-

1 COM1 port R9045 sys_bIsComPort1F14
5F146Error

FP-Sigma,
FP-X

2 COM2 port R904B sys_bIsComPort2F14
5F146Error

0

TOOL port

returns
always
FALSE

-

FP0R

1 COM1 port R9045 sys_bIsComPort1F14
5F146Error

FP0, FP-e
-

-

returns
always
FALSE

-

0

CPU COM port

returns
always
FALSE

-

16#xx01 MCU COM1 port of MCU
unit in slot xx

FP2,
FP2SH

16#xx02 MCU COM2 port of MCU
unit in slot xx

returns
always
FALSE

-

For detailed information on using system variables, please refer to data transfer to and from special
data registers (see page 859).

Description This instruction returns the value of the "F145F146 Error" flag of the PLC's serial communication
interface.

Example

Chapter 23

 Data transfer via network

Data transfer via network

786

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

23.1 Data transfer via MEWNET link

In this section:

- F145_SEND (see page 787)

- F146_RECV (see page 789)

 Data transfer via network

787

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F145_SEND Data send (MEWNET link)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Specifications of s1:

s1 higher byte s1 lower byte

s1 0 0 0 0 s1 0 0 0 0

15 12 11 8 7 4 3 0 15 12 11 8 7 4 3 0

LK UN n2F n1

lowhigh

Bit Bit

1. LINK No. selection (LK: 1 to 3, the station
itself)

1. Word unit send selection

F = 0 Word unit selection
Up to 3 Link Units can be connected to 1 CPU.

n2 = 0 Set "0" when the word unit is selected

This (LK) selects the source Link Unit of the three. n1 = 11–16 Specify the number of words to be sent

2. Link station No. selection (UN: 1 to 63,
another station)

2. Bit unit send selection

Up to 63 stations can be connected to 1 Link Unit. F = 1 Bit unit selection

n2 = 0–15 Destination bit No.
This (UN) then selects the destination station No.

n1 = 0–15 Source bit No.

REFERENCE

For detailed information, please refer to the relevant technical manual of the intelligent unit.

PLC types Availability of F145_SEND (see page 1321)

Description Sends data to another station through link modules in the network.

Data transfer via network

788

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Variable Data type Function

s1 DWORD 32-bit area for storing control data

s2 starting 16-bit area for storing source data (data area at the
source station)

d type of destination operands for storing data in the
destination station. Be sure to select the area by setting the
address 0 (e.g. DT0 or WR0, ...) (destination data area at
another station)

n*

ANY16

starting 16-bit area address for the destination operand
specified in d (destination data area in another station)

Must be a constant

The variables s2 and d have to be the same data type.

For Relay T/C Register Constant

s1 DWX DWY DWR DWL DSV DEV DDT DLD DFL -

s2 WX WY WR WL SV EV DT LD FL -

d - WY WR WL SV EV DT LD FL

n* - - - - - - - - - dec. or hex.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F145_SEND(specify_value, send_address, dest_address, 5);

END_IF;

 Data transfer via network

789

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F146_RECV Data receive (MEWNET link)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Specifications of s1:

s1 higher byte s1 lower byte

s1 0 0 0 0 s1 0 0 0 0

15 12 11 8 7 4 3 0 15 12 11 8 7 4 3 0

LK UN n2F n1

lowhigh

Bit Bit

1. LINK No. selection (LK: 1 to 3, the station
itself)

1. Word unit send selection

F = 0 Word unit selection
Up to 3 Link Units can be connected to 1 CPU.

n2 = 0 Set "0" when the word unit is selected

This (LK) selects the source Link Unit of the three. n1 = 11–16 Specify the number of words to be sent

2. Link station No. selection (UN: 1 to 63,
another station)

2. Bit unit send selection

Up to 63 stations can be connected to 1 Link Unit. F = 1 Bit unit selection

n2 = 0–15 Destination bit No.
This (UN) then selects the destination station No.

n1 = 0–15 Source bit No.

REFERENCE

For detailed information, please refer to the relevant technical manual of the intelligent unit.

PLC types Availability of F146_RECV (see page 1321)

Description Receives data from another station through link units in the network.

Data transfer via network

790

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Variable Data type Function

s1 DWORD 32-bit area for storing control data

s2 type of source operands for storing data in the destination
station. Be sure to select the area by setting the address 0
(e.g. DT0 or WR0, ...) (source data area at another station)

d starting 16-bit area address for the source operand specified
in s2 (source data area at another station)

n*

ANY16

starting 16-bit area address for storing data received
(destination data area at source station)

Must be a constant

The variables s2 and d have to be the same data type.

For Relay T/C Register Constant

s1 DWX DWY DWR DWL DSV DEV DDT DLD DFL -

s2 WX WY WR WL SV EV DT LD FL -

d - WY WR WL SV EV DT LD FL

n* - - - - - - - - - dec. or hex.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F146_RECV(s1_Control:= control_value, s2_AdrType:= start_address,
n_AdrOffs:= offset,
 d_Start:= output_value);

END_IF;

 Data transfer via network

791

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

23.2 Data transfer via shared memory of a MEWNET-F-Slave station

In this section:

- F152_RMRD (see page 792)

- F153_RMWT (see page 795)

Data transfer via network

792

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F152_RMRD Data read from the slave station

s1 stores the control data for the configuration of the Master and Slave units in the network. n
words are read beginning from the shared memory address number in the intelligent unit specified
by s2. The result is stored in d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Specifications of s1:

· ·· · · · · · ·15 12 11 8 7 4 3 0

· ·· · · · · · ·15 12 11 8 7 4 3 0

s1 higher word

s1 lower word

s1 high word

s1 low word

Bit

Bit

Bank No.
(16#00 to 16#FF if
there is a bank to
specify, otherwise
16#00)

Slot No.
(16#00 to 16#1F,
FP3: to 16#17)

Master station No.
(16#01 to 16#04)

Slave station No.
(16#01 to 16#20)

Reference: Intelligent unit with bank

 Name Order Number

 FP3 expansion data memory
unit

AFP32091

AFP32092

PLC types Availability of F152_RMRD (see page 1321)

Variable Data type Function

s1 DWORD stores control data for Master/Slave configuration

s2 ANY16 starting memory address number of words to be read

n INT number of words to be read (max. 32 words)

d ANY16 starting 16-bit area where words read are stored, (see F153
(see page 794))

The variables s2 and d have to be of the same data type.

Description Reads data from the specified intelligent unit of the MEWNET-F Slave station.

Data types

 Data transfer via network

793

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s1 DWX DWY DWR DWL DSV DEV DDT DLD DFL -

s2, n WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the control data s1 exceeds the limit of
specified range

 no MEWNET-F master unit is found

 the data read exceeds the area of d

Precautions during programming

It is not possible to execute multiple F152_RMRD instructions and F153_RMWT instructions at the
same time.
The program should be set up so that these instructions are executed when the
F152_RMRD/F153_RMWT instruction execution enabled flag (R9035) is on.
R9035 0: Execution inhibited (RMRD/RMWT instruction being executed)

1: Execution enabled

The F152_RMRD instruction only enables a request to be accepted. The actual processing is
carried out at the end of the scan. The F152_RMRD/F153_RMWT instruction completed flag
(R9036) can be used to confirm whether or not the instruction has been executed.
R9036 0: Completed normally

1: Completed with error (The error code is stored in DT9036/DT90036)

DT9036
(DT90036)

If the transmission has been completed with an error (R9036 is on), the contents of the
error (error code) are stored.

Reference: The error codes stored in the DT9036/DT90036

Error code (HEX) Description

16#5B Time-out error (no intelligent unit found at the specified location)

16#68 No memory error (no memory exists at the specified address)

16#71 Send answer time-out error

16#72 Send buffer full time-out error

16#73 Response time-out error

If the error code is 16#71 to 16#73, a communication time-out error has occurred. The time-out
time can be changed within a range of 10.0ms to 81.9s (in units of 10ms), using the setting of
system register 32. The default value is set to 2 seconds.

Operands

Error flags

Data transfer via network

794

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 5 0 1 10 11

0

2
1

3
4

CPU

C
P

U

WordsRead[1]

WordsRead[3]

WordsRead[0]

WordsRead[2]

WordsRead[4]

Po
w

er

M
as

te
r 1

M
as

te
r 2

Sl
av

e
Po

w
er

No.

Master station 1

Intelligent unit
(shared memory)

Control data = 16#A0105

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

Five words of data stored at address 0 to 4 in the shared memory of the intelligent unit of the slave
station are read and the read data stored in ARRAY WordsRead of the master station "CPU" when
Start turns on.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

 Data transfer via network

795

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F153_RMWT Data write into the slave station

s1 stores the control data for the configuration of the Master and Slave units in the network. n
words, beginning at the address in the CPU specified by s2, are written to the intelligent unit of the
Slave unit beginning at the shared memory address number specified by d.

Specifications of s1:

· ·· · · · · · ·15 12 11 8 7 4 3 0

· ·· · · · · · ·15 12 11 8 7 4 3 0

s1 higher word

s1 lower word

s1 high word

s1 low word

Bit

Bit

Bank No.
(16#00 to 16#FF if
there is a bank to
specify, otherwise
16#00)

Slot No.
(16#00 to 16#1F,
FP3: to 16#17)

Master station No.
(16#01 to 16#04)

Slave station No.
(16#01 to 16#20)

Reference: Intelligent unit with bank

 Name Order Number

 FP3 expansion data memory
unit

AFP32091

AFP32092

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F153_RMWT (see page 1321)

Variable Data type Function

s1 DWORD stores control data for Master/Slave configuration

s2 ANY16 starting 16-bit area in CPU where words are read

n INT number of words to be read and then written to the Slave unit
(max. 32 words)

d ANY16 starting memory address number in the intelligent unit where
words are written

The variables s2 and d have to be of the same data type.

Description Writes data into the specified intelligent unit of the MEWNET-F slave station.

Data types

Data transfer via network

796

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s1 DWX DWY DWR DWL DSV DEV DDT DLD DFL -

s2 WX WY WR WL SV EV DT LD FL -

n, d WX WY WR WL SV EV DT LD FL dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the control data s1 exceeds the limit of
specified range

 no MEWNET-F master unit is found

 the data read exceeds the area of s2

Precautions during programming: see F152_RMRD (see page 791)

 10 0 1 2 3 4

CPU

C
PU

30
31
32

37
38
39

WordsWritten[8]

WordsWritten[2]

WordsWritten[0]
WordsWritten[1]

WordsWritten[7]

WordsWritten[9]

Po
w

er

M
as

te
r 1

M
as

te
r 2

Master station 2

Po
w

er

Sl
av

e

No.

Intelligent unit
(shared memory)

Control data = 16#2020A

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

Twenty words of data stored in the ARRAY WordsWritten[0]..[9] of the master station "CPU" are
written into the shared memory of the intelligent unit of slave station starting from address 30 to 39
when Start turns on.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Data transfer via network

797

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

Data transfer via network

798

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

23.3 Data exchange with flexible network

In this section:

- FNS_InitConfigDataTable (see page 798)

- FNS_InitConfigNameTable (see page 798)

 Data transfer via network

799

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

FNS_InitConfigDataTable Function

The FNS_InitConfigDataTable function creates a ConfigDataTable from the variable
ProcessDataTable, which can be a single-element data type or a mulit-element data type. This
ConfigDataTable is necessary to configure the FP-FNS block using the function block
FNS_ProfibusDP, FNS_DeviceNet, FNS_CANopen and FNS_ProfinetIO.

 Make sure that the size of the variable ConfigDataTable corresponds to
the structure of the ProcessDataTable, e.g. if the ProcessDataTable
consists of three entries, then the ConfigDataTable variable should be an
"Array[0..2] of WORD", whose size matches the number of entries. If the
ProcessDataTable variable has only one entry (e.g. WORD), then the
ConfigDataTable variable should be an "Array[0..0] of WORD" (with size
1).

Allowed data types for the input of the FNS_InitConfigDataTable are all
16-bit (INT, WORD), 32-bit (DINT, DWORD, TIME (32 bits), REAL) and
64-bit variables or arrays of them. 64-bit variables are defined as
2-dimensional arrays, e.g. "Array[0..0,0..3] of INT" is a 64-bit variable,
while "Array[0..3] of INT" represents an array with four elements of 16-bit
variables.

The data types BOOL, STRING and arrays of these types are NOT
allowed at the input of the function FNS_InitConfigDataTable.

The output ConfigDataTable of the function must be an array of WORD.

PLC types Availability of FNS_InitConfigDataTable (see page 1326)

Variable Data types Function

ProcessDataTable INT, WORD, DINT,
DWORD, REAL, TIME,
and ARRAYS of these
types

Input and output of process
data variables

ConfigDataTable ARRAY of WORD Configuration data for FP-FNS
blocks. The array-size of the
variable ConfigDataTable has
to correspond to the number of
elements of the
ProcessDataTable variable.

Description

Data types

Data transfer via network

800

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Input Data type Size of Input Comment

INT, WORD 16-bit

DINT, WORD, REAL, TIME 32-bit

Array[0..0,0..3] of INT

Array[0..0,0..3] of WORD

64-bit 2-dimensional array;

size of second
dimension = 4

Array[a ..b] of INT/Array[a ..b] of WORD Array of 16-bit

Size = b-a+1

1-dimensional array

Array[a ..b] of DINT/Array[a ..b] of
DWORD/

Array[a ..b] of REAL/Array[a ..b] of TIME

Array of 32-bit

Size = b-a+1

1-dimensional array

Array[0..x,0..3] of INT

Array[0..x,0..3] of WORD

Array of 64-bit

Size = x+1

2-dimensional array;

size of second
dimension = 4

For Relay T/C Register Constant

ProcessDataTable - - - - - - DT FL - -

ConfigDataTable - - - - - - DT FL - -

The size of the variable ConfigDataTable has to correspond to the number of entries of the input
variable ProcessData.

In this example, the variable ProcessData is a DUT of the type ProcessDataStructure with the
following structure:

As the DUT has three entries, the output variable ConfigData has to be an array of WORD with a
size of three (e.g.: Array [0..2] of WORD).

ProcessData
Table

The following syntax table shows how to declare 16-bit, 32-bit and 64-bit variables and arrays
thereof when using them as ProcessDataTable input for the FNS_InitConfigDataTable function.

Operands

Example In this example, the same POU header is used for all programming languages.

GVL In the global variable list, you define variables that can be accessed by all POUs in the project.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When sys_bIsFirstScan is TRUE, i.e. in the first cycle, the function is executed. The value of the
variable ConfigData corresponds to the structure of the input variable ProcessData, its number
and type of elements.

 Data transfer via network

801

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

If sys_bIsFirstScan then

 ConfigData:=FNS_InitConfigDataTable(ProcessData);

end_if;

Data transfer via network

802

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

FNS_InitConfigNameTable Function

This function creates a ConfigNameTable from the variable ProcessDataTable, which can be a
single-element data type or a mulit-element data type.

 Make sure that the size of the variable ConfigNameTable corresponds to
the structure of the ProcessDataTable, e.g. if the ProcessDataTable
consists of three entries, then the ConfigNameTable variable should be
an "Array[0..2] of WORD" whose size matches the number of entries. If
the ProcessDataTable variable has only one entry (e.g. WORD), then the
ConfigNameTable variable should be an "Array[0..0] of WORD" (with size
1).

Allowed input data types are all 16-bit (INT, WORD), 32-bit (DINT,
DWORD, TIME (32 bits), REAL) and 64-bit variables or arrays of them.
64-bit variables are defined as 2-dimensional arrays, e.g. "Array[0..0,0..3]
of INT" is a 64-bit variable, while "Array[0..3] of INT" represents an array
with four elements of 16-bit variables.

The data types BOOL, STRING and arrays of these types are NOT
allowed at the input variable.

The output ConfigNameTable of the function must be an array of WORD.

PLC types see page 1326

Variable Data types Function

ProcessDataTable INT, WORD, DINT,
DWORD, REAL, TIME,
and ARRAYS of these
types

Input and output of process
data variables

ConfigNameTable ARRAY of WORD Configuration data for FP-FNS
blocks. The array-size of the
variable ConfigNameTable has
to correspond to the number of
elements of the
ProcessDataTable variable.

Description

Data types

 Data transfer via network

803

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Input Data type Size of Input Comment

INT, WORD 16-bit

DINT, WORD, REAL, TIME 32-bit

Array[0..0,0..3] of INT

Array[0..0,0..3] of WORD

64-bit 2-dimensional array;

size of second dimension = 4

Array[a ..b] of INT/Array[a ..b] of WORD Array of 16-bit

Size = b-a+1

1-dimensional array

Array[a ..b] of DINT/Array[a ..b] of DWORD/

Array[a ..b] of REAL/Array[a ..b] of TIME

Array of 32-bit

Size = b-a+1

1-dimensional array

Array[0..x,0..3] of INT

Array[0..x,0..3] of WORD

Array of 64-bit

Size = x+1

2-dimensional array;

size of second dimension = 4

For Relay T/C Register Constant

ProcessDataTable - - - - - - DT FL - -

ConfigNameTable - - - - - - DT FL - -

The size of the variable configNames1 has to correspond to the number of entries of the input
variable myDUT60.

As the DUT has three entries, the output variable configNames1 has to be an array of WORD with
a size of three (e.g.: Array [0..2] of WORD).

ProcessData
Table

The following syntax table shows how to declare 16-bit, 32-bit and 64-bit variables and arrays
thereof when using them as ProcessDataTable input.

Operands

Example In this example the function is programmed in ladder diagram (LD).

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When sys_bIsFirstScan is TRUE, i.e. in the first cycle, the function is executed. The value of the
variable configNames1 corresponds to the structure of the input variable myDUT60, its number
and type of elements.

LD

ST When programming with structured text, enter the following:

If sys_bIsFirstScan then

 configNames1:=FNS_InitConfigNameTable(myDUT60);

end_if;

Chapter 24

 Data transfer within the PLC

Data transfer within the PLC

806

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F0_MV 16-bit data move

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction MOVE (see
page 59). Please refer also to Advantages of the IEC instructions in the online help.

PLC types Availability of F0_MV (see page 1320)

Variable Data type Function

s source 16-bit area

d
ANY16

destination 16-bit area

The variables s and d have to be of the same data type.

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Explanation with example value 16#0089

15 . . 12 11 . . 8 7 . . 4 3 . . 0

s 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1

15 . . 12 11 . . 8 7 . . 4 3 . . 0

d 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1

source

destination

bit

bit

Destination value in this example: 16#0089

Description The 16-bit data or 16-bit equivalent constant specified by s is copied to the 16-bit area specified by
d, if the trigger EN is in the ON-state.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

 Data transfer within the PLC

807

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F0_MV(input_value, output_value);

END_IF;

Data transfer within the PLC

808

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F1_DMV 32-bit data move

Instead of using this FP instruction, we recommend using the related IEC instruction MOVE (see
page 59). Please refer also to Advantages of the IEC instructions in the online help.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F1_DMV (see page 1320)

Variable Data type Function

s source 32-bit area

d
ANY32

destination 32-bit area

The variables s and d have to be of the same data type.

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Explanation with example value 16#ACAEE486

31 . . 28 27 . . 24 23 . . 20 19 . .16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

s 1 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0

31 . . 28 27 . . 24 23 . . 20 19 . .16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d 1 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0

bit

source

destination

bit

32-bit area

bit

Destination value in this example: 16#ACAEE486

Description The 32-bit data or 32-bit equivalent constant specified by s is copied to the 32-bit area specified by
d, if the trigger EN is in the ON-state.

Data types

Operands

 Data transfer within the PLC

809

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F1_DMV(source, destination);

END_IF;

Data transfer within the PLC

810

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F2_MVN 16-bit data inversion and move

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F2_MVN (see page 1322)

Variable Data type Function

s source 16-bit area to be inverted

d
ANY16

destination 16-bit area

The variables s and d have to be of the same data type.

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Explanation with example value 16#5555

15 . . 12 11 . . 8 7 . . 4 3 . . 0

 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

15 . . 12 11 . . 8 7 . . 4 3 . . 0

 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

bit

bit

source

dest.

Each bit is inverted, target value in this example: 16#AAAA

Description The 16-bit data or 16-bit equivalent constant specified by s is inverted and transferred to the 16-bit
area specified by d if the trigger EN is in the ON-state.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

 Data transfer within the PLC

811

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

IF start THEN

 F2_MVN(input_value, output_value);

END_IF;

Data transfer within the PLC

812

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F3_DMVN 32-bit data inversion and move

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F3_DMVN (see page 1323)

Variable Data type Function

s source 32-bit area to be inverted

d
ANY32

destination 32-bit area

The variables s and d have to be of the same data type.

For Relay T/C Register Constant

s DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Explanation with example value 16#75BCD15

s

d

31 . . 28 27 . . 24 23 . . 20 19 . .16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 0 1 0 1 0 1

31 . . 28 27 . . 24 23 . . 20 19 . .16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

 1 1 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 1 0 1 0 1 0

bit

source

destination

bit

32-bit area

bit

Each bit is inverted, destination value in this example: 16#F8A432EA

Description The 32-bit data or 32-bit equivalent constant specified by s is inverted and transferred to the 32-bit
area specified by d if the trigger EN is in the ON-state.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

 Data transfer within the PLC

813

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F3_DMVN(input_value, output_value);

END_IF;

Data transfer within the PLC

814

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F4_GETS Reading of the Numbers of the First WX and the First WY of the
Specified Slot

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Double-click the I/O map configuration in the project navigator for the settings required.

PLC types Availability of F4_GETS (see page 1325)

Variable Data type Function

s_Slot Slot number from which the information is required

d_FirstWX Number of the first WX of the specified slot

d_FirstWY

ANY16

Number of the first WY of the specified slot

For Relay T/C Register Constant

s_Slot WX WY WR WL SV EV DT LD FL dec. or hex.

d_FirstWX WX WY WR WL SV EV DT LD FL

d_FirstWY - WY WR WL SV EV DT LD FL -

Description The head word No. of the specified slot is read.

Example

Data types

Operands

 Data transfer within the PLC

815

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R9007 %MX0.900.7 permanently  the specified address using the
index modifier exceeds a limit.

R9008 %MX0.900.8 for an instant  a number other than 0 to 31 is
specified for the slot number.

Error flags

Data transfer within the PLC

816

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F7_MV2 Two 16-bit data move

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F7_MV2 (see page 1326)

 To transfer three 16-bit data types, use either the F190_MV3 (see page 853) or
P190_MV3 instruction.

Variable Data type Function

s1, s2 ANY16 source 16-bit area

d ANY32 destination 32-bit area

For Relay T/C Register Constant

s1, s2 WX WY WR WL SV EV DT LD FL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

In this example the input variables input_value_1 and input_value_2 are declared. However, you
can write constants directly at the input contact of the function instead.

Description The two 16-bit data or two 16-bit equivalent constants specified by s1 and s2 are copied to the
32-bit area specified by d when the trigger turns ON.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

 Data transfer within the PLC

817

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST When programming with structured text, enter the following:

IF start THEN

 F7_MV2(input_value1, input_value2, output_value);

END_IF;

Data transfer within the PLC

818

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F8_DMV2 Two 32-bit data move

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F8_DMV2 (see page 1326)

 To copy three 32-bit data, use either the F191_DMV3 (see page 855) or
P191_DMV3 instruction.

Variable Data type Function

s1, s2 ANY32 source 32-bit area

d ARRAY [0..1] of
ANY32

destination, lower 32-bit area of 64-bit area

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant

s1, s2 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

In this example the input variables input_value_1 and input_value_2 are declared. However, you
can write constants directly at the input contact of the function instead.

Description The function copies two 32-bit data areas specified at inputs s1 and s2 to a 32-bit ARRAY with two
elements at output d.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

 Data transfer within the PLC

819

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

IF start THEN

 F8_DMV2(input_value_1, input_value_2, output_value);

END_IF;

Data transfer within the PLC

820

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F10_BKMV Block move

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

The operands s1_Start and s2_End should be:

 in the same operand

 s1_Start  s2_End

Whenever s1_Start, s2_End and d_Start are in the same data area:

 s1_Start = d_Start: data will be recopied to the same data area.

15 . 12 11 . . 8 7 . 4 3 . . 0

[0] 0 0 0 1

[1] 0 0 1 0

[2] 0 0 1 1

[3] 0 1 0 0

[4] 0 1 0 1

15 . 12 11 . . 8 7 . 4 3 . . 0

[0] 0 0 1 0

[1] 0 0 1 1

[2] 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

source

dest.

PLC types Availability of F10_BKMV (see page 1320)

Variable Data type Function

s1_Start starting 16-bit area, source

s2_End ending 16-bit area, source

d_Start

ANY16

starting 16-bit area, destination

The variables s1_Start, s2_End and d_Start have to be of the same data type.

Description The data block specified by the 16-bit starting area specified by s1_Start and the 16-bit ending
area specified by s2_End are copied to the block starting from the 16-bit area specified by d_Start
if the trigger EN is in the ON-state.

Data types

 Data transfer within the PLC

821

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s1_Start,
s2_End

WX WY WR WL SV EV DT LD FL -

d_Start - WY WR WL SV EV DT LD FL -

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out. It moves the
data block starting at the 16-bit area specified by s1 and ending at the 16-bit area specified by s2
to the 16-bit area specified by d.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F10_BKMV(s1_Start:= source_Array[1],

 s2_End:= source_Array[3],

 d_Start=> target_Array[0]);

END_IF;

Data transfer within the PLC

822

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F10_BKMV_NUMBER Block move by number

This instruction is a modification of the F10_BKMV (see page 819) generated by the compiler.

Whenever s1_Start and d_Start are in the same data area:

 s1_Start = d_Start: data will be recopied to the same data area.

PLC types Availability of F10_BKMV_NUMBER (see page 1320)

 The value for 's2_Number' has to be greater than 0.

Variable Data type Function

s1_Start starting 16-bit area, source

s2_Number number of words to be copied, source

d_Start

ANY16

starting 16-bit area, destination

The variables s1_Start, s2_Number and d_Start have to be of the same data type.

For Relay T/C Register Constant

s1_Start WX WY WR WL SV EV DT LD FL -

s2_Number WX WY WR WL SV EV DT LD FL dec. or hex.

d_Start - WY WR WL SV EV DT LD FL -

Description The data block specified by the 16-bit starting area specified by s1_Start and the number of
WORDs specified by s2_Number are copied to the block starting from the 16-bit area specified by
d_Start if the trigger EN is in the ON-state.

Data types

Operands

Example In this example the function is programmed in ladder diagram (LD). The same POU header is used
for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable CopyArray changes from FALSE to TRUE, the function is carried out. It copies
the data block starting at the 16-bit area specified by s1_Start and the number of WORDs
specified by s2_Number to the block starting from the 16-bit area specified by d_Start.

LD

 Data transfer within the PLC

823

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F10_BKMV_OFFSET Block move to an offset from source

This instruction is a modification of the F10_BKMV (see page 819) generated by the compiler.

Whenever s1_Start and s2_End are in the same data area:

 d_Offset = 0: data will be recopied to the same data area.

PLC types Availability of F10_BKMV_OFFSET (see page 1320)

Variable Data type Function

s1_Start starting 16-bit area, source

s2_End ending 16-bit area, source

d_Offset

ANY16

offset from s1_Start, destination

The variables s1_Start, s2_End and d_Offset have to be of the same data type.

For Relay T/C Register Constant

s1_Start,
s2_End

WX WY WR WL SV EV DT LD FL -

d_Offset - WY WR WL SV EV DT LD FL dec. or hex.

Description

The data block specified by the 16-bit starting area specified by s1_Start and 16-bit ending area
specified by s2_End are copied to the block starting from the 16-bit area specified by the offset
d_Offset from s1_Start if the trigger EN is in the ON-state.

Data types

Operands

Example In this example the function is programmed in ladder diagram (LD). The same POU header is used
for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable CopyArrayInArray changes from FALSE to TRUE, the function is carried out. It
copies the data block starting at the 16-bit area specified by s1_Start and 16-bit ending area
specified by s2_End to the block starting from the 16-bit area specified by the offset d_Offset from
s1_Start.

LD

Data transfer within the PLC

824

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F10_BKMV_NUMBER
_OFFSET

Block move by number to an offset from source

This instruction is a modification of the F10_BKMV (see page 819) generated by the compiler.

Whenever d_Offset = 0: data will be recopied to the same data area.

PLC types Availability of F10_BKMV_NUMBER_OFFSET (see page 1320)

 The value for 's2_number' has to be greater than 0.

Variable Data type Function

s1_Start starting 16-bit area, source

s2_Number Number of words to be copied, source

d_Offset

ANY16

starting 16-bit area, destination

The variables s1_Start, s2_Number and d_Offset have to be of the same data type.

For Relay T/C Register Constant

s1_Start WX WY WR WL SV EV DT LD FL -

s2_Number WX WY WR WL SV EV DT LD FL dec. or hex.

d_Offset - WY WR WL SV EV DT LD FL dec. or hex.

Description

The data block specified by the 16-bit starting area specified by s1_Start and the number of
WORDs specified by s2_Number are copied to the block starting from the 16-bit area specified by
the offset d_Offset from s1_Start if the trigger EN is in the ON-state.

Data types

Operands

Example In this example the function is programmed in ladder diagram (LD). The same POU header is used
for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable CopyArrayInArray changes from FALSE to TRUE, the function is carried out. It
copies the data block starting at the 16-bit area specified by s1_Start and the number of WORDs
specified by s2_Number to the block starting from the 16-bit area specified by the offset d_Offset
from s1_Start.

LD

 Data transfer within the PLC

825

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F11_COPY Block copy

The operands d1_Start and d2_End should be:

 in the same operand

 d1_Start  d2_End

15 . 12 11 . . 8 7 . . 4 3 . . 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1

15 . 12 11 . . 8 7 . . 4 3 . . 0

[0] 0 0 0 1

[1] 0 0 1 1

[2] 0 1 0 1

[3] 1 0 1 1

[4] 1 0 1 1

[5] 1 0 1 1

source

dest.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F11_COPY (see page 1320)

Variable Data type Function

s source 16-bit area

d1_Start starting 16-bit area, destination

d2_End

ANY16

ending 16-bit area, destination

The variables s, d1_Start and d2_End have to be of the same data type.

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d1_Start,
d2_End

- WY WR WL SV EV DT LD FL -

Description The 16-bit equivalent constant or 16-bit area specified by s is copied to all 16-bit areas of the block
specified by d1_Start and d2_End if the trigger EN is in the ON-state.

Data types

Operands

Data transfer within the PLC

826

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 (* Copy the value 11 to data_array[3], *)
 (* data_array[4] and data_array[5] *)

 F11_COPY(s:= 11,

 d1_Start=> data_array[3],

 d2_End=> data_array[5]);

END_IF;

 Data transfer within the PLC

827

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F12_EPRD EEPROM read from memory

PLC types Availability of F12_EPRD (see page 1320)

Variable Data type Function

EN BOOL Activation of the function (when EN has the state TRUE,
the function block will be executed at every PLC scan)

s1 EEPROM start block number

s2 ANY32 Number of blocks to be read (1 block = 64 words/ 2048
words (DTs))

d ANY16 DT start address for information to be written

ENO BOOL When the function was executed, ENO is set to TRUE.
Helpful at cascading functions with EN-functionality

For Relay T/C Register Constant

s1, s2 DWX DWY DWR - DSV DEV DDT - - dec. or hex.

d - - - - - - DT - - -

Description Using this instruction data will be copied from EEPROM/ Flash-ROM to the destination area (DT).
The copy function is carried out with blocks only. Thus you can not copy single words. The block
size and the number of blocks is shown in the table "PLC specific information". Also ensure that
there at least 64/ 2048 free data registers (1 block = 64 words/ 2048 words (DTs)) reserved for the
destination area.

Data types

Operands

Data transfer within the PLC

828

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

PLC type FP0 2,7k
C10/C14/C16
and FP-e

FP0 5k C32 FP0 10k
T32CP

FP-Sigma,
FP-X, FP0R

ROM EEPROM EEPROM EEPROM Flash-ROM

Block size
(1 block)

64 words
(64x16bit)

64 words
(64x16bit)

64 words
(64x16bit)

2048 words

EEPROM start
block number

0 to 9 0 to 95 0 to 255 0 to 15

Number of
blocks to be read
/ written each
execution

1 to 2 1 to 8 1 to 255 1 (writing)

1 to 16
(reading)

Write duration
(Additional scan
time)

< 20 ms each
block

< 5 ms each
block

< 5 ms each
block

< 100ms each
block

Read duration
(Additional scan
time)

Less than 1 ms
each block

Less than 1
ms each
block

Less than 1
ms each
block

9.94s +
(1562.6*numb
er of blocks)
s

Max number of
writing events

Power down,
RUN -> PROG
mode changes
are also
counted.

100,000 10,000 10,000 10,000

Max read times No limit No limit No limit No limit

PLC specific
information

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out. The function
reads the first block (= 64 words) after start block number 0 from the EEPROM and writes the
information into the data fields from datafield[0] until datafield[63].

LD

 Data transfer within the PLC

829

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F12_ICRD IC card extended memory read

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F12_ICRD (see page 1320)

Variable Data type Function

s1_Start starting 32-bit area to be read in extended memory

s2_Number
ANY32

number of words to be read

d_Start ANY16 destination, starting 16-bit area

For Relay T/C Register Constant

s1_Start - - - - - - - - - dec. or hex.

s2_Num
ber

DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d_Start - WY WR WL SV EV DT LD FL -

Description The data for the number of words specified by s2_Number are read from the address in the IC
card extended memory area specified by s1_Start and written to the area specified by d_Start.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Data transfer within the PLC

830

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

IF DF(R901C) THEN

 Var_Real := Var_Real + 22.33;

END_IF;

(* Write a REAL value to the IC Card *)

IF DF(Write_To_ICCard) THEN

 F13_ICWT(s1_Start:= Adr_Of_Var(Var_Real) , s2_Number:= INT_TO_DINT(
Size_Of_Var(Var_Real)), d_Start:= ICCardStartAdr);

END_IF;

(*Read a REAL value from the IC Card*)

IF DF(Read_From_ICCard) THEN

 F12_ICRD(s1_Start:= ICCardStartAdr, s2_Number:= INT_TO_DINT(
Size_Of_Var(Var_Real)) ,

 d_Start=> Adr_Of_Var(Var_Real));

END_IF;

 Data transfer within the PLC

831

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F13_ICWT IC card extended memory write

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F13_ICWT (see page 1321)

Variable Data type Function

s1_Start ANY16 source data, starting 16-bit area

s2_Number number of words to be read then written to IC card

d_Start
ANY32

destination area of IC card expansion memory

For Relay T/C Register Constant

s1_Start WX WY WR WL SV EV DT LD FL -

s2_Number DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d_Start - - - - - - - - - dec. or hex.

Description The data for the number of words specified by s2_Number are read from the address specified by
s1_Start and written to the extended memory area in the IC card specified by d_Start.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Data transfer within the PLC

832

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

IF DF(R901C) THEN

 Var_Real := Var_Real + 22.33;

END_IF;

(* Write a REAL value to the IC Card *)

IF DF(Write_To_ICCard) THEN

 F13_ICWT(s1_Start:= Adr_Of_Var(Var_Real) , s2_Number:= INT_TO_DINT(
Size_Of_Var(Var_Real)), d_Start:= ICCardStartAdr);

END_IF;

(*Read a REAL value from the IC Card*)

IF DF(Read_From_ICCard) THEN

 F12_ICRD(s1_Start:= ICCardStartAdr, s2_Number:= INT_TO_DINT(
Size_Of_Var(Var_Real)) ,

 d_Start=> Adr_Of_Var(Var_Real));

END_IF;

 Data transfer within the PLC

833

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F14_PGRD Program Read from IC card

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F14_PGRD (see page 1321)

Variable Data type Function

s ARRAY [0..5] of
WORD

starting address of area storing program

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL -

Description When the execution criterion of F/P14_PGRD is turned ON, the execution proceeds until the END.
The program subsequently switches to the program specified by s.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. The instruction reads the
program Prog1 from the IC card and executes it.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F95_ASC(s:= 'Prog1',

 d_Start=> dummy_array[0]);

 F14_PGRD(dummy_array);

END_IF;

Data transfer within the PLC

834

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

P13_EPWT EEPROM write to memory

The EEPROM memory is not the same as the hold area. The hold area stores data in real time.
Whenever the power shuts down, the hold data is stored in the EEPROM memory. The
P13_EPWT instruction sends data into the EEPROM only when the instruction is executed. It also
has a limitation of the number of times you can write to it (see table below). You must make sure
that the P13_EPWT instruction will not be executed more often than the specified number of writes.

For example, if you execute P13_EPWT with R901A relay (pulse time 0.1s), the EEPROM will
become inoperable after 100,000 * 0.1 sec=10,000 sec (2.8 hours). However if you want to hold
your profile data such as positioning parameters or any other parameter values that are changed
infrequently, you will find this instruction very useful.

PLC types Availability of P13_EPWT (see page 1329)

 One of the two input variables 's2' or 'd' has to be assigned constant number
value.

Variable Data type Function

EN BOOL Activation of the function (when EN changes from FALSE to
TRUE, the function will be executed one time)

s1 INT, WORD DT start address of the block(s) that you want to save

s2 DINT, DWORD Number of blocks to write (1 block = 64 words/ 2048 words
(DTs))

d DINT, DWORD EEPROM start block number

ENO BOOL When the function was executed, ENO is set to TRUE.
Helpful at cascading functions with EN-functionality

For Relay T/C Register Constant

s1 - - - - - - DT - - -

s2, d DWX DWY DWR - DSV DEV DDT - - dec. or hex.

Description Using this instruction data will be copied from the data area (DT) to the EEPROM/ Flash-ROM.

Data types

Operands

 Data transfer within the PLC

835

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

PLC type FP0 2,7k
C10/C14/C16
and FP-e

FP0 5k C32 FP0 10k
T32CP

FP-Sigma,
FP-X, FP0R

ROM EEPROM EEPROM EEPROM Flash-ROM

Block size
(1 block)

64 words
(64x16bit)

64 words
(64x16bit)

64 words
(64x16bit)

2048 words

EEPROM start
block number

0 to 9 0 to 95 0 to 255 0 to 15

Number of
blocks to be read
/ written each
execution

1 to 2 1 to 8 1 to 255 1 (writing)

1 to 16
(reading)

Write duration
(Additional scan
time)

< 20 ms each
block

< 5 ms each
block

< 5 ms each
block

< 100ms each
block

Read duration
(Additional scan
time)

Less than 1 ms
each block

Less than 1
ms each
block

Less than 1
ms each
block

9.94s +
(1562.6*numb
er of blocks)
s

Max number of
writing events

Power down,
RUN -> PROG
mode changes
are also
counted.

100,000 10,000 10,000 10,000

Max read times No limit No limit No limit No limit

PLC specific
information

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header In the POU header, all input and output variables are declared that are used for programming this
function.

Body When the variable start changes from FALSE to TRUE, the function is carried out. The function
reads the contents of data field[0] until data field[63] (s2* = 1 => 1 block = 64 words) and writes the
information after start block number 0 into the EEPROM.

LD

Data transfer within the PLC

836

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F15_XCH 16-bit data exchange

15 . . 12 11 . . 8 7 . . 4 . 0 3 .

d1 0 0 0 1

d2 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1

Bit

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F15_XCH (see page 1321)

Variable Data type Function

d1 16-bit area to be exchanged with d2

d2
ANY16

16-bit area to be exchanged with d1

The variables d1 and d2 have to be of the same data type.

For Relay T/C Register Constant

d1, d2 - WY WR WL SV EV DT LD FL -

Description The contents in the 16-bit areas specified by d1 and d2 are exchanged if the trigger EN is in the
ON-state.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F15_XCH(value_1, value_2);

END_IF;

 Data transfer within the PLC

837

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F16_DXCH 32-bit data exchange

31 . . 28 27 . . 24 23 . . 20 19 . .16 15 . . 12 10 . . 8 7 . . 4 3 . . 0

d1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

d2 0 0 0 0 0 1 1 0 1 1 0 0 0

Bit

32-bit area

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F16_DXCH (see page 1321)

Variable Data type Function

d1 32-bit area to be exchanged with d2

d2
ANY32

32-bit area to be exchanged with d1

The variables d1 and d2 have to be of the same data type.

For Relay T/C Register Constant

d1, d2 - DWY DWR DWL DSV DEV DDT DLD DFL -

Description Two 32-bit data specified by d1 and d2 are exchanged if the trigger EN is in the ON-state.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

Data transfer within the PLC

838

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST When programming with structured text, enter the following:

IF start THEN

 F16_DXCH(value_1, value_2);

END_IF;

 Data transfer within the PLC

839

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F17_SWAP Higher/lower byte in 16-bit data exchange

15 . . 12 10 . . 8 7 . . 4 3 . . 0

DT770 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1

16# 2 3 4 5

15 . . 12 10 . . 8 7 . . 4 3 . . 0

DT770 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1

16# 4 5 2 3

Bit

Bit

higher byte (8-bit) lower byte (8-bit)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F17_SWAP (see page 1322)

Variable Data type Function

d ANY16 16-bit area in which the higher and lower bytes are swapped
(exchanged)

For Relay T/C Register Constant

d - WY WR WL SV EV DT LD FL -

Description The higher byte (higher 8-bits) and lower bytes (lower 8-bits) of a 16-bit area specified by d are
exchanged if the trigger EN is in the ON-state. 1 byte means 8 bit.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

Data transfer within the PLC

840

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST When programming with structured text, enter the following:

IF start THEN

 F17_SWAP(swap_value);

END_IF;

 Data transfer within the PLC

841

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F18_BXCH 16-bit blocked data exchange

0

1

3

2

11

10

4 12

5 13

6

7

14

0

1

3

2

3

2

1

4 4

5 5

6

7

6

0

1

3

2

11

10

1

4 12

5 13

6

7

6

0

1

3

2

3

2

4 4

5 5

6

7

14

data_field_1[5]

data_field_1[2]

data_field_1[2]
data_field_2[3]

data_field_2[3]

start: ON

data_field_1[5]

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F18_BXCH (see page 1322)

Variable Data type Function

d1_Start starting 16-bit area of block data 1

d2_End ending 16-bit area of block data 1

d3_Start
ANY16

starting 16-bit area of block data 2

For Relay T/C Register Constant

d1_Start,
d2_End,
d3_Start

- WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the address of the variables at outputs
d1_Start > d2_End

 the data block to be exchanged is larger
than the target area.

Description The function exchanges one 16-bit data block for another. The beginning of the first data block is
specified at output d1_Start and its end at output d2_End. Output d3_Start specifies the beginning
of the second data block.

Data types

Operands

Error flags

Data transfer within the PLC

842

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. It exchanges the data of ARRAY
data_field_1 (from the 2nd to the 5th element) with the data of ARRAY data_field_2 (from the 3rd
element on).

LD

ST When programming with structured text, enter the following:

IF start THEN

 F18_BXCH(

 d1_Start=> d1[2], d2_End=> d1[4], d3_Start=> d2[1]);

END_IF;

 Data transfer within the PLC

843

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F143_IORF Partial I/O update

Using this instruction, you can update inputs or outputs without the time-lag caused by scanning.

The same type of operand should be specified for d1_Start and d2_End.

PLCs with configurable, serially numbered I/O addresses:

FP2, FP2SH, FP3 /5 /10 /10SH (PLCs with backplanes)

 Specify the word address as 0  d1_Start  d2_End  127.
If only WX10 (or WY10) are to be updated based on the I/O-address
configuration, d1_Start and d2_End will be set as follows: d1_Start = 10 and
d2_End = 10.

 Set the same word address in d1_Start and d2_End to update only 1 word.

The partial I/O update instruction is executed only for the I/O units on the master backplane or
expansion backplane. It is not executed for the I/O unit in the slave station of the Remote I/O
System.

PLCs whose I/O addresses cannot be configured and are not serially numbered:

FP-, FP0 (PLCs without backplanes)

The instruction F143_IORF updates the inputs and outputs specified by d1_Start (starting word
address) and d2_End (ending word address) immediately after the trigger turns ON even in the
program execution stage.

  With the FP0 and FP-, refreshing initiated by the IORF command is done
only for the control unit.

 If d1_Start and d2_End are variables and not constants, then the compiler
automatically accesses the variables' values via the index register.

 With input refreshing, WX0 should be specified for d1_Start and d2_End.

 With output refreshing, WY0 should be specified for d1_Start and
d2_End.

PLC types Availability of F143_IORF (see page 1321)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Description Updates the inputs or outputs specified by the value of d1_Start (starting word address) and the
value of d2_End (ending word address) immediately after the trigger EN is in the ON-state even in
the program execution stage.

Data transfer within the PLC

844

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Variable Data type Function

d1_Start starting word address

d2_End ANY16 ending word address

The same type of operand should be specified for d1_Start and d2_End.

For Relay T/C Register Constant

d1_Start WX WY - WL SV EV DT - FL dec. or hex.

d2_End WX WY - WL SV EV DT - FL dec. or hex.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start changes from FALSE to TRUE, the function is carried out. To update
WX10 and WY10 based on the master I/O map configuration, set d1 = 10 and d2 = 10.

LD

ST When programming with structured text, enter the following:

(* PLCs with backplanes FP-C/FP2/FP2SH/FP3/FP10SH *)

IF start THEN

 (* Updates the input/output relay of word no. 0 to 1 *)

 F143_IORF(0, 1);

END_IF;

ST (* PLCs without backplanes FP0, FP-Sigma *)

IF start THEN

 (* Updates the input/output relay of word no. 0 to 1 *)

 F143_IORF(WX0, WX1);

 F143_IORF(WY0, WY1);

END_IF;

 Data transfer within the PLC

845

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F147_PR Parallel printout

Only bit positions 0 to 8 of d are used in the actual printout. ASCII code is output in sequence
starting with the lower byte of the starting area. Three scans are required for 1 character constant
output. Therefore, 37 scans are required until all characters constants are output.

Since it is not possible to execute multiple F147_PR instructions in one scan, use print-out flag
sys_bIsActive_F147_PR (ms-its:SysVars.chm::/64395.htm#o64401) to be sure they are not
executed simultaneously. If the character constants convert to ASCII code, use of the F95_ASC
(see page 661) instruction is recommended.

PLC types Availability of F147_PR (see page 1321)

Variable Data type Function

s ANY16 starting 16-bit area for storing 12 bytes (6 words) of ASCII
codes (source)

d WORD word external output relay used for output of ASCII codes
(destination)

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL -

d - WY - - - - - - - -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the ending area for storing ASCII codes
exceeds the limit

 the trigger of another F147_PR
instruction turns on while one F147_PR
instruction is being executed

R9033 %MX0.903.3 permanently  a F147_PR instruction is being executed

Description Outputs the ASCII codes for 12 characters stored in the 6-word area specified by s via the word
external output relay specified by d if the trigger EN is in the ON-state. If a printer is connected to
the output specified by d, a character corresponding to the output ASCII code is printed.

Data types

Operands

Error flags

ms-its:SysVars.chm::/64395.htm#o64401�

Data transfer within the PLC

846

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 Connection example

DATA1Y0
DATA2

:

DATA3
Y1

DATA4

Y2

DATA5

Y3

Y8

DATA6Y5
Y4

DATA7

COM

DATA8
Y6
Y7

GND

STROBE

Transistor output type
(output: 9 points or more)

Printer
(centronics interface)

The ASCII codes stored in the string PrintOutString are output through word external output relay
WY0 when trigger Start turns on.

LF J I G F E

0D 0A 4A 49 48 47 46 45

D C B A

44 43 42 41

WY0
YF YE YD YC YB YA Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

HCR

PrintOutString

Source: ASCII code for 12 characters A, B, C, D, E, F, G, H, I and J

ASCII HEX code
ASCII character

Control data for printer ASCII codes

start: ON

Destination

Y0 to YF: for data signals of printer

(Y0 to Y7 correspond to DA A1 to DA A8 of printer)

Y8: for strobe signal of printer
Y9 to YF: not used

Example In this example the function is programmed in ladder diagram (LD). The same POU header is used
for all programming languages.

GVL In the global variable list, you define variables that can be accessed by all POUs in the project.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Data transfer within the PLC

847

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body

LD

ST When programming with structured text, enter the following:

IF DF(start) OR PrintOutFlag THEN

 F147_PR(Adr_Of_VarOffs(PrintOutString, 2), Printer);

END_IF;

Data transfer within the PLC

848

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F150_READ Data read from intelligent units

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

The n words of the data stored in the shared memory of the intelligent unit/board specified by s1
are read from the address specified by s2, and are stored in the area specified by d of the CPU.

The number of variable arguments at the inputs is limited by the available index registers of the
PLC.

Specifying s1
Intelligent unit without bank

Specify the slot number in which the target intelligent unit has been installed.

16#00

s1

Upper byte Lower byte

Slot No.: 16#00 to 16#1F

Intelligent unit with bank

Specify the slot number (hex. constant) in which the target intelligent unit has been installed, and
the bank number (hex. constant).

s1

Upper byte Lower byte

Slot No.: 16#00 to 16#1F

Bank No.: 16#00 to 16#FF
Reference: Intelligent unit with bank

 Name Order Number

 FP3 expansion data memory
unit

AFP32091

AFP32092

 FP expansion data memory
unit

AFPG201

PLC types Availability of F150_READ (see page 1321)

Description Reads data from the shared memory in an intelligent module.

 Data transfer within the PLC

849

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Variable Data type Function

s1 Specifies the bank/slot number in the shared memory of the
intelligent module

s2
ANY16

Specifies the starting address in the shared memory of the
intelligent module (source data address)

n INT Specifies the number of words to be read

d ANY16 Starting address in the CPU for storing data read (destination
address)

For Relay T/C Register Constant

s1 WX WY WR WL SV EV DT LD FL dec. or hex.

s2 WX WY WR WL SV EV DT LD FL dec. or hex.

n WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 s1 exceeds the limit of specified range

 the data read exceeds the area of d

Data types

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Data transfer within the PLC

850

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

0 1 2 3 4

CPU
0

18
19
20
21
22

24
23

17

C
PU

DestAddCPU[1]
DestAddCPU[2]

DestAddCPU[0]

DestAddCPU[3]

(Slot No.)

Po
w

er

Intelligent unit

4 words

Body Reads 4 words of data stored in the addresses starting from 19, specified in AddrDataToRead, of
the intelligent unit's shared memory (located in slot 3). Then it stores them in the array
DestAddrCPU, when Start turns on.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F150_READ(s1_BankSlot:= SlotNo,

 s2_Start:= AddrDataToRead,

 n_Number:= NoWordsToRead,

 d_Start:= DestAddrCPU[0]);

END_IF;

 Data transfer within the PLC

851

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F151_WRT Write into memory of intelligent units

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Writes n words of the initial data from the area specified by s2 of the CPU to the address specified
by d of the shared memory of the intelligent unit specified by s1.

The number of variable arguments at the inputs is limited by the available index registers of the
PLC.

Specifying s1
Intelligent unit without bank

Specify the slot number in which the target intelligent unit has been installed.

16#00

s1

Upper byte Lower byte

Slot No.: 16#00 to 16#1F

Intelligent unit with bank

Specify the slot number (hex. constant) in which the target intelligent unit has been installed, and
the bank number (hex. constant).

s1

Upper byte Lower byte

Slot No.: 16#00 to 16#1F

Bank No.: 16#00 to 16#FF
Reference: Intelligent unit with bank

 Name Order Number

 FP3 expansion data memory
unit

AFP32091

AFP32092

 FP expansion data memory
unit

AFPG201

PLC types Availability of F151_WRT (see page 1321)

Description Writes data into the shared memory of an intelligent unit.

Data transfer within the PLC

852

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Variable Data type Function

s1 Specifies the bank/slot number in the shared memory of the
intelligent module

s2
ANY16

Starting address for data in the shared memory of the CPU

n INT Specifies the number of words to be written to the shared
memory

d ANY16 Specifies the starting address in the intelligent unit for storing
data written (destination address)

For Relay T/C Register Constant

s1 WX WY WR WL SV EV DT LD FL dec. or hex.

s2 - WY WR WL SV EV DT LD FL -

n WX WY WR WL SV EV DT LD FL dec. or hex.

d WX WY WR WL SV EV DT LD FL dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant
 s1 exceeds the limit of specified range

 the data read exceeds the area of d

Five words of data defined in CPUDataToWrt are written into the addresses starting from 0 to 4 of
the intelligent unit's shared memory (located in slot 0) when Start turns on.

0 1 2 3 4

C
PU

0

2
1

3
4
5
6

CPU

rt[0]CPUDataToW
CPUDataToWrt[1]
CPUDataToWrt[2]
CPUDataToWrt[3]
CPUDataToWrt[4]

Po
w

er

(Slot No.)

5 words

Intelligent unit

Data types

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

 Data transfer within the PLC

853

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

IF start THEN

 F151_WRT(s1_BankSlot:= SlotNo,

 s2_Start:= CPUDataToWrt[0],

 n_Number:= NoWordsToWrite,

 d_Start:= DestinationAddr);

END_IF;

Data transfer within the PLC

854

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F190_MV3 Three 16-bit data move

Description

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F190_MV3 (see page 1322)

 To transfer two 16-bit data types, use either the F7_MV2 (see page 815) or
P7_MV2 instruction.

Variable Data type Function

s1, s2, s3 ANY16 source 16-bit area

d ARRAY [0..2] of
ANY16

destination, lower 16-bit area of 48-bit area

The variables s1, s2 and d have to be of the same data type.

For Relay T/C Register Constant

s1,s2,s3 WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL dec. or hex.

The function copies three 16-bit data values at inputs s1, s2 and s3 to an ARRAY with three
elements that is returned at output d.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

 Data transfer within the PLC

855

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

IF start THEN

 F190_MV3(word_1, word_2, word_3, data_field);

END_IF;

Data transfer within the PLC

856

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F191_DMV3 Three 32-bit data move

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F191_DMV3 (see page 1322)

 To transfer two 32-bit data types, use either the F8_DMV2 (see page 817) or
P8_DMV2 instruction.

Variable Data type Function

s1, s2, s3 ANY32 source 32-bit area

d ARRAY [0..2]
ofANY32

destination, lower 32-bit area of 96-bit area

The variables s1, s2, s3 and d have to be of the same data type.

For Relay T/C Register Constant

s1,s2,s3 DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description The function copies three 32-bit data values at inputs s1, s2 and s3 to an ARRAY with three
elements that is returned at output d.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

 Data transfer within the PLC

857

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

IF start THEN

 F191_DMV3(word_1, word_2, word_3, data_field);

END_IF;

Data transfer within the PLC

858

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F309_FMV Floating Point Data Move

 Positive: 0.0000001 to 9999999.0

 Negative: -9999999.0 to -0.000001

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction MOVE (see
page 59). Please refer also to Advantages of the IEC instructions in the online help.

PLC types Availability of F309_FMV (see page 1324)

 This instruction cannot be programmed in the interrupt program.

Variable Data type Function

s Floating point
constant

Floating point data, 32 bits (source).

d REAL 32-bit area for result (destination).

For Relay T/C Register Constant

d - DWY DWR DWL DSV DEV DDT DLD DFL -

Description The floating point data (32 bits) specified by s is copied to the 32-bit area specified by d when the
trigger turns on. The range of real number data which can be set is as follows:

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable Start is set to TRUE, the floating point data entered at s is copied to the 32-bit
address assigned by the compiler for the variable RealNumber. The monitor value icon is
activated.

LD

 Data transfer within the PLC

859

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

24.1 Data transfer to and from special data registers

FPWIN Pro offers three possibilities to read from or write to special relays/special data registers.

1. Via system variables (recommended from version 5.1 onwards)

For each special data register and relay a system variable exists according to the following syntax:

sys_ * _system variable

b
w
dw
i
di

BOOL
WORD
DWORD
INT
DINT

You can insert these system variables into the body via the "Variables" dialog.

Tip: Set the class filter to <System Variables> to display system variables only.

In addition these system variables are also displayed under Monitor  Special Relays and
Registers as the last entries in the comments, e.g. "sys_w_HSC_ControlFlags".

Example for accessing the special data for HSC

Example for accessing the special data for the RTC

2. via global variables

3. via direct addresses in the body

Data transfer within the PLC

860

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

24.2 Transferring data to and from file register banks 1 or 2

In this section:

- ReadDataFromFileRegisterBank (see page 861)

- WriteDataToFileRegisterBank (see page 863)

 Data transfer within the PLC

861

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ReadDataFromFile
RegisterBank

Read Data from File Register Bank 1 or 2

With this function you cannot read data in the FL area (File Register Bank 0), i.e., the variable
applied at DataStartAddress must not be located in the FL area.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of ReadDataFromFileRegisterBank (see page 1330)

Variable Data type Function

BankNumber Specifies the bank number

BankOffset Specifies the bank number offset

DataNumberOfWords

INT

Number of word units to be read
from the file register bank

DataStartAddress ANY16 Specifies the start address of
data which is read from the file
register bank

For Relay T/C Register Constant

BankN
umber

WX WY WR WL - - DT LD FL dec. or hex

BankO
ffset

WX WY WR WL - - DT LD FL dec. or hex.

DataN
umber
OfWor
ds

WX WY WR WL - - DT LD FL -

DataSt
artAdd
ress

WX WY WR WL - - DT LD - -

Description This instruction reads the number of words specified by DataNumberOfWords from File Register
Bank 1 or 2, as specified by BankNumber beginning with BankOffset, and writes it to
DataStartAddress.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body If bGetData changes from FALSE to TRUE, the entire data unit variable awProcessDataToGet (a
DUT containing 11 elements) is filled with the data from File Register Bank 2 BankOffset 1000.

Data transfer within the PLC

862

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

if (DF(bGetData)) then

 ReadDataFromFileRegisterBank(BankNumber := 2,

 BankOffset := 1000,

 DataNumberOfWords := Size_Of_Var(awProcessDataToGet),

 DataStartAddress => Adr_Of_Var(awProcessDataToGet));

end_if;

 Data transfer within the PLC

863

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

WriteDataToFile
RegisterBank

Write Data to File Register Bank 1 or 2

With this function you cannot write data to the FL area (File Register Bank 0), i.e., the variable
applied at DataStartAddress must not be located in the FL area.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of WriteDataToFileRegisterBank (see page 1333)

Variable Data type Function

BankNumber Specifies bank number

BankOffset
INT

Specifies bank number offset

DataStartAddress ANY16 Specifies start address of data to be
written to File Register Bank

DataNumberOfWords INT Specifies number of word units to be
written to File Register Bank

For Relay T/C Register Const
ant

BankNum
ber

WX WY WR WL - - DT LD FL dec. or
hex

BankOffse
t

WX WY WR WL - - DT LD FL dec. or
hex.

DataStart
Address

WX WY WR WL - - DT LD - -

DataNumb
erOfWord
s

WX WY WR WL - - DT LD FL -

Description This instruction reads the number of words specified by DataNumberOfWords from
DataStartAddress and writes it to the File Register Bank 1 or 2 as specified by BankNumber
beginning with BankOffset.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

Data transfer within the PLC

864

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body If bStoreData changes from FALSE to TRUE, the entire data unit variable
awProcessDataToStore (a DUT containing 11 elements) is filled with the data from File Register
Bank 2 BankOffset 1000.

LD

ST When programming with structured text, enter the following:

if (DF(bStoreData)) then

 WriteDataToFileRegisterBank(BankNumber := 2,

 BankOffset := 1000,

 DataStartAddress := Adr_Of_Var(awProcessDataToStore),

 DataNumberOfWords := Size_Of_Var(awProcessDataToStore));

end_if;

Chapter 25

 Date and time instructions

Date and time instructions

866

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F138_TIMEBCD_TO
_SECBCD

h:min:s -> s conversion

The converted seconds data is stored in the 32-bit area specified by d_SECBCD. All hours,
minutes, and seconds data to convert and the converted seconds data is BCD. The max. data input
value is 9,999 hours, 59 minutes and 59 seconds, which will be converted to 35,999,999 seconds
in BCD format.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F138_TIMEBCD_TO_SECBCD (see page 1321)

Variable Data type Function

s_TIMEBCD DWORD source area for storing hours, minutes and seconds data

d_SECBCD DWORD destination area for storing converted seconds data

For Relay T/C Register Const.

s_TIMEBCD DWX DWY DWR DWL DSV DEV DDT DLD DFL -

d_SECBCD - DWY DWR DWL DSV DEV DDT DLD DFL -

Description Converts the hours, minutes, and seconds data stored in the 32-bit area specified by s_TIMEBCD
to seconds data if the trigger EN is in the ON-state.

Example

Data types

Operands

 Date and time instructions

867

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F139_SECBCD_TO
_TIMEBCD

s -> h:min:s conversion

The converted hours, minutes, and seconds data is stored in the 32-bit area specified by d. The
seconds prior to conversion and the hours, minutes, and seconds after conversion are all BCD data.
The maximum data input value is 35,999,999 seconds, which is converted to 9,999 hours, 59
minutes and 59 seconds.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F139_SECBCD_TO_TIMEBCD (see page 1321)

Variable Data type Function

s_SECBCD DWORD source area for storing seconds data

d_TIME_BCD DWORD destination area for storing converted hours, minutes and
seconds data

For Relay T/C Register Const.

s_SECBCD DWX DWY DWR DWL DSV DEV DDT DLD DFL -

d_TIME_BCD - DWY DWR DWL DSV DEV DDT DLD DFL -

Description Converts the second data stored in the 32-bit area specified by s to hours, minutes, and seconds
data if the trigger EN is in the ON-state.

Example

Data types

Operands

Date and time instructions

868

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F157_ADD_DTBCD
_TIMEBCD

Time addition

Example:

 You cannot specify special data registers DT9054 to DT9056 (DT90054 to DT90056
for FP2/2SH and FP10/10S/10SH) for the operand d_DTBCD. These registers are
factory built-in calendar timer values. To change the built-in calendar timer value,
first store the added result in other memory areas and transfer them to the
special data registers using SET_RTC_DTBCD (see page 874) instruction.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Example 1: clock/calendar data in
DTBCD format DUT

Member
Result

MinSec 16#2331 (minutes/seconds)

DayHour 16#0114 (day/hour)

August 1, 1992, Time: 14:23:31
(hours:minutes:seconds)

YearMon 16#9208 (year/month)

Example 2: time data in TIMEBCD
format

32 hours; 50 minutes; and 45 seconds 16#00325045 hex
(hours/minutes/seconds)

PLC types Availability of F157_ADD_DTBCD_TIMEBCD (see page 1321)

Description The date/clock data (3 words) specified by s1_DTBCD and the time data (2 words) specified by
s2_TIMEBCD are added together if the trigger EN is in the ON-state. The result is stored in the
area (3 words, same format as s1_DTBCD) specified by d_DTBCD. This instruction handles all
data in BCD format.

 Date and time instructions

869

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Variable Data type Function

s1_DTBCD DTBCD augend, time and date, values in BCD format

s2_TIMEBCD DWORD addend, 32-bit area for storing time data in BCD format

d_DTBCD DTBCD sum in BCD format

For Relay T/C Register Const.

s1_DTBCD WX WY WR WL SV EV DT LD FL -

s2_TIMEBCD - WY WR WL SV EV DT LD FL -

d_DTBCD WX WY WR WL SV EV DT LD FL dec. or hex.

Data types

Operands

Date and time instructions

870

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F158_SUB_DTBCD
_TIMEBCD

Time subtraction

Example:

 You cannot specify special data registers DT9054 to DT9056 (DT90054 to DT90056
for FP2/2SH and FP10/10S/10SH) for the operand d_DTBCD. These registers are
factory built-in calendar timer values. To change the built-in calendar timer value,
first store the subtraction result in other memory areas and transfer them to the
special data registers using SET_RTC_DTBCD (see page 874) instruction.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Example 1: clock/calendar data in
DTBCD format

DUT
Member

Result

MinSec 16#2331 (minutes/seconds)

DayHour 16#0114 (day/hour)

August 1, 1992, Time: 14:23:31
(hour:minutes:seconds)

YearMon 16#9208 (year/month)

Example 2: time data in TIMEBCD
format

32 hours; 50 minutes; and 45 seconds 16#00325045 hex
(hours/minutes/seconds)

PLC types Availability of F158_SUB_DTBCD_TIMEBCD (see page 1321)

Variable Data type Function

s1_DTBCD DTBCD minuend, time and date, values in BCD format

s2_TIMEBCD DWORD subtrahend, 32-bit area for storing time data in BCD format

d_DTBCD DTBCD result in BCD format

Description Subtracts time data (2 words) specified by s2_TIMEBCD from the date/clock data (3 words)
specified by s1_DTBCD if the trigger EN is in the ON-state. The result is stored in the area (3
words, same format than s1_DTBCD) specified by d_DTBCD. All the data used in this instruction
are handled in form of BCD.

Data types

 Date and time instructions

871

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Const.

s1_DTBCD WX WY WR WL SV EV DT LD FL -

s2_TIMEBCD - WY WR WL SV EV DT LD FL -

d_DTBCD WX WY WR WL SV EV DT LD FL dec. or
hex.

Operands

Date and time instructions

872

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F230_DTBCD_TO_
SEC

Time Data Conversion into Seconds

For a conversion from seconds into time data, please refer to F231_SEC_TO_DTBCD (see page
872).

Example:

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F230_DTBCD_TO_SEC (see page 1323)

Variable Data type Function

s_DTBCD DTBCD Area in which the input time data is stored

d_SEC ANY32 Area in which the converted second information is stored (32
bits)

For Relay T/C Register Constant

s_DTBCD WX WY WR WL SV EV DT LD FL -

d_SEC - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the specified address using the index
modifier exceeds a limit.

 values other than BCD are specified for
's'.

 the value which exceeds the range in the
time data of 's' is specified.

Description This function converts time data (date and time) into the number of seconds. It calculates the time
span between the specified time date and 01/01/2001 at 00:00 hours. The time data is specified in
the DUT "DTBCD".

Data types

Operands

Error flags

 Date and time instructions

873

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F231_SEC_TO_DTBCD Conversion of Seconds into Time Data

For a conversion from time data into seconds, please refer to F230_DTBCD_TO_SEC (see page
871).

Example:

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F231_SEC_TO_DTBCD (see page 1323)

Variable Data type Function

s_SEC ANY32 Area in which the number of seconds are stored (32 bits)

d_DTBCD DTBCD Head area in which time data is stored

For Relay T/C Register Constant

s_SEC WX WY WR WL SV EV DT LD FL -

d_DTBCD - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the specified address using the index
modifier exceeds a limit.

 the number of seconds (s) >=
16#BC191380 (valid until 31 Dec. 2100
23:59:59).

 the data memory of 'd' exceeds the area.

Description This function converts a specified number of seconds into date and time. The time data is
calculated from 01/01/2001 at 00:00 hours.

Data types

Operands

Error flags

Date and time instructions

874

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

GET_RTC_DTBCD Read the Real-Time Clock

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Description Use this PLC independent instruction to read the real-time clock data from the PLC. When the
instruction is carried out, the values from the special data registers DT90054 to DT90056 (DT9054
to DT9056) are transferred to the data unit type DTBCD. You can also use the system variables to
set the RTC. For detailed information on using system variables, please refer to data transfer to
and from special data registers (see page 859).

Example:

 Date and time instructions

875

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

SET_RTC_DTBCD Set the Real-Time Clock

Description Use this PLC independent instruction to write date and time data in BCD format (DTBCD) to the
real-time clock. When the variable SetNewDtBcd is set to TRUE, the values from the data unit
type DTBCD are transferred to the special data registers DT90054 to DT90056 (DT9054 to
DT9056) and the value 16#8000 is written to the special data register DT90058 (DT9058) to set the
real-time clock of the PLC. You can also use the system variables to set the RTC. For detailed
information on using system variables, please refer to data transfer to and from special data
registers (see page 859).

Example

Chapter 26

 Selection Instructions

Selection Instructions

878

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F285_LIMT 16-bit data upper and lower limit control

 If the input value at s3_In < s1_Min, the lower limit at input s1_Min is returned at
output d.

 If the input value at s3_In > s2_Max, the upper limit at input s2_Max is returned
at output d.

 If the input value at s2_Max  s3_In  s1_Min, the input value s3_In is returned
unchanged at output d.

If you want to control the output value solely via the upper value s2_Max, set -32768 or 16#8000
for the lower limit s1_Min. To perform lower limit control only, set 32767 or 16#7FFF for the upper
limit s2_Max.

[s2]

[s1]

Output value d

Input value s3

Lower limit s1

Upper limit s2

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F285_LIMT (see page 1323)

Variable Data type Function

s1_Min the area where the lower limit is stored or the lower limit data

s2_Max the area where the upper limit is stored or the upper limit
data

s3_In the area where the input value is stored or the input value
data

d

ANY16

the area where the output value data is stored

Description The function compares the input value at input s3_In with a lower and an upper limit. The lower
limit is specified at input s1_Min, and the upper limit at input s2_Max. The result of the function is
returned at output d as follows.

Data types

 Selection Instructions

879

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s1_Min, s2_Max, s3_In WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant  the value at s1_Min > s2_Max

R900B %MX0.900.11 permanently  the result of processing is between the
upper and lower limits.

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. The constant 0 (lower limit) and
2000 (upper limit) are assigned to inputs s1 and s2. However, you can declare variables in the
POU header and write them in the function in the body at the inputs.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F285_LIMT(0, 2000, input_value, output_value);

END_IF; (* 0=lower limit, 2000=upper limit *)

Selection Instructions

880

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F286_DLIMT 32-bit data upper and lower limit control

 If the input value at s3_In < s1_Min, the lower limit at input s1_Min is returned at
output d.

 If the input value at s3_In > s2_Max, the upper limit at input s2_Max is returned
at output d.

 If the input value at s2_Max  s3_In  s1_Min, the input value s3_In is returned
unchanged at output d.

If you want to control the output value solely via the upper value s2_Max, set -2147483648 or
16#80000000 for the lower limit s1_Min. To perform lower limit control only, set 2147483647 or
16#7FFFFFFF the upper limit s2_Max.

[s2]

[s1]

Output value d

Input value s3

Lower limit s1

Upper limit s2

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F286_DLIMT (see page 1323)

Variable Data type Function

s1_Min the area where the lower limit is stored or the lower limit data

s2_Max the area where the upper limit is stored or the upper limit
data

s3_In the area where the input value is stored or the input value
data

d

ANY32

the area where the output value data is stored

Description The function compares the input value at input s3_In with a lower and an upper limit. The lower
limit is specified at input s1_Min, and the upper limit at input s2_Max. The result of the function is
returned at output d as follows:

Data types

 Selection Instructions

881

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s1_Min, s2_Max,
s3_In

DWX DWY DWR DWL DSV DEV DDT DLD DFL dec. or hex.

d - DWY DWR DWL DSV DEV DDT DLD DFL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant  the value at s1_Min > s2_Max

R900B %MX0.900.11 permanently  the result of processing is between the
upper and lower limits.

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out. The constant -123456 (lower
limit) and 654321 (upper limit) are assigned to inputs s1 and s2. However, you can declare
variables in the POU header and write them in the function in the body at the inputs.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F286_DLIMT(123456, 654321, input_value, output_value);

END_IF; (* 123456= lower limit, 654321=upper limit *)

Chapter 27

 Edge detection instructions

Edge detection instructions

884

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

DF Rising edge differential

PLC types Availability of DF (see page 1319)

 Be careful when programming with commands that effect the order in which a
program is carried out, e.g. jump or loop instructions within a sequential
function chart or a function block. The order of the instructions might change
depending on the time when the instruction is carried out or the input value.
Specific basic JUMP and LOOP instructions are:

- MC (see page 1007) to MCE (see page 1008)

- JP (see page 1009) to LBL (see page 1013)

- F19_SJP (see page 1010) to LBL (see page 1013)

- LOOP (see page 1012) to LBL (see page 1013)

Variable Data type

input BOOL

output BOOL

For Relay T/C Register Constant

i X Y R L T C - - - -

o - Y R L - - - - - -

Description DF is a rising edge differential instruction. The DF instruction executes and turns ON output o for a
singular scan duration if the trigger i changes from an OFF to an ON state.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body Each rising edge at the input Increment increments the counter.

LD

ST When programming with structured text, enter the following:

IF DF(Increment) THEN

 Counter:=Counter+1;

END_IF;

 Edge detection instructions

885

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

DFN Falling edge differential

PLC types Availability of DFN (see page 1319)

 Be careful when programming with commands that effect the order in which a
program is carried out, e.g. jump or loop instructions within a sequential
function chart or a function block. The order of the instructions might change
depending on the time when the instruction is carried out or the input value.
Specific basic JUMP and LOOP instructions are:

- MC (see page 1007) to MCE (see page 1008)

- JP (see page 1009) to LBL (see page 1013)

- F19_SJP (see page 1010) to LBL (see page 1013)

- LOOP (see page 1012) to LBL (see page 1013)

Variable Data type

input BOOL

output BOOL

For Relay T/C Register Constant

i X Y R L T C - - - -

o - Y R L - - - - - -

Description The DFN instruction executes and turns ON output o for a single scan duration if the trigger i
changes from an ON to an OFF state.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body Each falling edge at the input Decrement decrements the couter.

LD

ST When programming with structured text, enter the following:

IF DFN(Decrement) THEN

 Counter:=Counter-1;

END_IF;

Edge detection instructions

886

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

DFI Rising edge differential (initial execution type)

Input signal

Ouput signal

Leading edge

One scan

Detection of the input signal’s rising edge is also assured at the first scan.

Input signal

Output signal

One scan

You may use an unlimited number of DFI functions.

If the input signal = TRUE already when the system is turned on and this signal should not be
interpreted as the first rising edge, the DF function must be used instead.

PLC types Availability of DFI (see page 1319)

 Be careful when programming with commands that effect the order in which a
program is carried out, e.g. jump or loop instructions within a sequential
function chart or a function block. The order of the instructions might change
depending on the time when the instruction is carried out or the input value.
Specific basic JUMP and LOOP instructions are:

- MC (see page 1007) to MCE (see page 1008)

- JP (see page 1009) to LBL (see page 1013)

- F19_SJP (see page 1010) to LBL (see page 1013)

- LOOP (see page 1012) to LBL (see page 1013)

Variable Data type

input BOOL

output BOOL

For Relay T/C Register Constant

i X Y R L T C - - - -

o - Y R L - - - - - -

Description When a rising edge of the input signal (input i) is detected, this function changes the status of the
output signal (output o) to TRUE for the duration of the scan.

Data types

Operands

 Edge detection instructions

887

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header In the POU header, all input and output variables are declared that are used for programming this
function.

LD

ST When programming with structured text, enter the following:

output_value:=DFI(input_value);

Edge detection instructions

888

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ALT Alternative out

When the mode is changed from PROG to RUN or the power is turned on in RUN mode while the
input signal is TRUE, a rising edge will not be detected for the first scan.

PLC types Availability of ALT (see page 1318)

 Be careful when programming with commands that effect the order in which a
program is carried out, e.g. jump or loop instructions within a sequential function
chart or a function block. The order of the instructions might change depending on
the time when the instruction is carried out or the input value. (Specific basic JUMP
and LOOP instructions are: MC to MCE instruction, JP to LBL instruction, F19_SJP
to LBL instruction, LOOP to LBL instruction.

Variable Data type

input BOOL

output BOOL

For Relay T/C Register Constant

i X Y R L T C - - - -

o - Y R L - - - - - -

Description The function inverts the output condition (output o) each time the rising edge of the input signal
(input i) is detected.

Time chart X0

Y10

Invert Invert Invert

ON

OFF

ON

OFF

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header In the POU header, all input and output variables are declared that are used for programming this
function.

LD

ST When programming with structured text, enter the following:

output_value:=(ALT(input_value));

Chapter 28

 High-speed counter instructions

High-speed counter instructions

890

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

28.1 Introduction

Control FPWIN Pro offers two concepts for programming with high-speed counter instructions:

 FP instructions

 Tool instructions

For users programming for different PLC types of the FP series or users who are tired of setting control code
bits and looking up available channel numbers, the tool instructions offer new and comfortable features. These
include information functions for evaluating status flags and settings, control functions for configuring
high-speed counters and pulse outputs, PLC-independent functions and DUTs, as well as variable channel
numbers. However, the FP instructions may be easier to use for beginners or users familiar with FPWIN GR.

Most of the information, which is accessible via information and control functions, is stored in special internal
relays and special data registers. These relays and registers can also be accessed using PLC-independent
system variables.

To take advantage of the features you prefer, the instructions of both libraries can be mixed.

 � NOTE

When programming with the tool instructions, be sure to refer to the detailed information
provided via the links to the related F/P instructions.

Main features FP instructions Tool instructions

Pre version 6.4 support 

Use of inline functions 

Use of FPWIN GR function names 

Less code with constant channel numbers 

Control codes 

Control functions 

Information functions 

Variable channel numbers 

Universal functions for all PLCs 

DUT for common channel configuration for all
PLCs for all pulse output instructions

 

 High-speed counter instructions

891

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

28.2 Writing the high-speed counter control code

The special data register where the high-speed counter and pulse output control code are stored
can be accessed with the system variable sys_wHscOrPulseControlCode. (The system variable
sys_wHscOrPulseControlCode corresponds to special data register DT90052.)

Operations performed by the high-speed counter control code

 Clearing high-speed counter instructions (bit 3)

 Enabling/disabling the reset input (hardware reset) of the high-speed counter (bit
2)

 Enabling/disabling counting operations (bit 1)

 Resetting the elapsed value (software reset) of the high-speed counter to 0 (bit 0)

The control code settings for each channel can be monitored using the system variables
sys_wHscChannelxControlCode or sys_wPulseChannelxControlCode (where x=channel number).

The settings of this system variable remain unchanged until another setting operation is executed.

Description for FP, FP-X, FP0R:

Bits 0–15 of the control code are allocated in groups of four. The bit setting in each group is
represented by a hex number (e.g. 0002 0000 0000 1001 = 16#2009).

15 12 11 8 7 4 3 0

� � � � �

IIIIIIIV
1 Channel number (channel n: 16#n)

Clear high-speed counter instruction (bit 3) 2

0: continue 1: clear

Reset input (bit 2) (see note) 3

0: enabled 1: disabled

Count (bit 1) 4

0: permit 1: prohibit

Reset elapsed value to 0 (bit 0) 5
0: no 1: yes

Example: 16#2009

Group Value Description

IV 2 Channel number: 2

III 0 (fixed)

II 0 (fixed)

Hex 9 corresponds to binary 1001

Clear high-speed counter instruction: clear
(bit 3)

1

Reset input: enabled (bit 2) 0

Count: permit (bit 1) 0

I 9

Reset elapsed value to 0: yes (bit 0) 1

High-speed counter instructions

892

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Description for FP0, FP-e:

Bits 0–15 of the control code are allocated in groups of four, each group containing the settings for
one channel. The bit setting in each group is represented by a hex number (e.g. 0000 0000 1001
0000 = 16#90).

15 12 11 8 7 4 3 0

� � � �� � � �� � � �� � � �

IIIIIIIV
Group IV III II I

Channel 3 2 1 0

Clear high-speed counter instruction (bit 3) 1

0: continue 1: clear

Reset input (bit 2) (see note) 2

0: enabled 1: disabled

Count (bit 1) 3
0: permit 1: prohibit

Reset elapsed value to 0 (bit 0) 4
0: no 1: yes

Example: 16#90

Group Value Description

IV 0 –

III 0 –

Channel number: 1

Hex 9 corresponds to binary 1001

Clear high-speed counter instruction: clear (bit
3)

1

Reset input: enabled (bit 2) 0

Count: permit (bit 1) 0

II 9

Reset elapsed value to 0: yes (bit 0) 1

I 0 –

 Turning the reset input to TRUE, sets the elapsed value to 0. Use the reset input
setting (bit 2) to disable the reset input allocated in the system registers.

Software reset for channel 0

Example 1 The first example shows how to perform a software reset for channel 0, and the second example
shows how to perform a software reset for channel 1.

POU header

All input and output variables used for programming this function have been declared in the POU
header.

 High-speed counter instructions

893

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Software reset for channel 1

Body The reset is performed in step 1, and 0 is entered just after that in step 2 to start counting. A reset
alone does not start counting.

POU header

(FP, FP-X,
FP0R)

All input and output variables used for programming this function have been declared in the POU
header.

Body The reset is performed in step 1, and 0 is entered just after that in step 2 to start counting. A reset
alone does not start counting.

LD

High-speed counter instructions

894

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

28.3 High-speed counter: writing and reading the elapsed value

The elapsed value is stored as a double word in the special data registers. Access the special data
registers using the system variable sys_diHscChannelxElapsedValue (where x=channel number).

System variables for memory areas used:

 FP-Sigma

 FP-X, Transistor types

 FP-X, Relay types

 FP0R

 FP0, FP-e

Example The first example shows how to write an initial value (elapsed value) into the high-speed counter.
The second example shows how to read an elapsed value and copy it to a variable.

All input and output variables used for programming this function have been declared in the POU
header.

Body An initial value of 3000 (elapsed value) is written into channel 0 of the high-speed counter.

LD

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The elapsed value of the high-speed counter is read from channel 0 of the high-speed counter and
copied to the variable diElapsedValue.

LD

 High-speed counter instructions

895

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F165_HighSpeedCounter_Cam Cam control

Create your own DUT using the following DUT as a sample:
F165_HighSpeedCounter_Cam_8_Values_DUT

The following parameters can be specified in the DUT:

 Control code

 Word address for output relays

 Number of target values

 Target value 1

 ...

 Target value n

 Maximum target value

Characteristics of cam control

14000

10000

8000

4000

2000

t [ms]

y

1

2

0

1

2

3

4

3

y Elapsed value of high-speed counter 14000 Maximum target value

1 Execution condition 10000 Target value 4

2 High-speed counter control flag 8000 Target value 3

3 Output relay 0-4 4000 Target value 2

 2000 Target value 1

 Whenever the elapsed value is in the target value area n to n+1 (incremental
counting) or n+1 to n, (decremental counting), the corresponding output relay n is
TRUE.

 In the example above, maximum target value control has been enabled. When
the elapsed value reaches the maximum target value, the elapsed value is reset
to 0 and counting restarts.

 Specify the word address of the output relays in an overlapping DUT, e.g.
BOOL32_OVERLAPPING_DUT, and apply this DUT at dutBitOutputs.

Description This instruction performs cam control according to the parameters in the specified DUT with a
maximum of 31 target values for the high-speed counter. An interrupt program can be executed
whenever the elapsed value matches one of the target values.

High-speed counter instructions

896

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 A maximum of 31 target values can be specified.

 The target values must be arranged in ascending order. No value may be used
twice.

 When the instruction starts, all output relays are FALSE, except for output relay 0,
which turns to TRUE, provided that the elapsed value is smaller than target value
1. Otherwise, the output relay corresponding to the target value area turns to
TRUE. Example: If the current value is between target value 2 = -4000 and target
value 3 = +4000, output relay 2 is TRUE. In the following example maximum
target value control has been disabled. When the elapsed value reaches the last
target value, counting continues and the elapsed value is not reset to 0.

8000

4000

-4000

-10000

t [ms]

y

1

2

0

1

2

3

4

3

INT0
y Elapsed value of high-speed counter 8000 Target value 4

1 Execution condition 4000 Target value 3

2 High-speed counter control flag -4000 Target value 2

3 Output relay 0-4 -10000 Target value 1

INT0 Interrupt program 0

Maximum target value control

The instruction can be executed using maximum target value control to reset the elapsed value to 0
when the maximum target value has been reached. Maximum target value control can be enabled
in the control code of F165_HighSpeedCounter_Cam_8_Values_DUT. Instead of using maximum
target value control, the elapsed value can also be reset using a reset input or a software reset
(see page 1021).

To perform maximum target value control, positive integer numbers must be specified for all target
values.

 High-speed counter instructions

897

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Incremental and decremental counting with maximum target value control:

14000

10000

8000

4000

2000

t [ms]

y

1

2

0

1

2

3

4

3

y Elapsed value of high-speed counter 14000 Maximum target value

1 Execution condition 10000 Target value 4

2 High-speed counter control flag 8000 Target value 3

3 Output relay 0-4 4000 Target value 2

 2000 Target value 1

Overview:

Maximum target value
control:

enabled disabled (see note)

Incremental counting:

The pointer of the data table
moves from target value 1
to the last target value.

When the elapsed value reaches the
maximum target value:

 the pointer returns to target
value 1

 output relay 0 turns to TRUE

 the elapsed value is set to 0

When the elapsed value reaches the last
target value:

 the pointer returns to target value 1

 output relay 0 turns to TRUE

 the elapsed value continues to
increment and restarts at the
minimum value of the ring counter

Decremental counting:

The pointer of the data table
moves from the last target
value to target value 1.

When the elapsed value reaches the
value -1:

 the pointer returns to the last
target value

 the output relay corresponding
to the last target value turns to
TRUE

 the elapsed value is set to the
maximum target value

When the elapsed value reaches the
value -1:

 the pointer returns to target value n

 the output relay corresponding to
the last target value turns to TRUE

 the elapsed value continues to
decrement and restarts at the
maximum value of the ring counter

 Provided that neither a reset input nor a software reset is being used.

Hardware reset operation

Channel Hardware reset input

0

1

X2

2

3

X5

High-speed counter instructions

898

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Interrupt operation

The interrupt program will be executed when the elapsed value matches the target value. Any
interrupt that has been entered into the Tasks list is automatically enabled. A special interrupt
program number is assigned to each channel number.

Channel 0 1 2 3 4 5

Interrupt program 0 1 3 4 6 7

General programming information

 Select the high-speed counter input for the desired channel in the system
registers.

 When a high-speed counter instruction is executed, the high-speed counter
control flag (e.g. sys_bIsHscChannel0ControlActive) for the channel used turns
to TRUE. No other high-speed counter instruction using the same channel can
be executed as long as the control flag is TRUE.

 To cancel execution of an instruction, set bit 3 of the data register storing the
high-speed counter control code (sys_wHscOrPulseControlCode) to TRUE. The
high-speed counter control flag then changes to FALSE. To re-enable execution
of the high-speed counter instruction, reset bit 3 to FALSE.

 Rewriting the elapsed value for the channel used during the execution of the
instruction may cause an unexpected operation.

 Make sure the time span between adjacent target values is greater than 1ms.

 If the instruction is executed in the main program, make sure the minimum time
span between adjacent target values is greater than the scan time.

 If the instruction is executed in an interrupt program, make sure the minimum
time span between adjacent target values is greater than the maximum execution
time of the interrupt program.

 This instruction can be executed simultaneously on a maximum of two channels.

 When using a reset input or a software reset, make sure target value 1 is an
integer and  1.

 When maximum target value control is used together with a reset input or
software reset, be careful not to use them at the same time.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

PLC types: Availability of F165_HighSpeedCounter_Cam (see page 1322)

Variable Data type Function

iHscChannel* INT High-speed counter channel: 0–5

s_dutDataTable ANY_DUT Starting address of area containing the data table
Sample: F165_HighSpeedCounter_Cam_8_Values_DUT

dutBitOutputs ANY_DUT Starting address (WR) of area containing the word address for the output
relays, e.g. BOOL32_OVERLAPPING_DUT. Select the size (16 or 32
bits) according to the number set with
diNumberOfTargetValuesAndOutputRelays.

Data types

 High-speed counter instructions

899

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

iHscChannel* - - - - - - DT - - -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 channel number or values of the data table are outside the
permissible range

 high-speed counter has not been set in the system registers

 target value > maximum target value.

 target value = 0.

 target values are not arranged in ascending order

Example 1: With maximum target value control

The DUT F165_HighSpeedCounter_Cam_8_Values_DUT is predefined in the FP Library and can
be used as a sample.

Operands

Error flags

Example

In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

DUT

GVL In the global variable list, you define variables that can be accessed by all POUs in the project.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable bStartCam turns to TRUE, the function is carried out.

LD

High-speed counter instructions

900

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

END_IF;

Example 2: Without maximum target value control

ST When programming with structured text, enter the following:

IF (sys_bIsFirstScan) THEN

 sys_diHscChannel0ElapsedValue:=0;

END_IF;

IF DF(bStartCam) THEN

 F165_HighSpeedCounter_Cam(iHscChannel := 0,

 s_dutDataTable := dut_F165_CAM_Example1,

 dutBitOutputs => WR0_bits_F165_CAM_Examples);

Example 2 In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

DUT The DUT F165_HighSpeedCounter_Cam_8_Values_DUT is predefined in the FP Library and can
be used as a sample.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable bStartCam is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF (sys_bIsFirstScan) THEN

 sys_diHscChannel0ElapsedValue:=0;

END_IF;

IF DF(bStartCam) THEN

 F165_HighSpeedCounter_Cam(iHscChannel := 0,

 s_dutDataTable := dut_F165_CAM_Example2,

 dutBitOutputs => WR0_bits_F165_CAM_Examples);

END_IF;

 High-speed counter instructions

901

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F166_HighSpeed
Counter_Set

Target value match ON (high-speed counter)

See also: Hsc_TargetValueMatch_Set (see page 1168)

Characteristics of target value match ON control

10000

0

1

2

4

3

10000 Target value

1 Elapsed value of high-speed counter

2 Execution condition

3 High-speed counter control flag

4 PLC output

The PLC output turns to TRUE when the elapsed value matches the target value. In addition, the
high-speed counter control flag turns to FALSE and the instruction is deactivated.

If an output is specified that has not been implemented, only the internal memory of the
corresponding WY address is set or reset.

Interrupt operation

The interrupt program will be executed when the elapsed value matches the target value. Any
interrupt that has been entered into the Tasks list is automatically enabled.

Channels used by interrupt programs:

PLC type FP0, FP-e FP FP-X (Relay
types)

FP-X
(Transistor
types)

FP0R

Interrupt 0 Channel 0 Channel 0 Channel 0 Channel 0 Channel 0

Interrupt 1 Channel 1 Channel 1 Channel 1 Channel 1 Channel 1

Interrupt 2 Channel 2 Channel 2

Interrupt 3 Channel 2 Channel 2 Channel 3 Channel 3 Channel 2

Description If the elapsed value of the high-speed counter matches the target value, an interrupt process
immediately turns the specified output to TRUE.

High-speed counter instructions

902

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

PLC type FP0, FP-e FP FP-X (Relay
types)

FP-X
(Transistor
types)

FP0R

Interrupt 4 Channel 3 Channel 3 Channel 4 Channel 4 Channel 3

Interrupt 5 Channel 5 Channel 5

Interrupt 6 Channel 6 Channel 6 Channel 4

Interrupt 7 Channel 7 Channel 7 Channel 5

Interrupt 8 Channel 8

Interrupt 9 Channel 9

Interrupt 10

Interrupt 11 Channel A

Interrupt 12 Channel B

General programming information

 Select the high-speed counter input for the desired channel in the system
registers.

 FP-X, FP0R: When a high-speed counter instruction is executed, the high-speed
counter control flag (e.g. sys_bIsHscChannel0ControlActive) for the channel
used turns to TRUE. No other high-speed counter instruction using the same
channel can be executed as long as the control flag is TRUE.

 FP0, FP-e, FP: The high-speed counter control flag (e.g.
sys_bIsHscChannel0ControlActive) and the pulse output control flag (e.g.
sys_bIsPulseChannel0Active) are assigned to the same internal relay (e.g.
R903A). Therefore, when a high-speed counter instruction or a pulse output
instruction is executed, both the high-speed counter control flag (e.g.
sys_bIsHscChannel0ControlActive) and the pulse output control flag (e.g.
sys_bIsPulseChannel0Active) for the channel used are TRUE. No other
high-speed counter instruction or pulse output instruction can be executed as
long as this flag is TRUE.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 To set a PLC output to FALSE that was previously set to TRUE by this instruction,
use an RST or MOVE instruction.

 To cancel execution of an instruction, set bit 3 of the data register storing the
high-speed counter control code (sys_wHscOrPulseControlCode) to TRUE. The
high-speed counter control flag then changes to FALSE. To re-enable execution
of the high-speed counter instruction, reset bit 3 to FALSE.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

PLC types Availability of F166_HighSpeedCounter_Set (see page 1322)

 High-speed counter instructions

903

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Variable Data type Function

n_diHscChannel DINT High-speed counter channel:

FP-: 0–3

FP-X R: 0–11

FP-X T: 0–7

FP0: 0–3

FP-e: 0–3

FP0R: 0–5

s_diTargetValue DINT specify a 32-bit data value for the target value within the following range:

FP0, FP-e: -838808–+8388607

FP, FP-X, FP0R: -2147483467–+2147483648

d_Y BOOL output which turns to TRUE when the elapsed value matches the target
value:

FP-, FP0, FP-e: Y0–Y7

FP- (V3.1 or higher), FP0R: Y0–Y1F

FP-X: Y0–Y29F

For Relay T/C Register Constant

n_diHscChannel - - - - - - - - - dec. or hex.

s_diTargetValue DWX DWY DWR - DSV DEV DDT - - -

d_Y - Y - - - - - - - -

No. IEC address Set If

R9007 %MX0.900.7 ON

R9008 %MX0.900.8 ON

 channel number or values of the data table are outside the
permissible range

 high-speed counter has not been set in the system registers

Data types

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

GVL In the global variable list, you define variables that can be accessed by all POUs in the project.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

High-speed counter instructions

904

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

END_IF;

 Assign a number to the input variable (e.g. Monitor  Monitor Header, click the
variable, enter the value, press <Enter>), or replace the input variables with numbers.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F166_HighSpeedCounter_Set(n_diHscChannel := 0,

 s_diTargetValue := 10,

 d_Y => out_0);

 High-speed counter instructions

905

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F167_HighSpeed
Counter_Reset

Target value match OFF (high-speed counter)

See also: Hsc_TargetValueMatch_Reset (see page 1166)

Characteristics of target value match OFF control

1

2

4

3

0

-200

-200 Target value

1 Elapsed value of high-speed counter

2 Execution condition

3 High-speed counter control flag

4 PLC output

The PLC output turns to FALSE when the elapsed value matches the target value. In addition, the
high-speed counter control flag turns to FALSE and the instruction is deactivated.

If an output is specified that has not been implemented, only the internal memory of the
corresponding WY address is set or reset.

Interrupt operation

The interrupt program will be executed when the elapsed value matches the target value. Any
interrupt that has been entered into the Tasks list is automatically enabled. A special interrupt
program number is assigned to each channel number.

Channels used by interrupt programs:

PLC type FP0, FP-e FP FP-X (Relay
types)

FP-X
(Transistor
types)

FP0R

Interrupt 0 Channel 0 Channel 0 Channel 0 Channel 0 Channel 0

Interrupt 1 Channel 1 Channel 1 Channel 1 Channel 1 Channel 1

Interrupt 2 Channel 2 Channel 2

Description If the elapsed value of the high-speed counter matches the target value, an interrupt process
immediately turns the specified output to FALSE.

High-speed counter instructions

906

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

PLC type FP0, FP-e FP FP-X (Relay
types)

FP-X
(Transistor
types)

FP0R

Interrupt 3 Channel 2 Channel 2 Channel 3 Channel 3 Channel 2

Interrupt 4 Channel 3 Channel 3 Channel 4 Channel 4 Channel 3

Interrupt 5 Channel 5 Channel 5

Interrupt 6 Channel 6 Channel 6 Channel 4

Interrupt 7 Channel 7 Channel 7 Channel 5

Interrupt 8 Channel 8

Interrupt 9 Channel 9

Interrupt 10

Interrupt 11 Channel A

Interrupt 12 Channel B

General programming information

 Select the high-speed counter input for the desired channel in the system
registers.

 FP-X, FP0R: When a high-speed counter instruction is executed, the high-speed
counter control flag (e.g. sys_bIsHscChannel0ControlActive) for the channel
used turns to TRUE. No other high-speed counter instruction using the same
channel can be executed as long as the control flag is TRUE.

 FP0, FP-e, FP: The high-speed counter control flag (e.g.
sys_bIsHscChannel0ControlActive) and the pulse output control flag (e.g.
sys_bIsPulseChannel0Active) are assigned to the same internal relay (e.g.
R903A). Therefore, when a high-speed counter instruction or a pulse output
instruction is executed, both the high-speed counter control flag (e.g.
sys_bIsHscChannel0ControlActive) and the pulse output control flag (e.g.
sys_bIsPulseChannel0Active) for the channel used are TRUE. No other
high-speed counter instruction or pulse output instruction can be executed as
long as this flag is TRUE.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 To set a PLC output to FALSE that was previously set to TRUE by this instruction,
use an RST or MOVE instruction.

 To cancel execution of an instruction, set bit 3 of the data register storing the
high-speed counter control code (sys_wHscOrPulseControlCode) to TRUE. The
high-speed counter control flag then changes to FALSE. To re-enable execution
of the high-speed counter instruction, reset bit 3 to FALSE.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

PLC types Availability of F167_HighSpeedCounter_Reset (see page 1322)

 High-speed counter instructions

907

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Variable Data type Function

n_diHscChannel DINT High-speed counter channel:

FP-: 0–3

FP-X R: 0–11

FP-X T: 0–7

FP0: 0–3

FP-e: 0–3

FP0R: 0–5

s_diTargetValue DINT specify a 32-bit data value for the target value within the following range:

FP0, FP-e: -838808–+8388607

FP, FP-X, FP0R: -2147483467–+2147483648

d_Y BOOL output which turns to FALSE when the elapsed value matches the target value:

FP-, FP0, FP-e: Y0–Y7

FP- (V3.1 or higher), FP0R: Y0–Y1F

FP-X: Y0–Y29F

For Relay T/C Register Constant

n_diHscChannel - - - - - - - - - dec. or hex.

s_diTargetValue DWX DWY DWR - DSV DEV DDT - - -

d_Y - Y - - - - - - - -

No. IEC address Set If

R9007 %MX0.900.7 ON

R9008 %MX0.900.8 ON

 channel number or values of the data table are outside the
permissible range

 high-speed counter has not been set in the system registers

Data types

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

GVL In the global variable list, you define variables that can be accessed by all POUs in the project.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST

High-speed counter instructions

908

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

IF DF(start) THEN

 F167_HighSpeedCounter_Reset(n_diHscChannel := 0,

 s_diTargetValue := -200,

 d_Y => out_0);

 Assign a number to the input variable (e.g. Monitor  Monitor Header, click the
variable, enter the value, press <Enter>), or replace the input variables with
numbers.

When programming with structured text, enter the following:

END_IF;

 High-speed counter instructions

909

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F178_HighSpeed
Counter_Measure

Input pulse measurement

Characteristics of input pulse measurement

 For input pulse measurement, the channel number, the counting period (1ms–5s)
and the number of counting periods (1–5) must be specified. These parameters
are used to calculate the average number of input pulses per counting period.

 The unit of pulse period measurement ([s], [ms] or both) can be specified.

 If the measurement is in s, the pulse period is measured and output
immediately upon execution of this instruction. A maximum of approx. 174.4ms
can be measured.

 If the measurement is in ms, the value of the pulse period is updated after every
measurement. A maximum of approx. 49.7 days can be measured. A time-out
value can be specified after which the measured pulse period is set to -1 if
measurement has not been completed.

 During the first counting periods after starting the instruction, the measured pulse
period is set to -1 until the specified number of counting periods has been
reached.

 If the pulse period is longer than the measurable range or if measurement has
not been completed, the measured pulse period is set to -1.

 General programming information

 Select the high-speed counter input for the desired channel in the system
registers.

 Keep the execution condition TRUE for pulse measurement using this instruction.

 To stop the measurement, turn the execution condition to FALSE.

 When a high-speed counter instruction is executed, the high-speed counter
control flag (e.g. sys_bIsHscChannel0ControlActive) for the channel used turns
to TRUE. No other high-speed counter instruction using the same channel can
be executed as long as the control flag is TRUE.

 The instruction can be executed simultaneously on a maximum of two channels.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

Description This instruction measures the number of input pulses in a specified counting period and the pulse
period.

High-speed counter instructions

910

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

PLC types Availability of F178_HighSpeedCounter_Measure (see page 1322)

Variable Data
type

Function

s1_iHscChannel INT High-speed counter channel: 0–5

s2_NumberOfPulses_iPeriodTime_m
s

INT Counting period [ms]:

1–5000 (1ms–5s).

s1_NumberOfPulses_iNumberOfPeri
ods

INT Number of counting periods: 1–5

s1_PulsePeriod_iMeasurementMetho
d

INT Unit of pulse period measurement

0: Pulse period is not measured

1: Pulse period is measured in s
2: Pulse period is measured in ms

3: Pulse period is measured in s and ms

Time-out value of pulse period
measurement [ms]:

0: no time-out

s1_PulsePeriod_iTimeoutValueOf1ms
UnitOutput

INT

1: 100ms

2: 200ms

3: 300ms

4: 500ms

6: 1s

7: 2s

8: 10s

9: 60s

d_NumberOfPulses_diAverage DINT Average number of pulses per counting
period (no. of pulses in counting
period/number of counting periods)

d_PulsePeriod_diTime_s DINT Pulse period [s]

For Relay T/C Register Constant

s1_iHscC
hannel

WX WY WR WL SV EV DT LD FL dec. or hex.

s1/s2
inputs

WX WY WR WL SV EV DT LD FL dec. or hex.

d outputs - WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 channel number or values of the data
table are outside the permissible range

 high-speed counter has not been set in
the system registers

 the high-speed counter channel is
already used by another high-speed
counter or pulse output instruction

 the number of channels used is 3 or
more

Data types

Operands

Error flags

 High-speed counter instructions

911

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

IF (bStartMeasurement) THEN

 F178_HighSpeedCounter_Measure(s1_iHscChannel := 0,

 s2_NumberOfPulses_iPeriodTime_ms := 10,

 s1_NumberOfPulses_iNumberOfPeriods := 5,

 s1_PulsePeriod_iMeasurementMethod :=
SYS_F178_HSC_MEASUREMENT_•s_ms,

 s1_PulsePeriod_iTimeoutValueOf1msUnitOutput := 0,

 d_NumberOfPulses_diAverage => diNumberOfPulses,

 d_PulsePeriod_diTime_•s => diPulsePeriodTime_•s,

 d_PulsePeriod_diTime_ms => diPulsePeriodTime_ms);

END_IF;

Chapter 29

 Timer instructions

Timer instructions

914

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

TM_1ms_FB Timer for 1ms intervals (0 to 32.767s)

For the TM_1ms_FB function block declare the following:
start start contact

each time a rising edge is detected, the set value SV is copied to the elapsed
value EV and the timer is started

SV set value

the defined ON-delay time (0 to 32.767s)

T timer contact

is set when the time defined at SV has elapsed, this means when EV
becomes 0

EV elapsed value

count value from which 1 is subtracted every 0.001s while the timer is running

Time
chart start

SV

EV

T

X

0

X

0

download
PROG mode RUN mode

ON

OFF

ON

OFF

  The number of available timers is limited and depends on the settings in
the system registers 5 and 6.

 The system timer functions (TM_1s, TM_100ms, TM_10ms, and TM_1s) use
the same NUM* address area as the system timer function blocks
(TM_1s_FB, TM_100ms_FB, TM_10ms_FB, and TM_1s_FB). For the timer
function blocks the compiler automatically assigns a NUM* address to
every timer instance. The addresses are assigned counting downwards,
starting at the highest possible address. In order to avoid errors (address
conflicts), these timer functions and function blocks should not be used
together in a project.

PLC types Availability of TM_1ms_FB (see page 1332)

Description This timer for 0.001s units works as an ON-delay timer. If the start contact of the function block is
in the ON state, the preset time SV (set value) is started. When this time has elapsed, the timer
contact T turns ON.

 Timer instructions

915

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Variable Data type Function

start BOOL start contact

SV INT, WORD set value

T BOOL timer contact

EV INT, WORD elapsed value

For Relay T/C Register Constant

start X Y R L T C - - - -

T - Y R L - - - - - -

SV, EV - WY WR WL SV EV DT LD FL -

This example uses variables. You may also use constants for the input variables.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block TM_1ms_FB are
declared in the POU header. This also includes the function block (FB) itself. By declaring the FB
you create a copy of the original FB. This copy is saved under Alarm_Control, and a separate
data area is reserved.

Body As soon the variable Start_contact becomes TRUE, the timer Alarm_control will be started. The
variable EV of the timer is set to the value of SV. As long as Start_contact is TRUE, the value 1 is
subtracted from EV every 1ms. When EV reaches the value 0 (after 1 second as SV = 1000 with
the timer type TM_1ms_FB), the variable Alarm_Relay_2 becomes TRUE.

As soon as the value of the variable EV of the timer is smaller than or equal to 500 (after 0.5s) and
EV is unequal 0, Alarm_Relay_1 is set to TRUE.

LD

Timer instructions

916

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST When programming with structured text, enter the following:

Alarm_Control(start:= Start_Contact ,

 SV:= 1000,

 T=> Alarm_Relay_2 ,

 EV=> Alarm_Control.EV);

(*The ON-delay time is 1000ms*)

Alarm_Relay_1:= Alarm_Control.EV <= 500 & Alarm_Control.EV <> 0;

(*Alarm_Relay_1 is set to TRUE after 500ms*)
(*Alarm_Relay_1 is set to TRUE after 500ms*)

 Timer instructions

917

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

TM_10ms_FB Timer for 10ms intervals (0 to 327.67s)

For the TM_10ms_FB function block declare the following:
start start contact

each time a rising edge is detected, the set value SV is copied to the elapsed
value EV and the timer is started

SV set value

the defined ON-delay time (0 to 327.67s)

T timer contact

is set when the time defined at SV has elapsed, this means when EV becomes
0

EV elapsed value

count value from which 1 is subtracted every 0.01s while the timer is running

Time
chart start

SV

EV

T

X

0

X

0

download
PROG mode RUN mode

ON

OFF

ON

OFF

  The number of available timers is limited and depends on the
settings in the system registers 5 and 6.

 The system timer functions (TM_1s, TM_100ms, TM_10ms, and
TM_1s) use the same NUM* address area as the system timer
function blocks (TM_1s_FB, TM_100ms_FB, TM_10ms_FB, and
TM_1s_FB). For the timer function blocks the compiler
automatically assigns a NUM* address to every timer instance. The
addresses are assigned counting downwards, starting at the
highest possible address. In order to avoid errors (address
conflicts), these timer functions and function blocks should not be
used together in a project.

PLC types Availability of TM_10ms_FB (see page 1332)

Description This timer for 0.01s units works as an ON-delay timer. If the start contact of the function block is in
the ON state, the preset time SV (set value) is started. When this time has elapsed, the timer
contact T turns ON.

Timer instructions

918

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Variable Data type Function

start BOOL start contact

SV INT, WORD set value

T BOOL timer contact

EV INT, WORD elapsed value

For Relay T/C Register Constant

start X Y R L T C - - - -

T - Y R L - - - - - -

SV, EV - WY WR WL SV EV DT LD FL -

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block TM_10ms_FB are
declared in the POU header. This also includes the function block (FB) itself. By declaring the FB
you create a copy of the original FB. This copy is saved under Alarm_Control, and a separate data
area is reserved.

This example uses variables. You may also use constants for the input variables.

Body As soon the variable Start_contact becomes TRUE, the timer Alarm_control will be started. The
variable EV of the timer is set to the value of SV. As long as Start_contact is TRUE, the value 1 is
subtracted from EV every 10ms. When EV reaches the value 0 (after 10 second as SV = 1000 with
the timer type TM_10ms_FB), the variable Alarm_Relay_2 becomes TRUE.

As soon as the value of the variable EV of the timer is smaller than or equal to 500 (after 5s) and
EV is unequal 0, Alarm_Relay_1 is set to TRUE.

 Timer instructions

919

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

Alarm_Control(start:= Start_Contact ,

 SV:= 1000,

 T=> Alarm_Relay_2 ,

 EV=> Alarm_Control.EV);

(*The ON-delay time is 10s*)

Alarm_Relay_1:= Alarm_Control.EV <= 500 & Alarm_Control.EV <> 0;

(*Alarm_Relay_1 is set to TRUE after 5s*)
(*Alarm_Relay_1 is set to TRUE after 5s*)

Timer instructions

920

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

TM_100ms_FB Timer for 100ms intervals (0 to 3276.7s)

For the TM_100ms_FB function block declare the following:
start start contact

each time a rising edge is detected, the set value SV is copied to the elapsed
value EV and the timer is started

SV set value

the defined ON-delay time (0 to 3276.7s)

T timer contact

is set when the time defined at SV has elapsed, this means when EV becomes
0

EV elapsed value

count value from which 1 is subtracted every 0.1s while the timer is running

Time
chart start

SV

EV

T

X

0

X

0

download
PROG mode RUN mode

ON

OFF

ON

OFF

  The number of available timers is limited and depends on the settings in the system
registers 5 and 6.

 The system timer functions (TM_1s, TM_100ms, TM_10ms, and TM_1s) use the same
NUM* address area as the system timer function blocks (TM_1s_FB, TM_100ms_FB,
TM_10ms_FB, and TM_1s_FB). For the timer function blocks the compiler
automatically assigns a NUM* address to every timer instance. The addresses are
assigned counting downwards, starting at the highest possible address. In order to
avoid errors (address conflicts), these timer functions and function blocks should
not be used together in a project.

PLC types Availability of TM_100ms_FB (see page 1332)

Description This timer for 0.1s units works as an ON-delay timer. If the start contact of the function block is in
the ON state, the preset time SV (set value) is started. When this time has elapsed, the timer
contact T turns ON.

 Timer instructions

921

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Variable Data type Function

start BOOL start contact

SV INT, WORD set value

T BOOL timer contact

EV INT, WORD elapsed value

For Relay T/C Register Constant

start X Y R L T C - - - -

T - Y R L - - - - - -

SV, EV - WY WR WL SV EV DT LD FL -

This example uses variables. You may also use constants for the input variables.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block TM_100ms_FB
are declared in the POU header. This also includes the function block (FB) itself. By declaring the
FB you create a copy of the original FB. This copy is saved under Alarm_Control, and a separate
data area is reserved.

Body As soon the variable Start_contact becomes TRUE, the timer Alarm_control will be started. The
variable EV of the timer is set to the value of SV. As long as Start_contact is TRUE, the value 1 is
subtracted from EV every 100ms. When EV reaches the value 0 (after 10 seconds as SV = 100
with the timer type TM_100ms_FB), the variable Alarm_Relay_2 becomes TRUE.

As soon as the value of the variable EV of the timer is smaller than or equal to 50 (after 5s) and EV
is unequal 0, Alarm_Relay_1 is set to TRUE.

Timer instructions

922

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

Alarm_Control(start:= Start_Contact ,

 SV:= 100,

 T=> Alarm_Relay_2 ,

 EV=> Alarm_Control.EV);

(*The ON-delay time is 10s*)

Alarm_Relay_1:= Alarm_Control.EV <= 50 & Alarm_Control.EV <> 0;

(*Alarm_Relay_1 is set to TRUE after 5s*)
(*Alarm_Relay_1 is set to TRUE after 5s*)

 Timer instructions

923

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

TM_1s_FB Timer for 1s intervals (0 to 32767s)

For the TM_1s_FB function block declare the following:
start start contact

each time a rising edge is detected, the set value SV is copied to the elapsed
value EV and the timer is started

SV set value

the defined ON-delay time (0 to 32767s)

T timer contact

is set when the time defined at SV has elapsed, this means when EV becomes
0

EV elapsed value

count value from which 1 is subtracted every 1s while the timer is running

Time
chart start

SV

EV

T

X

0

X

0

download
PROG mode RUN mode

ON

OFF

ON

OFF

  The number of available timers is limited and depends on the settings in the system
registers 5 and 6.

 The system timer functions (TM_1s, TM_100ms, TM_10ms, and TM_1s) use the same
NUM* address area as the system timer function blocks (TM_1s_FB, TM_100ms_FB,
TM_10ms_FB, and TM_1s_FB). For the timer function blocks the compiler automatically
assigns a NUM* address to every timer instance. The addresses are assigned counting
downwards, starting at the highest possible address. In order to avoid errors (address
conflicts), these timer functions and function blocks should not be used together in a
project.

PLC types Availability of TM_1s_FB (see page 1332)

Description This timer for 1s units works as an ON-delay timer. If the start contact of the function block is in the
ON state, the preset time SV (set value) is started. When this time has elapsed, the timer contact T
turns ON.

Timer instructions

924

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Variable Data type Function

start BOOL start contact

SV INT, WORD set value

T BOOL timer contact

EV INT, WORD elapsed value

For Relay T/C Register Constant

start X Y R L T C - - - -

T - Y R L - - - - - -

SV, EV - WY WR WL SV EV DT LD FL -

This example uses variables. You may also use constants for the input variables.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block TM_1s_FB are
declared in the POU header. This also includes the function block (FB) itself. By declaring the FB
you create a copy of the original FB. This copy is saved under Alarm_Control, and a separate
data area is reserved.

Body As soon the variable Start_contact becomes TRUE, the timer Alarm_control will be started. The
variable EV of the timer is set to the value of SV. As long as Start_contact is TRUE, the value 1 is
subtracted from EV every 1s. When EV reaches the value 0 (after 10 seconds as SV = 10 with the
timer type TM_1s_FB), the variable Alarm_Relay_2 becomes TRUE.

As soon as the value of the variable EV of the timer is smaller than or equal to 5 (after 5s) and EV
is unequal 0, Alarm_Relay_1 is set to TRUE.

 Timer instructions

925

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

Alarm_Control(start:= Start_Contact ,

 SV:= 10,

 T=> Alarm_Relay_2 ,

 EV=> Alarm_Control.EV);

(*The ON-delay time is 10s*)

Alarm_Relay_1:= Alarm_Control.EV <= 5 & Alarm_Control.EV <> 0;

(*Alarm_Relay_1 is set to TRUE after 5s*)
(*Alarm_Relay_1 is set to TRUE after 5s*)

Timer instructions

926

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

TM_1ms Timer for 1ms intervals (0 to 32.767s)

Instead of using this FP instruction, we recommend using the related IEC instruction
tmTM_1ms_FB (see page 913).

Please refer also to Advantages of the IEC instructions in the online help.

The areas used for the instruction are:

 Preset (Set) value area: SV

 Count (Elapsed) value area: EV

When the mode is set to RUN mode, the Preset (Set) value is transferred to the SV. If the trigger of
the timer instruction start is in the ON-state, the Preset (Set) value is transferred to the EV from the
SV.

During the timing operation, the time is subtracted from the EV.

The scan time is also subtracted from the EV in the next scan.

The timer contact T turns ON, when the EV becomes 0.

Calculation of the timing operation:

timing operation = time set value - 0 to 1/2 of units (0.5ms) + scan time

Example:

150ms time set value and 8ms PLC scan time

Upper limit = 150 - 0 + 8 = 158ms
Lower limit = 150 -0.5 +8 = 157.5ms

The result is a timing operation from 157.5ms to 158ms.

PLC types Availability of TM_1ms (see page 1332)

Variable Data type Function

start BOOL starts timer

Num* timer contact

Must be a constant

SV
ANY16

timer address in system registers 5 and 6

T BOOL set value

Description The TM_1ms instruction sets the ON-delay timer for 0.001s units (0 to 32.767s).

Data types

 Timer instructions

927

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

start X Y R L T C - - - -

T - Y R L - - - - - -

Num* - - - - - - - - - dec. or hex.

SV - - - - SV - - - - dec. or hex.

  It is not possible to use this function in a function block POU.

 For correct results, timer functions and timer function blocks
must be executed exactly one time in each scan. Thus it is not
allowed to use timer function or timer function blocks in
interrupt programs or in loops.

 Every used timer must have a separate constant Num*.
Available Num* addresses depend on system registers 5 and
6.
Timer of type TM_1s, TM_100ms, TM_10ms, TM_1ms use the
same Num* address range.

 The system timer functions (TM_1s, TM_100ms, TM_10ms,
and TM_1s) use the same NUM* address area as the system
timer function blocks (TM_1s_FB, TM_100ms_FB,
TM_10ms_FB, and TM_1s_FB). For the timer function blocks
the compiler automatically assigns a NUM* address to every
timer instance. The addresses are assigned counting
downwards, starting at the highest possible address. In order
to avoid errors (address conflicts), these timer functions and
function blocks should not be used together in a project.

 This function does not require a variable at the output "T".

Please refer to the example of TM_1ms_FB (see page 913).

Operands

Example

Timer instructions

928

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

TM_10ms Timer for 10ms intervals (0 to 327.67s)

Instead of using this FP instruction, we recommend using the related IEC instruction TM_10ms_FB
(see page 916).

Please refer also to Advantages of the IEC instructions in the online help.

The areas used for the instruction are:

 Preset (Set) value area: SV

 Count (Elapsed) value area: EV

When the mode is set to RUN mode, the Preset (Set) value is transferred to the SV. If the trigger of
the timer instruction start is in the ON-state, the Preset (Set) value is transferred to the EV from the
SV.

During the timing operation, the time is subtracted from the EV.

The scan time is also subtracted from the EV in the next scan.

The timer contact T turns ON, when the EV becomes 0.

Calculation of the timing operation:

timing operation = time set value - 0 to 1/4 of units (2.5ms) + scan time

Example:

150ms time set value and 8ms PLC scan time

Upper limit = 150 - 0 + 8 = 158ms
Lower limit = 150 -2.5 +8 = 155.5ms

The result is a timing operation from 155.5ms to 158ms.

PLC types Availability of TM_10ms (see page 1332)

Variable Data type Function

start BOOL starts timer

Num* timer address in system registers 5 and 6

Must be a constant

SV
ANY16

set value

T BOOL timer contact

Description The TM_10ms instruction sets the ON-delay timer for 0.01 s units (0 to 327.67s).

Data types

 Timer instructions

929

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

start X Y R L T C - - - -

T - Y R L - - - - - -

Num* - - - - - - - - - dec. or hex.

SV - - - - SV - - - - dec. or hex.

  It is not possible to use this function in a function block POU.

 For correct results, timer functions and timer function blocks
must be executed exactly one time in each scan. Thus it is not
allowed to use timer function or timer function blocks in
interrupt programs or in loops.

 Every used timer must have a separate constant Num*.
Available Num* addresses depend on system registers 5 and
6.
Timer of type TM_1s, TM_100ms, TM_10ms, TM_1ms use the
same Num* address range.

 The system timer functions (TM_1s, TM_100ms, TM_10ms,
and TM_1s) use the same NUM* address area as the system
timer function blocks (TM_1s_FB, TM_100ms_FB,
TM_10ms_FB, and TM_1s_FB). For the timer function blocks
the compiler automatically assigns a NUM* address to every
timer instance. The addresses are assigned counting
downwards, starting at the highest possible address. In order
to avoid errors (address conflicts), these timer functions and
function blocks should not be used together in a project.

 This function does not require a variable at the output "T".

Please refer to the example of TM_10ms_FB (see page 916).

Operands

Example

Timer instructions

930

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

TM_100ms Timer for 100ms intervals (0 to 3276.7s)

Instead of using this FP instruction, we recommend using the related IEC instruction
TM_100ms_FB (see page 919).

Please refer also to Advantages of the IEC instructions in the online help.

The TM instruction is a down type preset timer.

The area used for the instruction are:

 Preset (Set) value area: SV

 Count (Elapsed) value area: EV

When the mode is set to RUN mode, the Preset (Set) value is transferred to the SV. If the trigger of
the timer instruction start is in the ON-state, the Preset (Set) value is transferred to the EV from the
SV.

During the timing operation, the time is subtracted from the EV.

The scan time is also subtracted from the EV in the next scan.

The timer contact T turns ON, when the EV becomes 0.

Calculation of the timing operation:

timing operation = time set value - 0 to 1/4 of units (25ms) + scan time

Example:

1500ms time set value and 8ms PLC scan time

Upper limit = 1500 - 0 + 8 = 1508ms
Lower limit = 1500 -25 +8 = 1483ms

The result is a timing operation from 1483ms to 1508ms.

PLC types Availability of TM_100ms (see page 1332)

Variable Data type Function

start BOOL starts timer

Num* timer address in system registers 5 and 6

Must be a constant

SV
ANY16

set value

T BOOL timer contact

Description The TM_100ms instruction sets the ON-delay timer for 0.1s units (0 to 3276.7s).

Data types

 Timer instructions

931

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

start X Y R L T C - - - -

T - Y R L - - - - - -

Num* - - - - - - - - - dec. or hex.

SV - - - - SV - - - - dec. or hex.

  It is not possible to use this function in a function block POU.

 For correct results, timer functions and timer function blocks
must be executed exactly one time in each scan. Thus it is not
allowed to use timer function or timer function blocks in
interrupt programs or in loops.

 Every used timer must have a separate constant Num*.
Available Num* addresses depend on system registers 5 and
6.
Timer of type TM_1s, TM_100ms, TM_10ms, TM_1ms use the
same Num* address range.

 The system timer functions (TM_1s, TM_100ms, TM_10ms,
and TM_1s) use the same NUM* address area as the system
timer function blocks (TM_1s_FB, TM_100ms_FB,
TM_10ms_FB, and TM_1s_FB). For the timer function blocks
the compiler automatically assigns a NUM* address to every
timer instance. The addresses are assigned counting
downwards, starting at the highest possible address. In order
to avoid errors (address conflicts), these timer functions and
function blocks should not be used together in a project.

 This function does not require a variable at the output "T".

Please refer to the example of TM_100ms_FB (see page 919).

Operands

Example

Timer instructions

932

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

TM_1s Timer for 1s intervals (0 to 32767s)

Instead of using this FP instruction, we recommend using the related IEC instruction TM_1s_FB
(see page 922).

Please refer also to Advantages of the IEC instructions in the online help.

The area used for the instruction are:

 Preset (Set) value area: SV

 Count (Elapsed) value area: EV

When the mode is set to RUN mode, the Preset (Set) value is transferred to the SV. If the trigger of
the timer instruction start is in the ON-state, the Preset (Set) value is transferred to the EV from the
SV.

During the timing operation, the time is subtracted from the EV.

The scan time is also subtracted from the EV in the next scan.

The timer contact T turns ON, when the EV becomes 0.

Calculation of the timing operation:

timing operation = time set value - 0 to 1/4 of units (250ms) + scan time

Example:

150s time set value and 8ms PLC scan time

Upper limit = 150000 - 0 + 8 = 150008ms
Lower limit = 150000 -250 +8 = 149758ms

The result is a timing operation from 149758ms to 158ms.

PLC types Availability of TM_1s (see page 1332)

Variable Data type Function

start BOOL starts timer

Num* timer address in system registers 5 and 6

Must be a constant

SV
ANY16

set value

T BOOL timer contact

Description The TM_1s instruction sets the ON-delay timer for 1s units (0 to 32767s).

Data types

 Timer instructions

933

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

start X Y R L T C - - - -

T - Y R L - - - - - -

Num* - - - - - - - - - dec. or hex.

SV - - - - SV - - - - dec. or hex.

  It is not possible to use this function in a function block POU.

 For correct results, timer functions and timer function blocks
must be executed exactly one time in each scan. Thus it is not
allowed to use timer function or timer function blocks in
interrupt programs or in loops.

 Every used timer must have a separate constant Num*.
Available Num* addresses depend on system registers 5 and
6.
Timer of type TM_1s, TM_100ms, TM_10ms, TM_1ms use the
same Num* address range.

 The system timer functions (TM_1s, TM_100ms, TM_10ms,
and TM_1s) use the same NUM* address area as the system
timer function blocks (TM_1s_FB, TM_100ms_FB,
TM_10ms_FB, and TM_1s_FB). For the timer function blocks
the compiler automatically assigns a NUM* address to every
timer instance. The addresses are assigned counting
downwards, starting at the highest possible address. In order
to avoid errors (address conflicts), these timer functions and
function blocks should not be used together in a project.

 This function does not require a variable at the output "T".

Please refer to the example of TM_1s_FB (see page 922).

Operands

Example

Timer instructions

934

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F137_STMR Timer 16-bit

Timer operation:

 If the trigger EN of the auxiliary timer instruction (STMR) is in the ON-state, the
constant or value specified by s is transferred to the area specified by d.

 During the timing operation, the time is subtracted from the value in the area
specified by d.

 The output ENO turns ON when the value in the area specified by d becomes 0.

PLC types Availability of F137_STMR (see page 1321)

Variable Data type Function

s 16-bit area or equivalent constant for timer set value

d ANY16 16-bit area for timer elapsed value

The variables s and d have to be of the same data type.

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL dec. or hex.

d - WY WR WL SV EV DT LD FL -

Description The auxiliary timer instruction F137_STMR is a down type timer. The formula of the timer-set time
is 0.01 sec. * set value s (time can be set from 0.01 to 327.67 sec.). If you use the special internal
relay R900D as the timer contact, be sure to program it at the address immediately after the
instruction.

Data types

Operands

Example In this example the function is programmed in ladder diagram (LD).

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

 Timer instructions

935

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F183_DSTM Timer 32-bit

The delay time of the timer can be calculated using the following formula: (Set Value s) * (0.01s) =
on-delay

PLC types Availability of F183_DSTM (see page 1322)

Variable Data type Function

s set value, range 0 to 2147483647

d ANY32 elapsed value, range 0 to 2147483647

For Relay T/C Register Constant

s DWX DWY DWR - DSV DEV DDT - - dec. or hex.

d - DWY DWR - DSV DEV DDT - - -

Description The F183 instruction activates an upward counting 32-bit timer which works on-delayed. The
smallest counting unit is 0.01s. During execution of F183 (start = TRUE), elapsing time is added to
the elapsed value d. The timer output will be enabled when the elapsed value d equals the set
value s. If the start condition start is set to FALSE, execution will be interrupted and the elapsed
value d will be reset to zero. The set value s can be changed during execution of F183.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header

LD

Chapter 30

 Process control instructions

Process control instructions

938

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

30.1 Explanation of the operation of the PID instuctions

+

-

A/D

A/D

D/A
e

F355_PID
(Kp, Ti, Td, Ts)
parameter

Control

input
set

value

(SP)

output

value (MV)

output

quantityanalogue
section

measurement value (PV)

POU body

PID

calculation

The above POU body represents the standard control loop. The control input is determined by the user (e.g.
desired room temperature of 22°C). After the A/D conversion the set point value (SP) is entered as the input
value for the PID processing instruction. The measured process value (PV) (e.g. current room temperature) is
normally transmitted via a sensor and entered as the input value for the PID processor. F355_PID calculates the
standard tolerance e from the set point value and the process value (e = set value - measured value). With the
parameters given (proportional gain Kp, integral time Ti, ...) a new output value (MV) is calculated in increments
set by the sampling time Ts. This result is then applied to the actuator (e.g. a fan that regulates room
temperature) after the D/A conversion. The analog section represents the system’s actuator, e.g. heater and
temperature regulation of a room.

A PID operation consists of three components:

1. Proportional part (P part)

A proportional part generates an output that is proportional to the input. The proportional gain Kp determines by
how much the input value is increased or decreased.
A proportional part can be a simple electric resistor or a linear amplifier, for example.

The P part displays a relatively large maximum overshot, a long settling time and a constant standard
tolerance.

+

-

1

0 t

e

1

0.5

2

Kp=1

Kp=0.5

Kp=2

0 t

MVp

Set value (SP)
Standard

tolerance e

Measurement

signal (PV)

Output (MVp)Proportional

gain (Kp)

2. Integral part (I part)

 Process control instructions

939

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

An integral part produces an output quantity that corresponds to the time integral and input quantity (area of the
input quantity). The integral time thus evaluates the output quantity MVi.
The integral part can be a quantity scale of a tank that is filled by a volume flow, for example. Because of the
slow reaction time of the integral part, it has a larger maximum overshot than the P component, but no constant
standard tolerance.

+

-

Set value (SP)
Standard

tolerance e

Measurement

signal (PV)

Integral

operation
Output (MVi)

0 t

e

0 t

MVi

MVi=1/Ti edt

3. Derivative part (D part)

The derivative part produces an output quantity that corresponds to the time derivation of the input quantity. The
derivative time corresponds to the weighting of the derived input quantity.
A derivative component can be an RC-bleeder (capacitor hooked up in series and resistance in parallel), for
example.

+

-

Set value (SP)

Measurement

signal (PV)

Standard

tolerance e Derivative

operation
Output (MVd)

0 t

e

0 t

MVd

MVd=Td*de/td

4. PID controller

Example: Input quantity e and the output quantity MVi produced.

Example: Input quantity e and the output quantity MVd produced.

Process control instructions

940

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

A PID controller is a combination of a P component, an I component and a D component. When the parameters
Kp, Ti and Td are optimally adjusted, a PID controller can quickly control and maintain a quantity at a
predetermined set value.

+

-

+

+

+

Kp
Set value (SP)

Standard

tolerance e

Measurement signal (PV)

Integral

operation

Derivative

operation

Output (MV)

Reference equations for calculating the controller output MV

The following equations are used to calculate the controller output MV under the following conditions:

In general:
The output value at time period n is calculated from the previous output value (n-1) and the change in the output
value in this time interval.

Reverse operation PI-D Control = 16#X000

Forward operation PI-D Control = 16#X001

 Process control instructions

941

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Reverse operation I-PD Control = 16#X002

Forward operation I-PD Control = 16#X003

PID processing instructions:

- PID_FB_DUT (see page 953)

- PID_FB (see page 951)

- F355_PID_DUT (see page 941)

Process control instructions

942

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F355_PID_DUT PID processing instruction

The function calculates a PID algorithm whose parameters are determined in a data table in the
form of an ARRAY with 30 elements that is entered at input s.

The required data table PID_DUT_31 contains the following parameters (for details, please refer to
the DUT PID_DUT_31 in the online help):

Parameter Data type Function

Control mode

16#X000 Inverse PI-D control

16#X001 Forward PI-D control

16#X002 Inverse I-PD control

16#X003 Forward I-PD control

Control WORD

 Range Unit

SP Set point value 0-10000

PV Process value 0-10000

MV Manipulated value 0-10000

LowerLimit MV lower limit 0-10000

UpperLimit MV upper limit 1-10000

Kp Proportional gain 1-9999 0.1

Ti Integral time 1-30000 0.1s

Td Derivative time 1-10000 0.1s

Ts Sampling time 1-6000 0.01s

AT_Progress

INT

Auto-tuning progress 0-5

Dummies ARRAY
[11..30] OF
WORD

are utilized internally by
the PID controller

PLC types Availability of F355_PID_DUT (see page 1325)

Variable Data type Function

s PID_DUT_31 Detailed explanation of parameters

For Relay T/C Register Constant

s - - WR WL SV EV DT LD FL -

Description The PID processing instruction is used to regulate a process (e.g. a heater) given a measured
value (e.g. temperature) and a predetermined output value (e.g. 20°C).

Data types

Operands

 Process control instructions

943

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the parameter settings are outside the
permissible range

In the initialization of the variable PidParameters of the data type PID_DUT_31, the MV upper limit
is set to 4000. The proportional gain Kp is initially set at 80 (8), Ti and Td at 200 (20s) and the
sampling time Ts at 100 (1s).

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

GVL In the global variable list, you define variables that can be accessed by all POUs in the project.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Process control instructions

944

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Body The standard function MOVE copies the value 16#8000 to the member Control of the DUT
PidParameters when the variable EnableAutoTuning turns from FALSE to TRUE (i.e. activates the
control mode auto-tuning in the function F355_PID_DUT).
The variables Set_Value_SP and Process_Value_PV are assigned to the members SP and PV of
the DUT PidParameters. They receive their values from the A/D converter channel 0 and 1.

Because the F355_PID_DUT function block has an EN output connected directly to the power rail,
the function is carried out when the PLC is in RUN mode. The calculated controller output stored by
the member MV of the DUT PidParameters is assigned to the variable Output_Value_MV. Its value
is returned via a D/A converter from the PLC to the output of the system.

LD

ST When programming with structured text, enter the following:

(* Auto Tuning: *)

if DF(EnableAutoTuning) then

 PidParameters.Control:=16#8000;

end_if;

(* Fill the DUT PidParameters with the corresponding input values: *)

PidParameters.SP:=Set_Value_SP;

PidParameters.PV:=Process_Value_PV;

(* Carry out the PID arithmetic: *)

F355_PID_DUT(PidParameters);

(* Write the manipulated value to the output: *)
Output_Value_MV:=PidParameters.MV;

 Process control instructions

945

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F356_PID_PWM PID processing with optional PWM output

Abbreviations used when describing PID processing

Abbreviation What it stands for Also know as

PV Process value Actual value, measured value

SP Set point value Target value, set value

MV Manipulated value Output value, manipulated
variable

Ts Sampling time Cycle time

Ti Integral time -

Td Derivative time -

Kp Proportional gain -

AT Auto-tuning -

General programming information

1. When the input at Run is executed, the data in the argument
ParametersNonHold is initialized.
If you want a value in the DUT to use non-default values, write the values into the DUT using a MOVE
instruction, for example, which must be triggered continuously by a TRUE condition.

2. F356_PID_PWM must be executed once and only once per scan. Therefore, do
not execute F356_PID_PWM in interrupt programs or loops.

3. Do not turn the execution condition to FALSE during PID processing. Otherwise,
PID processing will be disabled.

4. If you do not want parallel PWM output cycles, e.g. to enable control of multiple
objects, delay the start-up times accordingly, e.g. by employing a timer instruction.

Example:

Description PID processing is performed to keep the process value PV as close as possible to the set point
value SP. In contrast to F355_PID_DUT (see page 941), this instruction enables a PWM output
(on-off output). Auto-tuning is also available to automatically calculate the PID control data Kp, Ti,
and Td.

Process control instructions

946

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

PLC types Availability of F356_PID_PWM (see page 1325)

 The period (cycle) of the PWM output is the sampling time Ts (the frequency of
the PWM output is 1/Ts) and the duty is the manipulated value MV in 0.01% units,
e.g. MV = 10000 means a duty of 100%.

Variable Data type Function

Run BOOL Start condition

Control F356_Control_DUT (see page
948)

Control data

Parameters
Hold

F356_Parameters_Hold_DUT
(see page 948)

PID control parameters

Parameters
NonHold

F356_Parameters_NonHold_DUT
(see page 949)

Manipulated value MV, additional control
mode area, auto-tuning related area and
working area

ProcessValue INT Process value (-30000–30000)

PWM_Output
(see note)

BOOL Pulse-width modulated output (optional,
instead of manipulated value output)

For Relay T/C Register Constant

Control - WY WR WL SV EV DT LD FL -

Parameters WX WY WR WL SV EV DT LD FL -

Process
Values

- WY WR WL SV EV DT LD FL -

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 any parameter of
F356_Parameters_NonHold_DUT is out
of range

R900B %MX0.900.11 permanently  the area specified with UpperLimit or
LowerLimit is out of range

Detailed information:

 Control conditions: F356_Parameters_Hold_DUT (see page 948)

 Set point value SP and the control parameters:
F356_Parameters_NonHold_DUT (see page 949)

 Additional notes on auto-tuning

 The members AT_Progress in F356_Parameters_NonHold_DUT (see page
949) and b1_AT_Complete in F356_Control_DUT (see page 948) are cleared at
the rising edge of the auto-tuning signal.

 When auto-tuning has completed successfully, the element b1_AT_Complete of
F356_Control_DUT (see page 948) is set, and the auto-tuning done code is
stored in the element AT_Progress of F356_Parameters_NonHold_DUT (see
page 949).

 When auto-tuning is aborted, the parameters of Kp, Ti, and Td are not changed.

Data types

Operands

Error flags

 Process control instructions

947

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

When bRunPidControl turns on, the work area specified with the F356_Parameters_NonHold_DUT
(see page 949) will be initialized. However, only the member MV (manipulated value) can be held
depending on the status of the flag b2_HoldMV of F356_Control_DUT (see page 948).

The default control conditions are:

 Cycle time = 1s

 Inverse I-PD control (heating)

 PWM resolution = 1000.

PID control starts from the next scan, and PWM output is executed for PWM_Output.

If the member flag b0_AT_Request of ControlData, a DUT with overlapping elements, is set,
auto-tuning begins. When auto-tuning has completed successfully, the member flag
b1_AT_Complete of ControlData is set and Kp, Ti and Td are set for the PID control. If
bRunPidControl is still on, it will change to PID control automatically and the PWM output will be
executed.

 If the execution condition bRunPidControl has turned to FALSE during PID
control, PWM_Output also turns off. However, only the member MV
(manipulated value) can be held depending on the status of the flag b2_HoldMV
of F356_Control_DUT (see page 948).

Example In this example, the same POU header is used for all programming languages.

GVL In the global variable list, all values of global inputs and outputs are declared that are used for
programming this function.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body Specify the member SP (set point value) of F356_Parameters_Hold_DUT (see page 948) before
operation.

LD

Process control instructions

948

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F356_Control_DUT
This data type, a DUT with overlapping elements (see page 53), is predefined in the FP Library and is used by
the function F356_PID_PWM (see page 945).

We recommend specifying the non-hold type area.

Identifier Description

w0 Since this is a DUT with overlapping elements, the BOOL members occupy the same
data areas as the WORD member w0. Therefore by using w0 you can
simultaneously access all bits.

b0_AT_Request

(bit 0)

When set, auto- tuning is requested. This bit is reset with the instruction
F356_PID_PWM when auto-tuning is complete. Reset this bit to cancel auto-tuning.
When not set, PID control will be executed.

b1_AT_Complete

(bit 1)

When set, auto-tuning has been completed successfully.

b2_HoldMV

(bit 2)

When set, the manipulated value output is held by switching F356_PID_PWM (see
page 945) from off to on.

b3_UseAnalogOutpu
tControl

(bit 3)

FALSE to use PWM control.

TRUE to use an analog output unit for output. In this case transmit the output value
(F356_Parameters_NonHold_DUT.MV) to WY of an analog output unit.

b4_UseReducedInter
nalOutputRange

(bit 4)

When FALSE, the maximum value of the internal output is the output upper limit
value +20% of the output range (output upper limit value - output lower limit value),
and the minimum value is the output lower limit value -20% of the output range.

When TRUE, the maximum value of the internal output is the output upper limit value,
and the minimum value is the output lower limit value.

The output upper limit value is specified by
F356_Parameters_NonHold_DUT.UpperLimit, and the output lower limit value is
specified by F356_Parameters_NonHold_DUT.LowerLimit.

Bits 5–F Are reserved and normally 0.

ST When programming with structured text, enter the following:

(* Auto Tuning: *)

if DF(bStartAutoTuning) then

 ControlData.b0_AT_Request:=TRUE;

end_if;

y_bPwmOutput:=F356_PID_PWM(Run := bRunPidControl,

 Control := ControlData,

 ParametersHold := ParametersHold,

 ParametersNonHold := ParametersNonHold,

 ProcessValue := x_iTemperatureInput);

 Process control instructions

949

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F356_Parameters_Hold_DUT
This data type is predefined in the FP Library and is used by the function F356_PID_PWM (see page 945).

This DUT specifies the control parameter (4 words). We recommend allocating the area used by this data type
to the hold-type operation memory.

Variable Comment Setting range

SP Set point value -30000–30000

Kp Stores the proportional gain Kp. After auto-tuning
has been completed, it is automatically set.

1–9999 (0.1–999.9)

Ti Stores the integral time Ti. This value is
automatically set after auto-tuning has been
completed.

0–30000 (0-3000s)

Td Stores the derivative time Td. This value is
automatically set after auto-tuning has been
completed.

0–10000 (0–1000s)

If the parameters Kp, Ti, and Td are all 0 when PID operation has started, they are initialized at 1, 1, and 0,
respectively, and operation continues.

If any of the parameters Kp, Ti, or Td is out of range when auto-tuning has started, they are initialized at 1, 1,
and 0, respectively, and auto-tuning continues.

F356_Parameters_NonHold_DUT
This data type is predefined in the FP Library and is used by the function F356_PID_PWM (see page 945).

This DUT specifies the manipulated value (MV) and the control parameters (4 words).

Variable Comment Default
value

Setting range

MV Stores the manipulated value (output
value)

0 -10000–10000

LowerLimit Sets the lower limit of the manipulated
value MV

0 min. -10000

UpperLimit Sets the upper limit of the manipulated
value MV

10000 max. 10000

PV_Band_WithFullOutput No PID control is performed and the
output is at 100% until the defined level
(0–80%) of the set point value has
been reached.

0 0–80%

Process control instructions

950

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Ts Sets the sampling time for updating the
measured input values.

Unit = 0.01s

Also sets the PWM output period.

100 (1s) 1–3000 (0.01–30s)

0 Inverse PI-D control, e.g. heating

1 Forward PI-D control, e.g.
cooling

2 Inverse I-PD control, e.g. heating

ControlMode

3 Forward I-PD control, e.g.
cooling

0 0–3

AT_Bias Sets a bias value for performing
auto-tuning

0 min. 0

AT_Correction_Kp Sets the correction value of the
auto-tuning result for Kp

125% 50–500%

AT_Correction_Ti Sets the correction value of the
auto-tuning result for Ti

200% 50–500%

AT_Correction_Td Sets the correction value of the
auto-tuning result for Td

100% 50–500%

AT_Progress Stores the auto-tuning progress 0 0–5

WorkingArea Working area of up to 30 words for PID
processing and auto-tuning

0

When the execution condition has turned on, the operation work area is initialized.

 � NOTE

When the execution condition turns to TRUE, the default value is set. The manipulated value MV
is only output in the range of the specified upper and lower limit.

Detailed information on the setting method:

PV_Band_WithFullOutput

Define the percentage of the set point value at which PID control should start. Below this level, output is at
100%.

For example, if PV_Band_WithFullOutput is set to 80% and the measured value (process value PV) is only at
50% of the set value, the output will be at 100%. It will remain at 100% until the measured value reaches 80% of
the set value, at which point PID control will start.

The amount of the percentage determines how quickly the set value will be reached.

Fine adjustment of auto-tuning

When auto-tuning has completed, the parameters for Kp, Ti and Td are stored in the elements of
F356_Parameters_Hold_DUT (see page 948). For fine adjustment, you can now correct the result of
auto-tuning with the parameters AT_Correction_Kp, AT_Correction_Ti and AT_Correction_Td.

 � EXAMPLE

Set AT_Correction_Kp to 200 (i.e. 200%): perform auto-tuning to correct Kp to double its value.

Set AT_Correction_Ti to 125 (i.e. 125%): perform auto-tuning to correct Ti to 1.25 times its value.

Set AT_Correction_Td to 75 (i.e. 75%): perform auto-tuning to correct Td to 0.75 times its value.

 Process control instructions

951

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Auto-tuning bias value

If a bias value has been set, auto-tuning will be performed with a temporary set point value SP’.

In reverse operation, SP' is the difference of the set point value SP and the auto-tuning bias value. The
auto-tuning bias value can be used to control excessive temperature rise during auto-tuning.

In forward operation, SP' is the sum of the set point value SP and the auto-tuning bias value.

(SP’)

(SP’)

Set value

(SP)

Temperature

Auto-tuning bias value

Auto-tuning in

reverse operation

Auto-tuning in

forward operation

Temperature

Set value

(SP)

Auto-tuning bias value

During auto-tuning

During auto-tuning

PID control

PID control

Time

Time

KP, TI and TD calculation

KP, TI and TD calculation

 � NOTE

Auto-tuning is peformed with SP’ even if the measured process value is close to the set point
value SP when auto-tuning starts.

Process control instructions

952

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

PID_FB PID processing instruction

Input variables (VAR_INPUT):

Variable Data type Function

Automatic FALSE: Manual setting of MV possible

TRUE: Automatic PID controlled MV

Forward FALSE: Inverse control (heating)

TRUE: Forward control (cooling)

I_PD

BOOL

FALSE: PI-D control

TRUE: I-PD control

SP Set point value, range 0-10000

PV Process value, range 0-10000

Kp Proportional gain, range: 1-9999, unit: 0.1

Ti Integral time, range: 1-30000, unit: 0.1s

Td Derivative time, range: 1-10000, unit: 0.1s

Ts Sampling time, range: 1-6000, unit: 0.01s

LowerLimit MV lower limit, range: 0-10000

UpperLimit

INT

MV upper limit, range: 1-10000

Input/output variable (VAR_IN_OUT):

MV Manipulated value

  Auto-tuning is not possible using PID_FB. For this, use PID_FB_DUT (see
page 953).

 The value for MV can be assigned externally either when the program is
initialized or when the value of Automatic is FALSE.

 In order to achieve maximum resolution and minimum dead time beyond
LowerLimit and UpperLimit, their values should, if possible, cover the
entire range of 0–10000.

Description This implementation allows you to set the parameters of F355_PID directly using arguments:

Data types

 Process control instructions

953

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

GVL In the global variable list all global input and output values are declared that are used to program
the function. The addresses are depending on the respective PLC-Type.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

PID_Control(Automatic:= TRUE,

 Forward:= FALSE,

 I_PD:= FALSE,

 SP:= Set_Value_SP,

 PV:= Process_Value_PV,

 Kp:= 15,

 Ti:= 200,

 Td:= 1,

 Ts:= 10,

 LowerLimit:= 0,

 UpperLimit:= 1000,

 MV:= Output_Value_MV);

Process control instructions

954

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

PID_FB_DUT PID processing instruction

This structure defined in System Libraries / FP Library / DUTs contains the following parameters
(for details, please refer to the DUT PID_DUT):

Input variables (VAR_INPUT):

Variable Data type Function

Automatic BOOL FALSE: Manual setting of MV possible

TRUE: Automatic PID controlled MV

Input/Output variable (VAR_IN_OUT):

PidDut PID_DUT

  You may not enter the DUT PID_DUT a second time under DUTs of the
current project.

 The value for MV can be assigned externally either when the program is
initialized or when the value of Automatic is FALSE.

 In order to achieve maximum resolution and minimum dead time beyond
LowerLimit and UpperLimit, these values should, if possible, cover the
entire range of 0–10000.

Description This implementation allows you to access the F355_PID instruction via the structure PID_DUT.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

GVL In the global variable list all global input and output values are declared that are used to program
the function. The addresses are depending on the respective PLC-Type.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Process control instructions

955

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Output_Value_MV := PID_Parameter.MV;

LD

ST When programming with structured text, enter the following:

PID_Parameter.SP := Set_Value_SP;

PID_Parameter.PV := Process_Value_PV;

PID_Control(Automatic:= TRUE,

 PidDut:= PID_Parameter);

Process control instructions

956

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

SCALE_INT Scales INTEGER data

See also:

 F282_SCAL (see page 468)

 F283_DSCAL (see page 471)

PLC types see page 1330

Variable Data type Function

iInput Input signal

iInputLowerLimit Lower limit of the input range

iInputUpperLimit Upper limit of the input range

iOutputLowerLimit Output value assigned to the lower limit of the input range (can
be higher than iOutputUpperLimit)

iOutputUpperLimit Output value assigned to the upper limit of the input range (can
be lower than iOutputLowerLimit)

Output variable

INT

Scaled output signal

Description This instruction scales an INTEGER value between a lower and an upper limit to an INTEGER
output value. Use WITHIN_LIMITS (see page 111) to check if the input value is within the specified
limits.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

 Process control instructions

957

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST When programming with structured text, enter the following:

if (bScale) then

 SCALE_INT(iInput := iInput,

 iInputLowerLimit := 50,

 iInputUpperLimit := 1000,

 iOutputLowerLimit := 40,

 iOutputUpperLimit := 2000,

 iOutput => iOutput);

end_if;

Process control instructions

958

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

SCALE_INT_UINT Scale INTEGER data into unsigned INTEGER data

See also:

 F282_SCAL (see page 468)

 F283_DSCAL (see page 471)

PLC types see page 1330

Variable Data type Function

iInput Input signal

iInputLowerLimit Lower limit of the input range

iInputUpperLimit

INT

Upper limit of the input range

uiOutputLowerLimit Output value assigned to the upper limit of the input range (can
be lower than uiOutputLowerLimit)

uiOutputUpperLimit Output value assigned to the lower limit of the input range (can
be higher than uiOutputUpperLimit)

Output variable

UINT

Scaled output signal

Description This instruction scales an INTEGER value between a lower and an upper limit to an unsigned
INTEGER output value. Use WITHIN_LIMITS (see page 111) to check if the input value is within
the specified limits.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

 Process control instructions

959

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST When programming with structured text, enter the following:

if (bScale) then

 SCALE_INT_UINT(iInput := iInput,

 iInputLowerLimit := -50,

 iInputUpperLimit := 1000,

 uiOutputLowerLimit := 0,

 uiOutputUpperLimit := 2000,

 uiOutput => uiOutput);

end_if;

Process control instructions

960

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

SCALE_REAL Scale REAL data

See also:

 F354_FSCAL (see page 478)

PLC types see page 1330

Variable Data type Function

rInput Input signal

rInputLowerLimit Lower limit of the input range

rInputUpperLimit Upper limit of the input range

rOutputLowerLimit Output value assigned to the upper limit of the input range (can
be lower than rOutputLowerLimit)

rOutputUpperLimit Output value assigned to the lower limit of the input range (can
be higher than rOutputUpperLimit)

Output variable

REAL

Scaled output signal

Description This instruction scales a REAL value between a lower and an upper limit to a REAL output value.
Use WITHIN_LIMITS (see page 111) to check if the input value is within the specified limits.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

 Process control instructions

961

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST When programming with structured text, enter the following:

if (bScale) then

 SCALE_REAL(rInput := rInput,

 rInputLowerLimit := 245.25,

 rInputUpperLimit := 123456.56,

 rOutputLowerLimit := 147.25,

 rOutputUpperLimit := 258369.25,

 rOutput => rOutput);

end_if;

Process control instructions

962

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

SCALE_UINT Scale UINT data

See also:

 F282_SCAL (see page 468)

 F283_DSCAL (see page 471)

PLC types see page 1330

Variable Data type Function

uiInput Input signal

uiInputLowerLimit Lower limit of the input range

uiInputUpperLimit Upper limit of the input range

uiOutputLowerLimit Output value assigned to the lower limit of the input range (can
be higher than uiOutputUpperLimit)

uiOutputUpperLimit Output value assigned to the upper limit of the input range (can
be lower than uiOutputLowerLimit)

Output variable

UINT

Scaled output signal

Description This instruction scales an unsigned INTEGER value between a lower and an upper limit to an
unsigned INTEGER output value. Use WITHIN_LIMITS (see page 111) to check if the input value
is within the specified limits.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

 Process control instructions

963

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST When programming with structured text, enter the following:

if (bScale) then

 SCALE_UINT(uiInput := uiInput,

 uiInputLowerLimit := 123,

 uiInputUpperLimit := 45678,

 uiOutputLowerLimit := 321,

 uiOutputUpperLimit := 65535,

 uiOutput => uiOutput);

end_if;

Process control instructions

964

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

SCALE_UINT_INT Scales UINT input data to INT output data

PLC types see page 1330

Variable Data type Function

uiInput Input signal

uiInputLowerLimit Lower limit of the input range

uiInputUpperLimit

UINT

Upper limit of the input range

iOutputLowerLimit Output value assigned to the upper limit of the input range (can
be lower than iOutputLowerLimit)

iOutputUpperLimit Output value assigned to the lower limit of the input range (can
be higher than iOutputUpperLimit)

Output variable

INT

Scaled output signal

Description This instruction scales an unsigned INTEGER value between a lower and an upper limit to an
INTEGER output value. Use WITHIN_LIMITS (see page 111) to check if the input value is within
the specified limits.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

if (bScale) then

 SCALE_UINT_INT(uiInput := uiInput,

 uiInputLowerLimit := 123,

 uiInputUpperLimit := 45678,

 iOutputLowerLimit := -123,

 iOutputUpperLimit := 25836,

 iOutput => iOutput);

end_if;

 Process control instructions

965

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Process control instructions

966

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

SmoothSignal_INT Smooth INT signals

PLC types see page 1330

Input variable Data type Function

iIn INT Input signal

tT1 TIME Time constant of the 1st order low-pass filter

Input/output variable

dutMemory dutMemory Instance-dependent data memory structure, which serves as the internal
memory of the function. As with the instance name of a function block, it
may be neither initialized nor written in the body!

Output variable

iOut INT Output signal

Description This instructions uses a 1st order delay time tT1 to smooth the INTEGER input value at iIN.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

SmoothSignal_INT(iIn := iIn,

 tT1 := t#2s,

 dutMemory := Memory_DUT,

 iOut => iOut);

 Process control instructions

967

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

SmoothSignal_REAL Smooth REAL signals

PLC types see page 1331

Input variable Data type Function

rIn REAL Input signal

tT1 TIME Time constant of the 1st order low-pass filter

Input/output variable

dutMemory dutMemory Instance-dependent data memory structure, which serves as the
internal memory of the function. As with the instance name of a
function block, it may be neither initialized nor written in the body!

Output variable

rOut REAL Output signal

Description This instructions uses a 1st order delay time tT1 to smooth the REAL input value at iIN.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

SmoothSignal_REAL(rIn := rIn,

 tT1 := t#2s,

 dutMemory := Memory_DUT,

 rOut => rOut);

Process control instructions

968

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

SmoothSignal_UINT Smooth UINT signals

PLC types see page 1331

Input variable Data type Function

uiIn UINT Input signal

tT1 TIME Time constant of the 1st order low-pass filter

Input/output variable

dutMemory dutMemory Instance-dependent data memory structure, which serves as the internal
memory of the function. As with the instance name of a function block, it may
be neither initialized nor written in the body!

Output variable

uiOut UINT Output signal

Description This instructions uses a 1st order delay time tT1 to smooth the unsigned INTEGER input value at
iIN.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

SmoothSignal_UINT(uiIn := uiIn,

 tT1 := t#2s,

 dutMemory := Memory_DUT,

 uiOut => uiOut);

Chapter 31

 FP-e display instructions

FP-e display instructions

970

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F180_SCR Screen display instruction

PLC types Availability of F180_SCR (see page 1335)

Variable Data type Function

s1 ANY16 Specifies "s1" registration screen

s2 ARRAY [0..2] OF
INT, WORD

Specifies the head of the screen display control data (3
words).

s3 Specifies the data displayed in the upper section.

s4
ANY16

Specifies the data displayed in the lower section.

For Relay T/C Register Constant

s1 WX WY WR - SV EV DT IX IY dec. or hex.

s2 WX WY WR - SV EV DT IX IY

s3 WX WY WR - SV EV DT - -

s4 - WY WR - SV EV DT IX IY -

No. IEC address Set If

R9007

R9008

%MX0.900.7

%MX0.900.8

permanently

for an instant

 the area specified using the Index modifier
exceeds the limit.

 the value for "s1" or "s2" is outside of the
range specified.

  Special register "DT9***" cannot be specified for the lower section
display data "s4."

 This instruction cannot be used in an interrupt program.

Detailed information, please refer to the online help:

Examples of control register

ASCII code and its display

7-segment data and its display

Description This instruction sets up the screen display in the normal mode (N) and switch mode (S) of the FP-e
unit.

Data types

Operands

Error flags

 FP-e display instructions

971

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F180_SCR_DUT Configuring the Display of the FP-e

Using a convenient dialog, the control code for the screen display is configured.

 1.
2.
3.

Procedure

1. Assigning a DUT

2. Select F180_DUT in the header of the declaration under "Type"

3. Click in the “Initial” field

The configuration dialog opens.

4. Make desired settings

5. [OK]

PLC types Availability of F180_SCR_DUT (see page 1322)

Variable Data type Function

ScreenSelection ANY16 Display mode

ScreenControl F180_DUT Data unit type for the control data of the screen
display.

DataUpperSection Value in the upper display area

DataLowerSection
ANY16

Value in the lower display area

For Relays T/C Registers Constant

Screen
Selection

WX WY WR - SV EV DT IX IY dec. or hex.

Screen
Control

- - - - - - - - - -

DataUpper
Section

WX WY WR - SV EV DT IX IY -

DataLower
Section

- WY WR - SV EV DT IX IY -

Description This instruction allows you to configure the screen display of the FP-e for N mode (normal mode)
and S mode (switch mode).

Data types

Operands

FP-e display instructions

972

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC Address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 temporarily

 when the area defined by index modifiers
is greater than the area allowed

 the value for s1 or s2 is invalid

  You cannot enter the special data register “DT9***” for the lower
display area.

 You cannot use this instruction in an interrupt program.

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

GVL In the global variable list, you define variables that can be accessed by all POUs in the project.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable Enable0 is set to TRUE, the function is executed and the FP-e is switched to N
mode, 1st screen. ProcessValue0 and SetValue0 are displayed in the upper and lower sections in
red and orange. When the variable Enable1 is set to TRUE, the function is executed and the FP-e
is switched to N mode, 2nd screen. ProcessValue1 and SetValue1 are displayed in the upper and
lower sections in red and green. The monitor value icon is activated for both LD bodies. Use the
instruction F181_DSP (see page 974) to change the display of the FP-e.

 FP-e display instructions

973

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

DisplayMode0 DisplayMode1
DisplayControlData0

DisplayControlData1

For detailed information please refer to the technical manual of the FP-e
(file ARCT1F369E.PDF on your installation CD of Control FPWIN Pro).

LD

FP-e display instructions

974

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST When programming with structured text, enter the following:

IF DF (Enable0) THEN

 F180_SCR_DUT(ScreenSelection:=DisplayMode0,

 ScreenControl:=DisplayCtrlData0,

 DataUpperSection:=ElapsedValue0,

 DataLowerSection:=SetValue0);

 F181_DSP (DisplayMode0);

END_IF;

IF DF (Enable1) THEN

 F180_SCR_DUT(ScreenSelection:=DisplayMode1,

 ScreenControl:=DisplayCtrlData1,

 DataUpperSection:=ElapsedValue1,

 DataLowerSection:=SetValue1);

 F181_DSP (DisplayMode1);

END_IF;

 FP-e display instructions

975

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F181_DSP Screen change instruction

PLC types Availability of F181_DSP (see page 1322)

Variable Data type Function

s1 ANY16 Display mode and No. (0 to 7 can be specified).

For Relay T/C Register Constant

s1 WX WY WR - SV EV DT IX IY dec. or hex.

Specifying "s1" registration display

Values for "s1" Display type

0 N mode 1st screen

1 N mode 2nd screen

2 S mode 1 st screen

3 S mode 2nd screen

4 R mode 1st screen

5 R mode 2nd screen

6 I mode 1st screen

7 I mode 2nd screen

(N=normal mode, S=switch mode, R=register mode, I=I/O monitor mode).

No. IEC address Set If

R9007

R9008

%MX0.900.7

%MX0.900.8

permanently

for an instant

 the area specified using the Index modifier
exceeds the limit.

 the value "s1" is not "0" to "7".

  If a value other than "0" to "7" is specified for "s1", an operation
error will occur.

 This instruction cannot be used during an interrupt program.

Description The FP-e display mode is changed to the one specified using s1.

Data types

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

FP-e display instructions

976

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body According to the variable Enable0 to Enable7 that is set to TRUE, the function is executed and the
FP-e is switched to the corresponding mode and the corresponding screen. (N=normal mode,
S=switch mode, R=register mode, I=I/O monitor mode).

LD

 FP-e display instructions

977

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST When programming with structured text, enter the following:

IF DF(bEnable0) THEN

 (* N mode, 1st screen *)

 F181_DSP(s1:=0);

END_IF;

IF DF(bEnable1) THEN

 (* N mode, 2nd screen *)

 F181_DSP(s1:=1);

END_IF;

IF DF(bEnable2) THEN

 (* S mode, 1st screen *)

 F181_DSP(s1:=2);

END_IF;

IF DF(bEnable3) THEN

 (* S mode, 2nd screen *)

 F181_DSP(s1:=3);

END_IF;

IF DF(bEnable4) THEN

 (* R mode, 1st screen *)

 F181_DSP(s1:=4);

END_IF;

IF DF(bEnable5) THEN

 (* R mode, 2nd screen *)

 F181_DSP(s1:=5);

END_IF;

IF DF(bEnable6) THEN

 (* I mode, 1st screen *)

 F181_DSP(s1:=6);

END_IF;

IF DF(bEnable7) THEN

 (* I mode, 2nd screen *)

 F181_DSP(s1:=7);

END_IF;

Chapter 32

 System register instructions

System register instructions

980

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

SYS1 Change PLC system setting

 Communication condition setting (see page 980)

 Password setting (see page 984)

 Interrupt setting (see page 986)

 PLC link time setting (see page 988)

 Change high-speed counter operation mode (see page 989)

 RS485 response time control (see page 991)

PLC types Availability of SYS1 (see page 1331)

Communication condition setting for the COM ports of the CPU

This changes the communication conditions for the COM port or Tool port based on the contents
specified by the character constant.

The communication conditions for the port specified by the first keyword are changed to the
contents specified by the second keyword. The first and second keywords are separated by a
comma.

Contents that can be changed include the following:

1. Communication format

2. Baud rate

3. Unit No.

4. Header and Terminator

5. RS (Request to Send) control

Description

The description for SYS1 is divided into the following sections:

 System register instructions

981

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Port used

TOOL, B7PNS1

TOOL: Tool port

COM1: COM1 port

COM2: COM2 port

Character bit

Parity

Stop bit

B8: 8bits

PN: None PO: Odd PE: Even

S1: 1

B7: 7bits

S2: 2

2. Baud rate (Shared by the Tool, COM 1 and COM 2 ports)

Baud rate

TOOL: Tool port

COM1: COM1 port

COM2: COM2 port

TOOL, 19200

Port used

2400: 2,400 bps

9600: 9,600 bps

38400: 38,400 bps

115200: 115,200 bps

4800: 4,800 bps

19200: 19,200 bps

57600: 57,600 bps

Lower baud rates of 300, 600, and 1200bit/s can be specified for FP-X V2.0 or later and FP V3.1
or later. These baud rates cannot be set in the system registers.

3. Unit No. (Shared by the Tool, COM 1 and COM 2 ports)

TOOL, No 1

Port used
TOOL: Tool port

COM1: COM1 port

COM2: COM2 port

Unit No.

No 1 to No99: No. 1 to No. 99

With the FP0R, use the keywords 'COM1No' and 'TOOLNo' to read the unit number from a data
register (DT0–DT9999) containing the unit number 1–99. The data register has to be specified with
exactly five characters: For example, D0815 indicates DT815. Leading zeros must be entered. The
keyword is case sensitive, hence COM1NO, Com1No or … d0815 would be invalid.

Keyword
setting

1. Communication format (Shared by the Tool, COM 1 and COM 2 ports)

System register instructions

982

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example:

SYS1 'COM1No,D9999' indicates DT9999

SYS1 'COM1No,D0000' indicates DT0

A calculation error occurs if any value except 1–99 is assigned to the DT memory.

4. Header and Terminator (Shared by the COM 1 and COM 2 ports)

Port used
COM1: COM1 port

COM2: COM2 port

Header

Terminator

STX

STX: STX
NOSTX: no STX

ETX: ETX

CR: CR

CRLF: CR + LF

NOTERM: None

COM1 ,

 System register instructions

983

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

5. RS (Request to Send) control (COM 1 port only)

COM1 , RTS 1

Port used

RS control for the 1-channel RS232C type
communication cassette

RTS0: Enables communication

 (Sets the RS terminal to “off”)

COM1: COM1 port

RTS1: Disables communication

 (Sets the RS terminal to “on”)

Precautions during programming

 Executing this instruction does not rewrite the contents of the system ROM in the
control unit. As a result, turning the power supply off and then on again rewrites
the contents of the system registers specified by the tool software.

 We recommend using differential execution with this instruction.

 Because the system register settings are changed, a verification error may occur
in some cases if verification is carried out with the tools.

 Separate first and second keywords with a comma "," and do not use spaces.

System register instructions

984

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R9007

R9008

%MX0.900.7

%MX0.900.8

permanently

for an instant

 any character other than a keyword is
specified

 no comma is between the first and second
keywords

 small letters of the alphabet are used to
specify the keyword (except for numbers
used to specify unit no.)

 no communication cassette has been
installed when COM1 or COM2 has been set

 the setting of the unit no. setting switch is
anything other than 0 when COM1 or COM2
has been set and the unit no. is being
changed

 the unit no. set using this instruction is
anything other than a value between 1 and 99

 the baud rate or transmission format for
COM1 has been changed when the PLC link
mode is specified for COM1

 the baud rate or transmission format is
changed while the Tool port, COM port 1, or
COM port 2 is being initialized using MODEM

 the communication mode is set to anything
other than the general communication mode
when header and terminator have been set

 any communication cassette other than the
1-channel RS232C type communication
cassette is installed when using RS control

 the specified unit no. is larger than the largest
unit no. specified by the system register when
the COM 1 port is in the PLC link mode

In this example the function SYS1 is programmed in ladder diagram (LD).

 The values entered at s* will be right aligned automatically by the compiler.

Error flags

Example

POU header The same POU header is used for all programming languages.

Body When CommSettings turns on, the transmission format and baud rate for the COM1 port are set
as follows: Character bit: 8, Parity: Odd; Stop bit: 1; Baud rate: 19,200 bps.

LD

 System register instructions

985

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

This changes the password specified by the controller, based on the contents specified by the
character constant.

This changes the password specified by the controller to the contents specified by the second
keyword. The first and second keywords are separated by a comma.

Keyword setting for 4-digit hexadecimal password

PASS,ABCD

PASS:

Password (example: To set the password to “ABCD”)

Fixed

Keyword setting for 8-digit alphanumeric password

Enter for example 'PAS,FP-X v 3'. Spaces at the end of the password are not significant.

PAS,FP-X v 3

PAS: Fixed

Password (example: To set the password to “FP-X v 3”)

Precautions during programming

 When this instruction is executed, writing to the internal F-ROM takes
approximately 100ms.

 If the specified password is the same as the password that has already been
written, the password is not written to the F-ROM.

 We recommend using differential execution with this instruction.

 Separate first and second keywords with a comma "," and do not use spaces.

No. IEC address Set If

R9007

R9008

%MX0.900.7

%MX0.900.8

permanently

for an instant

 any character other than a keyword is
specified

 no comma is between the first and second
keywords

 small letters of the alphabet are used to
specify the keyword

 the data specified for the password setting is
any character other than 0 to 9 or A to F, or
the specified data consists of other than four
digits.

Password
Setting

Error flags

Example In this example the function SYS1 is programmed in ladder diagram (LD).

POU header In the POU header, all input and output variables are declared that are used for programming this
function.

System register instructions

986

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 The values entered at s* will be right aligned automatically by the compiler.

This sets the interrupt input based on the contents specified by the character constant.

This sets the input specified by the first keyword as the interrupt input, and changes the input
conditions to the contents specified by the second keyword. The first and second keywords are
separated by a comma.

Keyword setting

INT2, UP

Effective edges

Interrupt Input

INT0: X0

INT2: X2

INT4: X4

INT6: X6

UP: Rising edge

DOWN: Falling edge

Both: Rising and falling edged

INT1: X1

INT3: X3

INT5: X5

INT7: X7

For the FP-X you can set INT0 to INT13.

Body When ChangePassword turns on, the controller password is changed to "ABCD".

LD

Interrupt
Setting

 System register instructions

987

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Precautions during programming

 Executing this instruction does not rewrite the contents of the system ROM in the
control unit. As a result, turning the power supply off and then on again rewrites
the contents of the system registers specified by the tool software.

 We recommend using differential execution with this instruction.

 When UP or DOWN has been specified, the contents of the system registers
change in accordance with the specification, so a verification error may occur in
some cases, when the program is verified. When BOTH has been specified, the
contents of the system registers do not change.

 Separate first and second keywords with a comma "," and do not use spaces.

No. IEC address Set If

R9007

R9008

%MX0.900.7

%MX0.900.8

permanently

for an instant

 any character other than a keyword is
specified

 no comma is between the first and second
keywords

 small letters of the alphabet are used to
specify the keyword

In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

 The values entered at s* will be right aligned automatically by the compiler.

Error flags

Example

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When InterruptX1 turns on, the input condition of interrupt input X1 is changed to "Rising Edge".

LD

ST When programming with structured text, enter the following:

if (DF(InterruptX1)) then

 SYS1('INT1, UP');

end_if;

System register instructions

988

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

This sets the system setting time when a PLC link is used, based on the contents specified by the
character constant.

The conditions specified by the first keyword are set as the time specified by the second keyword.
The first and second keywords are separated by a comma.

The setting for the link entry waiting time is set if the transmission cycle time is shortened when
there are stations that have not joined the link. (Stations that have not joined the link: Stations that
have not been connected between the first station and the station with the largest number, or
stations for which the power supply has not been turned on.)

The error detection time setting for the transmission assurance relay is set if the time between the
power supply being turned off at one station and the transmission assurance relay being turned off
at a different station is to be shortened.

Keyword setting

1. Link entry wait time

PCLK1T0, 100

PCLK1T0:

Specified range:

Fixed

10 to 400 (10 ms to 400 ms)

2. Error detection time for transmission assurance relay

PCLK1T1:

PCLK1T1, 100

Specified range: 100 to 6400 (100 ms to 6400 ms)

Fixed

Precautions during programming

 The program should be placed at the beginning of all PLCs being linked, and the
same values specified.

 This instruction should be specified in order to set special internal relay R9014 as
the differential execution condition.

 The setting contents of the system registers are not affected by this instruction
being executed.

 Separate first and second keywords with a comma "," and do not use spaces.

Precautions when setting the link entry wait time

 This should be specified such that the value is at least twice that of the largest
scan time of all the PLCs that are linked.

 If a short value has been specified, there may be some PLCs that are not able to
join the link even though the power supply for that PLC has been turned on.

 If there are any stations that have not joined the link, the setting should not be
changed, even if the link transmission cycle time is longer as a result. (The

PLC Link
Time Setting

 System register instructions

989

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

default value is 400 ms.)

Precautions when setting the error detection time for the transmission assurance relay

 This should be specified such that the value is at least twice that of the largest
transmission cycle time of all the PLCs that are linked.

 If a short value has been specified, there is a possibility that the transmission
assurance relay will malfunction.

 The setting should not be changed, even if the detection time for the
transmission assurance relay is longer than the result. (The default value is
6400ms.)

No. IEC address Set If

R9007

R9008

%MX0.900.7

%MX0.900.8

permanently

for an instant

 any character other than a keyword is
specified

 no comma is between the first and second
keywords

 small letters of the alphabet are used to
specify the keyword

 the specified value is outside the specified
range

Link entry wait time: 100ms

Error detection time for transmission assurance relay: 100ms.

 The values entered at s* will be right aligned automatically by the compiler.

This changes the operation mode of the high-speed counter based on the contents specified by the
character constant.

Error flags

Example Below is an example of a ladder diagram (LD) body for the instruction. Because FP addresses and
strings are entered directly instead of using variables, no POU header is required.

Body When R9014 turns on when a PLC link is being used, the link entry wait time and the error
detection times for transmission assurance relay are set as follows:

LD

Change
high-speed
counter
operation
mode

System register instructions

990

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Keyword setting

SYS1 HSC1,UP

High-speed counter setting

HSCn n: 0 to 9, A, B with FP-X C14R, C30/60R
n: 0 to 7 with FP-X C14T, C30/60T
n: 0, 1, 2, 3 with FPΣ

UP: Addition input setting

DOWN: Subtraction input setting

Precautions during programming

 If the corresponding HSC system register is set to Unused, an operation error
occurs. Set the system register to Incremental input or Decremental input in
advance.

 Executing this instruction does not rewrite the contents of the system ROM in the
control unit. As a result, turning the power supply off and then on again rewrites
the contents of the system registers specified by the software tool.

 We recommend to execute this instruction only once, e.g. in dependency of a
rising or falling edge of an execution condition.

 When UP or DOWN has been specified, the contents of the system registers
change in accordance with the specification, so a verification error may occur in
some cases when checking or compiling the program. When BOTH have been
specified, the contents of the system registers do not change. Separate the first
and the second keyword with a comma "," e.g. HSCB,UP; do not use spaces.
Otherwise an operation error will occur.

No. IEC address Set If

R9007

R9008

%MX0.900.7

%MX0.900.8

permanently

for an instant

 any character other than a keyword is
specified

 no comma is between the first and second
keyword

 the letters used to specify the keyword are
not capitalized

 the HSC system register is set to items other
than the addition input or subtraction input

When bCountUp is set to TRUE, the function is carried out. The system register for the specified
channel is set to count up. When bCountDown is set to TRUE, the specified channel is set to
count down.

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header

Body

 System register instructions

991

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

IF DF(bCountUp) Then

 SYS1('HSC0,UP');

 SYS1('HSCB,UP');

End_If;

IF DF(bCountDown) Then

 SYS1('HSC0,DOWN');

 SYS1('HSC7,DOWN');

This changes the communication conditions based on the RS485 of the COM port or Tool port, in
response to the contents specified by the character constant.

The port response time specified by the first keyword is delayed based on the contents specified by
the second keyword. This instruction is used to delay the response time on the PLC side until the
state is reached in which commands can be sent by an external device and responses can be
received from the PLC.

The first and second keywords are separated by a comma.

LD

ST When programming with structured text, enter the following:

End_If;

RS485
Response
Time Control

System register instructions

992

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Commercial

RS232C/RS485 converter

Response

External

device (PC)

Command

FPΣ FPΣ FPΣ

Keyword setting

TOOL, WAITn

Port used

Response time

TOOL: Tool port

WAIT0 to WAIT999: (n: 0 to 999)

COM2: COM 2 port

COM1: COM 1 port

If the communication mode has been set to the computer link mode, the set time is the scan time x
n (n: 0 to 999).

If the communication mode has been set to the PLC link mode, the set time is n s (n: 0 to 999).

If n = 0, the delay time set by this instruction will be set to "None".

Precautions during programming

 This instruction is valid only if the setting on the controller side has been set to
the computer link mode or the PLC link mode. It is invalid in the general
communication mode.

 Executing this instruction does not change the settings in the system registers.

 We recommend using differential execution with this instruction.

 When the power supply to the PLC is off, the settings set by this instruction are
cleared. (The set value will become 0.) If the mode is switched to the PROG.
mode after the instruction has been executed, however, the settings will be
retained.

 If a commercial RS232C/RS485 converter is being used in the PLC link mode,
this instruction should be programmed in all of the stations (PLCs) connected to
the link.

 Separate first and second keywords with a comma "," and do not use spaces.

Usage
Example

When a commercial RS232C/RS485 converter is being used to carry out communication between
a personal computer and the FP-, this instruction is used to return the PLC response after
switching of the enable signal has been completed on the converter side.

 System register instructions

993

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R9007

R9008

%MX0.900.7

%MX0.900.8

permanently

for an instant

 any character other than a keyword is
specified

 no comma is between the first and second
keywords

 small letters of the alphabet are used to
specify the keyword

 no communication cassette has been
installed when COM1 or COM2 has been
set

In this example the function SYS1 is programmed in ladder diagram (LD).

 The values entered at s* will be right aligned automatically by the compiler.

Error flags

Example

POU header The same POU header is used for all programming languages.

Body When ChangeResponseT turns on, the response time for COM port 1 is delayed by 2s.

LD

System register instructions

994

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

SYS2 Change System Register Settings for PC Link Area

You can change the values in system registers 40 - 47 (with the FP0R, FP- 32k, FP-X also 50 -
57), PC link area.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Precautions during programming

 Executing this instruction does not rewrite the contents of the system ROM in the
control unit. As a result, turning the power supply off and then on again rewrites
the contents of the system registers specified by the tool software.

 A value between 40 and 47 should be specified for d_Start* or d_End*. Also, the
values should always be specified in such a way that d_Start* d_End*.

 The values of the system registers change, so a verification error may occur
when the program is verified.

PLC types Availability of SYS2 (see page 1331)

Variable Data type Function

s_Start Contains new values for the system registers defined by
remaining two variables.

d_Start* First system register (between 40-47) to receive new value.

Must be a constant

d_End*

ANY16

Last system register (between 40-47) to receive new value.

Must be a constant

For Relay T/C Register Constant

s_Start - - - - - - DT - - -

d_Start* - - - - - - - - - dec. or hex.

d_End* - - - - - - - - - dec. or hex.

No. IEC
address

Set If

R9007

R9008

%MX0.900.7

%MX0.900.8

permanently

for an instant

 d1 > d2

 the specified value is outside the ranges
specified for the various system registers
setting values

Description While the PLC is in RUN mode, SYS2 changes the settings for the specified system registers.
s_Start contains the new values for those system registers defined between d_Start* and d_End*.

Data types

Operands

Error flags

 System register instructions

995

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example the function SYS2 is programmed in ladder diagram (LD).

DUT A Data Unit Type (DUT) can be composed of several data types. A DUT is first defined in the DUT
pool and then processed like the standard data types (BOOL, INT, etc.) in the list of global
variables or the POU header.

POU header The same POU header is used for all programming languages.

Body Changes the values for the PC link area system registers 40 through 45 as defined in LinkAreas
when SetLinkAreas turns on.

LD

Chapter 33

 Special instructions

Special instructions

998

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F140_STC Carry-flag set

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F140_STC (see page 1321)

Description Special internal relay R9009 (carry-flag) goes ON if the trigger EN is in the ON-state. This
instruction can be used to control data using carry-flag R9009 (e.g. F122_RCR (see page 589) and
F123_RCL (see page 591) instructions).

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F140_STC();

END_IF;

 Special instructions

999

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F141_CLC Carry-flag reset

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F141_CLC (see page 1321)

Description Special internal relay R9009 (carry-flag) goes OFF if the trigger EN is in the ON-state. This
instruction can be used to control data using carry-flag R9009 (e.g. F122_RCR (see page 589) and
F123_RCL (see page 591) instructions).

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F141_CLC();

END_IF;

Special instructions

1000

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F142_WDT Watchdog timer update

The scan ‘check watchdog timer’ is automatically set at the start of a scan with the value of the
system register (No. 30). To monitor the transit of a processing block, set the watchdog timer with
this instruction immediately before transition and set again immediately after that.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F142_WDT (see page 1321)

Variable Data type Function

s INT specifies watchdog timer value

Description The scan ‘check watchdog timer’ is preset with the constant specified by s* if the trigger EN is in
the ON-state. The value specified by s* is 1 to 255 and the preset time becomes 2.5 ms * s* (637.5
ms).

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 (* Watchdog timer value is changed to 123.4ms *)

 F142_WDT(1234);

END_IF;

 Special instructions

1001

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F148_ERR Self-diagnostic error set/reset

At the same time, the self-diagnostic error-flag R9000 is set and ERROR LED on the CPU is turned
ON.

The contents of the error flag R9000 and the error no. can be read and checked using Control
FPWIN Pro (Monitor  Display special relays and registers  Basic error messages) or the
corresponding system variables.

Error number areas:

When n* = 100 to 199, the operation is halted.

When n* = 200 to 299, the operation is continued.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F148_ERR (see page 1321)

Variable Data type Function

n* ANY16  Must be a constant

 self-diagnostic error code number, range: 0 and 100 to
299

 See also: PLC status in the online help

For Relay T/C Register Constant

n* - - - - - - - - - dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 permanently  n exceeds the limit.

Description The error no. specified by n* is copied into the system variable sys_iSelfDiagnosticErrorCode that
reads the corresponding special data register. Setting n*=0, all error numbers greater than 43 are
cleared and the error LED turns off.

Data types

Operands

Error flags

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

Special instructions

1002

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

IF start THEN

 (* Sets the self-diagnostic error 100 *)
 (* The ERROR/ALARM LED of the PLC is on,
 and operation stops. *)

 F148_ERR(100);

END_IF;

 Special instructions

1003

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F149_MSG Message display

When the F149_MSG instruction is executed, the message-flag R9026 is set and the message
specified by s is set in special data registers DT9030 to DT9035 (DT90030 to DT90035 for FP0
T32CP, FP2/2SH, FP10/10S/10SH). Once the message is set in special data registers, the
message cannot be changed even if the F149_MSG instruction is executed again. You can clear
the message with the FP Programmer II.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F149_MSG (see page 1321)

Variable Data type Function

s STRING(12) message to be displayed

For Relay T/C Register Constant

s - - - - - - - - - character

Description This instruction is used for displaying the message on the FP Programmer II screen. After
executing the F149_MSG instruction, you can see the message specified by s on the FP
Programmer II screen.

Data types

Operands

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F149_MSG('Hello, world');

END_IF;

Special instructions

1004

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F155_SMPL Transfer sampling data

F155_SMPL can only be used with the sampling mode "per Scan".

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Specify the sampling points using Control FPWIN Pro:

Relay contacts: 16 points
Available for (FP format): X, Y, R, L, T, C

Data: 3 words
Available for (FP format): WX, WY, WR, WL, SV, EV, DT, LD, FL

PLC types Availability of F155_SMPL (see page 1321)

Description This instruction transfers the sampling data specified by the sampling trace editor into the sampling
memory.

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F155_SMPL();

END_IF;

 Special instructions

1005

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F156_STRG Set sampling trigger

F156_STRG can be used with both sampling modes, "per Scan" and "per Time Interval".

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Specify the sampling points using Control FPWIN Pro:

Relay contacts: 16 points
Available for (FP format): X, Y, R, L, T, C

Data: 3 words
Available for (FP format): WX, WY, WR, WL, SV, EV, DT, LD, FL

PLC types Availability of F156_STRG (see page 1321)

Description This instruction sets the sampling trigger that stopps the sampling after the delay specified by the
sampling trace parameters.

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 F156_STRG();

END_IF;

Chapter 34

 Program execution control instructions

Program execution control instructions

1008

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

MC Master control relay

When the predetermined trigger EN is in the OFF state, the program between the master control
relay MC and master control relay end MCE instructions is not executed.

A master control instruction (MC and MCE) pair may also be programmed in between another pair
of master control instructions. This construction is called "nesting".

The constant number Num* that must correspond to MC number, both of which delimit a "nested"
program that is not executed.

  It is not possible to use this function in a function block POU.

 The maximum possible value that can be assigned to Num* depends
on the PLC type.

PLC types Availability of MC (see page 1328)

Variable Data type Function

Num* constant Constant number that must correspond to MCE number,
both of which delimit a "nested" program that is not executed

Description Executes the program between the master control relay MC and master control relay end MCE
(see page 1008) instructions of the same number Num* only if the trigger EN is in the ON-state

Data types

Example LD

 Program execution control instructions

1009

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

MCE Master control relay end

When the predetermined trigger EN is in the OFF state, the program between the master control
relay MC and master control relay end MCE instructions is not executed.

A master control instruction (MC and MCE) pair may also be programmed in between another pair
of master control instructions. This construction is called "nesting".

The constant number Num* that must correspond to MC number, both of which delimit a "nested"
program that is not executed.

  It is not possible to use this function in a function block POU.

 The maximum possible value that can be assigned to Num* depends
on the PLC type.

PLC types Availability of MCE (see page 1328)

Variable Data type Function

Num* constant Constant number that must correspond to MC number, both
of which delimit a "nested" program that is not executed

LD start (* EN = start; Starting signal for the MC/MCE function.
*)

MC 1 (* 1 = Num* *)

 (* ... *)

(* Execute or execute not this program part. *)

(* ... *)

MCE 1 (* 1 = Num* *)

Description Executes the program between the master control relay MC (see page 1007) and master control
relay end MCE instructions of the same number Num* only if the trigger EN is in the ON-state.

Data types

Example In this example, the progamming language Instruction List (IL) is used.

IL

Program execution control instructions

1010

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

JP Jump to label

The JP function will skip all instructions between a JP and an LBL of the same number. When the
JP instruction is executed, the execution time of the skipped instructions is not included in the scan
time. Two or more JP functions with the same number Num* can be used in a program. However,
no two LBL instructions may be identically numbered. LBL instructions are specified as
destinations of JP, LOOP (see page 1012) and F19_SJP (see page 1010) instructions.

One JP and LBL instruction pair can be programmed between another pair. This construction is
called nesting.

 It is not possible to use this function in a function block POU.

 The maximum possible value that can be assigned to Num* depends
on the PLC type.

PLC types Availability of JP (see page 1328)

Variable Data type Function

Num* constant Constant number that must correspond to LBL number, this
"nested" program is jumped over

LD start (* EN = start; Starting signal for the JP function. *)

JP 1 (* Num* = 1 (Address of Label) *)

Description The JP (Jump to Label) instruction skips to the Label (LBL (see page 1013)) function that has the
same number Num* as the JP function when the predetermined trigger EN is in the ON-state.

Data types

Example In this example, the programming language Instruction List (IL) is used.

IL

 Program execution control instructions

1011

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F19_SJP Indirect jump to label

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

The range of the number s can be between 0 and 255.

PLC types Availability of F19_SJP (see page 1322)

Variable Data type Function

s ANY16 Stores label number (0 to 255)

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL -

When the variable start is set to TRUE, the function is carried out.

Description Jumps to the label LBL (see page 1013) s with the same number as the data stored in the area
specified by s if the trigger EN is in the ON-state.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header The same POU header is used for all programming languages.

Body

LD

Program execution control instructions

1012

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST

When programming with structured text, enter the following:

(* if Start is true Counter will be incremented by 1, else by 2 *)

IF Start THEN

 F19_SJP(_label);

END_IF;

Counter:=Counter+1;

LBL(1);

Counter:=Counter+1;

 Program execution control instructions

1013

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LOOP Loop to label

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

The LBL instructions are specified as destination of the LOOP instruction. It is not possible to
specify two or more LBL instructions with the same number Num* within a program. If the set
value s in the data area is "0" from the beginning, the LOOP instruction is not executed (ignored).

  It is not possible to use this function in a function block POU.

 The maximum possible value that can be assigned to Num* depends
on the PLC type.

PLC types Availability of LOOP (see page 1328)

Variable Data type Function

s INT, WORD Set value

Num* constant Constant number that must correspond to LBL number, this
"nested" program is looped until the variable at s reaches 0

For Relay T/C Register Constant

s WX WY WR WL SV EV DT LD FL -

Description LOOP (Loop to Label) instruction skips to the LBL (see page 1013) instruction with the same
number Num* as the LOOP instruction and repeats execution of what follows until the data of a
specified operand becomes "0".

Data types

Operands

Example In this example the function is programmed in ladder diagram (LD).

Program execution control instructions

1014

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LBL Label for the JP- and LOOP-instruction

Skips to the LBL instruction with the same number Num* as the LOOP (see page 1012) instruction
and repeats execution of what follows until the data of a specified operand becomes "0".

  It is not possible to use this function in a function block POU.

 The maximum possible value that can be assigned to Num*
depends on the PLC type.

PLC types Availability of LBL (see page 1328)

Variable Data type Function

Num* constant Constant number that must correspond to JP, LOOP or F19
label number

When the variable start is set to TRUE, the function is carried out.

Description The LBL (Label for the JP and LOOP) instruction skips to the LBL instruction with the same
number Num* as the JUMP (see page 1009) instruction if the predetermined trigger EN is in the
ON-state.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header The same POU header is used for all programming languages.

Body

LD

 Program execution control instructions

1015

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ST When programming with structured text, enter the following:

(* if Start is true Counter will be incremented by 1, else by 2 *)

IF Start THEN

 JP(1);

END_IF;

Counter:=Counter+1;

LBL(1);

Counter:=Counter+1;

Program execution control instructions

1016

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

BRK Break

Once this instruction is executed, the program halts. To continue the program, the mode in the test
run (continuous run / step run) should be selected. In the step run mode, the program is executed
instruction by instruction regardless of the instructions and in the continuous run mode, the
program is executed until it is stopped by the next break instruction (BRK) or the end of the
program (end instruction ED).

 The test run mode is executed, when the mode selector switch on the PLC is
set to RUN mode with setting the INITIALIZE/TEST switch to the TEST mode.

Description The BRK (Breakpoint) instruction stops the execution at the address of this instruction during the
test run mode if the trigger EN is in the ON-state.

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF start THEN

 BRK();

END_IF;

 Program execution control instructions

1017

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

ICTL Interrupt Control

 s1_Control 16-bit equivalent constant or 16-bit area for interrupt control setting

 s2_Condition 16-bit equivalent constant or 16-bit area for interrupt trigger
condition setting

The number of interrupt programs available is:

 16 interrupt module initiated interrupt programs (INT 0–INT 15)

 8 advanced module (special modules, like positioning,...) initiated interrupt
programs (INT 16–INT 23)

 1 periodic interrupt program (INT 24) (Time base 0.5ms selectable for FP2/2SH,
FP10SH)

Be sure to use ICTL instructions so that they are executed once at the rising edge of the ICTL
trigger using the DF instruction.

Two or more ICTL instructions can have the same trigger.

Bit 15 .. 8 7 .. 0

s1_Control

16#

Selection of control function

00: Interrupt "enable/disable" control

01: Interrupt trigger reset control

Interrupt type selection

00: Interrupt module (INT 0–15)

01: Advanced module (INT 16–23)

02: Periodic interrupt (INT 24)

s2_Condition

2#

Bit 0: 0 Interrupt program 0 disabled

Bit 0: 1 Interrupt program 0 enabled

Bit 1: 0 Interrupt program 1 disabled

...

Bit 15: 1 Interrupt program 15 enabled

Example: s2 = 2#0000000000001010

  The current enable/disable status of each interrupt module initiated
interrupt can be checked by monitoring the special data register
(see page 1254) DT90025.

 The current enable/disable status of each non-interrupt module
initiated interrupt can be checked by monitoring the special data
register DT90026.

 The current interrupt interval of the periodic interrupt can be
checked by monitoring the special data register DT90027.

 If a program is written into an interrupt task, the interrupt concerned
will be enabled automatically during the initialization routine when
starting the program.

 With the ICTL instruction an interrupt task can be enabled or
disabled by the program.

Description The ICTL instruction sets all interrupts to enable or disable. Each time the ICTL instruction is
executed, it is possible to set parameters like the type and validity of interrupt programs. Settings
can be specified by s1_Control and s2_Condition.

Program execution control instructions

1018

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

PLC types Availability of ICTL (see page 1327)

Variable Data type Function

s1 Interrupt control data setting

s2
ANY16

Interrupt condition setting

For Relay T/C Register Constant

s1, s2 - WY WR WL SV EV DT LD FL dec. or hex.

Data types

Operands

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The interval for executing the periodic interrupt is specified as 100ms (10ms time base selected)
when the rising edge of start is detected.

LD

Chapter 35

 Pulse output instructions

Pulse output instructions

1020

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

35.1 Introduction

Control FPWIN Pro offers two concepts for programming with pulse output instructions:

 FP instructions

 Tool instructions

For users programming for different PLC types of the FP series or users who are tired of setting control code
bits and looking up available channel numbers, the tool instructions offer new and comfortable features. These
include information functions for evaluating status flags and settings, control functions for configuring
high-speed counters and pulse outputs, PLC-independent functions and DUTs, as well as variable channel
numbers. However, the FP instructions may be easier to use for beginners or users familiar with FPWIN GR.

Most of the information, which is accessible via information and control functions, is stored in special internal
relays and special data registers. These relays and registers can also be accessed using PLC-independent
system variables.

To take advantage of the features you prefer, the instructions of both libraries can be mixed.

 � NOTE

When programming with the tool instructions, be sure to refer to the detailed information
provided via the links to the related F/P instructions.

Main features FP instructions Tool instructions

Pre version 6.4 support 

Use of inline functions 

Use of FPWIN GR function names 

Less code with constant channel numbers 

Control codes 

Control functions 

Information functions 

Variable channel numbers 

Universal functions for all PLCs 

DUT for common channel configuration for all
PLCs for all pulse output instructions

 

 Pulse output instructions

1021

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

35.2 Writing the pulse output control code

The special data register where the high-speed counter and pulse output control code are stored
can be accessed with the system variable sys_wHscOrPulseControlCode. (The system variable
sys_wHscOrPulseControlCode corresponds to special data register DT90052.)

Operations performed by the pulse output control code

 Setting/resetting near home input

 Continuing/stopping pulse output (forced stop)

 Enabling/disabling counting operations

 Resetting the elapsed value (software reset) of the high-speed counter

 Clearing high-speed counter and position control instructions (FP0R only)

The control code settings for each channel can be monitored using the system variables
sys_wHscChannelxControlCode or sys_wPulseChannelxControlCode (where x=channel number).

The settings of this system variable remain unchanged until another setting operation is executed.

  Performing a forced stop may cause the elapsed value at the PLC
output side to differ from the elapsed value at the motor input side.
Therefore, you must execute a home return after pulse output has
stopped.

 Setting the near home input is not possible if counting is prohibited or
if a software reset is performed.

Description for FP:

Bits 0–15 of the control code are allocated in groups of four. The bit setting in each group is
represented by a hex number (e.g. 0002 0000 0000 1001 = 16#2009).

15 12 11 8 7 4 3 0

IIIIIIIV

� � � � � �

Group IV 1 Channel number (channel n: 16#n)

Group III 0 (fixed)

Near home input (bit 4) Group II 2

0: FALSE 1: TRUE

Pulse output (bit 3) 3

0: continue 1: stop

4 0 (bit 2, fixed)

Count (bit 1) 5
0: permit 1: prohibit

Reset elapsed value to 0 (bit 0)

Group I

6
0: no 1: yes

Pulse output instructions

1022

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example: 16#2009

Group Value Description

IV 2 Channel number: 2

III 0 (fixed)

II 0 Near home input: FALSE

Hex 9 corresponds to binary 1001

Pulse output: stop (bit 3) 1

(bit 2, fixed) 0

Count: permit (bit 1) 0

I 9

Reset elapsed value to 0: yes (bit 0) 1

Description for FP-X:

Bits 0–15 of the control code are allocated in groups of four. The bit setting in each group is
represented by a hex number (e.g. 0002 0001 0000 1001 = 16#2109).

15 12 11 8 7 4 3 0

� � � � � �

IIIIIIIV
Group IV 1 Channel number (channel n: 16#n)

Group III 2 1 (fixed)

Near home input (bit 4) (see note) Group II 3

0: FALSE 1: TRUE

Pulse output (bit 3) 4

0: continue 1: stop

Count (bit 1) 5
0: permit 1: prohibit

Reset elapsed value to 0 (bit 0)

Group I

6
0: no 1: yes

Example: 16#2109

Group Value Description

IV 2 Channel number: 2

III 1 (fixed)

II 0 Near home input: FALSE

Hex 9 corresponds to binary 1001

Pulse output: stop (bit 3) 1

(Bit 2 fixed) 0

Count: permit (bit 1) 0

I 9

Reset elapsed value to 0: yes (bit 0) 1

Description for FP0R:

Bits 0–15 of the control code are allocated in groups of four. The bit setting in each group is

 Pulse output instructions

1023

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

represented by a hex number (e.g. 0002 0001 0000 1001 = 16#2109).

15 12 11 8 7 4 3 0

� � � � �

IIIIIIIV

� � 	

Group IV 1 Channel number (channel n: 16#n)

Group III 1 (fixed)

Position control start request 2

0: disabled 1: enabled

Decelerated stop request 3

0: disabled 1: enabled

Near home input (bit 4) (see note)

Group II

4

0: FALSE 1: TRUE

Pulse output (bit 3) 5

0: continue 1: stop

Clear pulse output control (bit 2) 6

0: continue 1: stop

Count (bit 1) 7

0: permit 1: prohibit

Reset elapsed value to 0 (bit 0)

Group I

8

0: no 1: yes

Example: 16#2109

Group Value Description

IV 2 Channel number: 2

III 1 (fixed)

Position control start request: disabled

Decelerated stop request: disabled

II

0

Near home input: FALSE

Hex 9 corresponds to binary 1001

Pulse output: stop (bit 3) 1

Clear pulse output control (bit 2) 0

Count: permit (bit 1) 0

I 9

Reset elapsed value to 0: yes (bit 0) 1

Description for FP0, FP-e:

Bits 0–15 of the control code are allocated in groups of four, each group containing the settings for
one channel. The bit setting in each group is represented by a hex number (e.g. 0000 0000 1001
0000 = 16#90).

15 12 11 8 7 4 3 0

� � � �� � � �

III
Group II I

Channel 1 0

Pulse output instructions

1024

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Pulse output (bit 3) 1

0: continue 1: stop

Near home input (bit 2) (see note) 2

0: FALSE 1: TRUE

Count (bit 1) 3
0: permit 1: prohibit

Reset elapsed value to 0 (bit 0) 4

0: no 1: yes

Example: 16#90

Group Value Description

Channel number: 1

Hex 9 corresponds to binary 1001

Pulse output: stop (bit 3) 1

Near home input: FALSE (bit 2) 0

Count: permit (bit 1) 0

II 9

Reset elapsed value to 0: yes (bit 0) 1

I 0 –

Example The first example shows how to enable the near home input for channel 2, and the second
example shows how to perform pulse output stop for channel 0.

All input and output variables used for programming this function have been declared in the POU
header.

Body The near home input is enabled for channel 2 during home return operations.

LD Performing
a forced
stop for

channel 0
(FP0, FP-e,

FP)

Body A forced stop of the pulse output is performed for channel 0.

LD

 Pulse output instructions

1025

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 Performing a forced stop may cause the elapsed value at the PLC output side to
differ from the elapsed value at the motor input side. Therefore, you must execute
a home return after pulse output has stopped.

Pulse output instructions

1026

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

35.3 Pulse output: writing and reading the elapsed value

The elapsed value is stored as a double word in the special data registers. Access the special data
registers using the system variable sys_diPulseChannelxElapsedValue (where x=channel number).

System variables for memory areas used:

 FP-Sigma

 FP-X, Transistor types

 FP-X, Relay types

 FP0R

 FP0

Example The first example shows how to write an initial value (elapsed value) into the high-speed counter.
The second example shows how to read an elapsed value and copy it to a variable.

All input and output variables used for programming this function have been declared in the POU
header.

Body An initial value of 3000 (elapsed value) is written into channel 0 of the high-speed counter.

LD

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The elapsed value of the high-speed counter is read from channel 0 of the high-speed counter and
copied to the variable diElapsedValue.

LD

 Pulse output instructions

1027

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F166_PulseOutput_
Set

Target value match ON (pulse output)

Pulse output characteristics

10000

0

1

2

4

3

10000 Target value

1 Elapsed value of pulse output

2 Execution condition

3 "Output control active" flag

4 PLC output

The PLC output turns to TRUE when the elapsed value matches the target value. In addition, the
"Output control active" flag turns to FALSE and the instruction is deactivated.

If an output is specified that has not been implemented, only the internal memory of the
corresponding WY address is set or reset.

Interrupt operation

The interrupt program will be executed when the elapsed value matches the target value. Any
interrupt that has been entered into the Tasks list is automatically enabled. A special interrupt
program number is assigned to each channel number.

Channels used by interrupt programs:

Interrupt 8 Channel 0

Interrupt 9 Channel 1

Interrupt 10 Channel 2

Interrupt 11 Channel 3

 General programming information

 Set "Pulse output" for the desired channel in the system registers.

Description If the elapsed value matches the target value of the selected pulse output channel, the specified
output immediately turns to TRUE.

Pulse output instructions

1028

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 When this instruction is executed, the "Output control active" flag (e.g.
sys_bIsPulseChannel0ControlActive) for the channel used turns to TRUE. No
other high-speed counter instruction with output control (F166_PulseOutput_Set
or F167_PulseOutput_Reset) using the same channel can be executed as long
as this flag is TRUE.

 This instruction is available for all pulse output instructions except
F173_PulseOutput_PWM (see page 1066) and can be executed before or after
execution of a pulse output instruction.

 The duplicate use of an external output relay in other instructions (OUT, SET,
RST, KEEP and other F instructions) is not verified by FPWIN Pro and will not be
detected.

 To set a PLC output to FALSE that was previously set to TRUE by this instruction,
use an RST or MOVE instruction.

 To cancel execution of a pulse output instruction, set bit 2 of the data register
storing the pulse output control code (sys_wHscOrPulseControlCode) to TRUE.
The pulse output control flag will then change to FALSE. To reenable execution
of the instruction, reset bit 2 to FALSE. However, pulse output will continue.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 We strongly recommend that you incorporate a forced stop (see page 1021)
option in your positioning program.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

PLC types Availability of F166_PulseOutput_Set (see page 1322)

Variable Data type Function

n_diPulseOutputChannel DINT Pulse output channel:

0–3

s_diTargetValue DINT specify a 32-bit data value for the target value within the following
range:

-2147483467–+2147483648

d_Y BOOL output which turns to TRUE when the elapsed value matches the
target value: Y0–Y1F

For Relay T/C Register Constant

n_diPulseOutputChannel - - - - - - - - - dec. or hex.

s_diTargetValue DWX DWY DWR - DSV DEV DDT - - -

d_Y - Y - - - - - - - -

No. IEC address Set If

R9007 %MX0.900.7 ON

R9008 %MX0.900.8 ON

 channel number or values of the data table are outside the
permissible range

 pulse output has not been set in the system registers

Data types

Operands

Error flags

 Pulse output instructions

1029

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

GVL In the global variable list, you define variables that can be accessed by all POUs in the project.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F166_PulseOutput_Set(n_diPulseOutputChannel := 0,

 s_diTargetValue := 10,

 d_Y => out_0);

END_IF;

Pulse output instructions

1030

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F167_PulseOutput_
Reset

Target value match OFF (pulse output)

Pulse output characteristics

1

2

4

3

0

-200

-200 Target value

1 Elapsed value of pulse output

2 Execution condition

3 "Output control active" flag

4 PLC output

The PLC output turns to FALSE when the elapsed value matches the target value. In addition, the
"Output control active" flag turns to FALSE and the instruction is deactivated.

If an output is specified that has not been implemented, only the internal memory of the
corresponding WY address is set or reset.

Interrupt operation

The interrupt program will be executed when the elapsed value matches the target value. Any
interrupt that has been entered into the Tasks list is automatically enabled. A special interrupt
program number is assigned to each channel number.

Interrupt 8 Channel 0

Interrupt 9 Channel 1

Interrupt 10 Channel 2

Interrupt 11 Channel 3

 General programming information

 Set "Pulse output" for the desired channel in the system registers.

 When this instruction is executed, the "Output control active" flag (e.g.
sys_bIsPulseChannel0ControlActive) for the channel used turns to TRUE. No

Description If the elapsed value matches the target value of the pulse output channel, the specified output
immediately turns to FALSE.

 Pulse output instructions

1031

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

other high-speed counter instruction with output control (F166_PulseOutput_Set
or F167_PulseOutput_Reset) using the same channel can be executed as long
as this flag is TRUE.

 This instruction is available for all pulse output instructions except
F173_PulseOutput_PWM (see page 1066) and can be executed before or after
execution of a pulse output instruction.

 The duplicate use of an external output relay in other instructions (OUT, SET,
RST, KEEP and other F instructions) is not verified by FPWIN Pro and will not be
detected.

 To cancel execution of a pulse output instruction, set bit 2 of the data register
storing the pulse output control code (sys_wHscOrPulseControlCode) to TRUE.
The pulse output control flag will then change to FALSE. To reenable execution
of the instruction, reset bit 2 to FALSE. However, pulse output will continue.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 We strongly recommend that you incorporate a forced stop (see page 1021)
option in your positioning program.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

PLC types Availability of F167_PulseOutput_Reset (see page 1322)

Variable Data type Function

n_diPulseOutputChannel DINT Pulse output channel:

0–3

s_diTargetValue DINT specify a 32-bit data value for the target value within the following range:

-2147483467–+2147483648

d_Y BOOL output which turns to FALSE when the elapsed value matches the target
value: Y0–Y1F

For Relay T/C Register Constant

n_diPulseOutputChannel - - - - - - - - - dec. or hex.

s_diTargetValue DWX DWY DWR - DSV DEV DDT - - -

d_Y - Y - - - - - - - -

No. IEC address Set If

R9007 %MX0.900.7 ON

R9008 %MX0.900.8 ON

 channel number or values of the data table are outside the
permissible range

 pulse output has not been set in the system registers

Data types

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

GVL In the global variable list, you define variables that can be accessed by all POUs in the project.

Pulse output instructions

1032

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable start is set to TRUE, the function is carried out.

LD

ST When programming with structured text, enter the following:

IF DF(start) THEN

 F167_PulseOutput_Reset(n_diPulseOutputChannel := 0,

 s_diTargetValue := -200,

 d_Y => out_0);

END_IF;

 Pulse output instructions

1033

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F168_PulseOutput_
Trapezoidal

Trapezoidal control

See also: PulseOutput_Trapezoidal_FB (see page 1194)

Use the following predefined DUT:

F168_PulseOutput_Trapezoidal_DUT

 Control code

 Initial and final speed

 Target speed

 Acceleration/deceleration time

 Target value

 Pulse stop (fixed)

Pulse output characteristics

t

f

6

1

2

3

4

5

3

1 Initial and final speed 4 Target value

2 Target speed 5 Pulse output control flag

3 Acceleration/deceleration time 6 Execution condition

The pulse output frequency changes according to the specified acceleration/deceleration time.

The difference between target and initial speed determines the slope of the ramps.

General programming information

 Set any high-speed counter allocated to a pulse output channel to "Unused" in
the system registers.

 When programs are being edited in RUN mode, pulse output stops but resumes
after the program changes have been downloaded.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 The high-speed counter control flag (e.g. sys_bIsHscChannel0ControlActive) and

Description This instruction automatically performs trapezoidal control according to the parameters in the
specified DUT. Pulses are output from the specified channel when the control flag for this channel
is FALSE and the execution condition is TRUE.

Pulse output instructions

1034

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

the pulse output control flag (e.g. sys_bIsPulseChannel0Active) are assigned to
the same internal relay (e.g. R903A). Therefore, when a high-speed counter
instruction or a pulse output instruction is executed, both the high-speed counter
control flag (e.g. sys_bIsHscChannel0ControlActive) and the pulse output control
flag (e.g. sys_bIsPulseChannel0Active) for the channel used are TRUE. No other
high-speed counter instruction or pulse output instruction can be executed as
long as this flag is TRUE.

 Pulse output stops when the upper limit of the internal elapsed value is exceeded
if rotation is in one direction only. As a countermeasure, reset the elapsed value
to 0 before executing this instruction. Pulse output does not stop when the FP0R
is used in FP0 compatibility mode because the data range for the elapsed value
is a signed 32-bit value.

 We strongly recommend that you incorporate a forced stop (see page 1021)
option in your positioning program.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

 Running the FP0R in FP0 compatibility mode

To run the FP0R in FP0 compatibility mode, you can download an FP0 program to the FP0R.
Please note the following restrictions:

 The FP0R supports signed 32-bit data for elapsed value and target value; the
FP0 supports signed 24-bit data. In FP0 compatibility mode, counting and pulse
output continue even if data exceeds the FP0 range.

 The duty ratio is always 25% regardless of the settings in the instructions. With
the pulse output method "pulse/direction", pulses are output approx. 300s after
the direction signal has been output; the motor driver characteristics are
simultaneously taken into consideration.

 The FP0R does not support the "no counting" setting. Instead, incremental
counting is performed with the FP0 pulse output instructions set to "no counting".

 The maximum pulse output frequency is 10000Hz.

 Make sure the pulse output instruction does not use an output that is also being
used as a normal output.

 For an FP0 program to be able to run in FP0 compatibility mode, the PLC types
(C10, C14, C16, C32, and T32) must match exactly. FP0 compatibility mode is
not available for the F32 type FP0R.

PLC types Availability of F168_PulseOutput_Trapezoidal (see page 1322)

Variable Data type Function

s_dutDataTable F168_PulseOutput_Trapezoidal_DUT Starting address of area containing the data table

n_iPulseOutputChannel decimal constant Pulse output: 0 or 1

Data types

Operands

 Pulse output instructions

1035

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s_dutDataTable - - - - - - DT - - -

n_iPulseOutputChannel - - - - - - - - - dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 channel number or values of the data table are outside the
permissible range

 initial speed < 40

 initial speed > maximum speed

When X0_bMotorSwitch turns to TRUE the function is executed.

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

GVL In the global variable list, you define variables that can be accessed by all POUs in the project.

DUT The DUT F168_PulseOutput_Trapezoidal_DUT is predefined in the FP Library.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

IF DF(X0_bMotorSwitch) THEN

 F168_PulseOutput_Trapezoidal(s_dutDataTable := dutTrapez,

 n_iPulseOutputChannel := 0);

END_IF;

Pulse output instructions

1036

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F168_PulseOutput_
Home

Home return

See also:

 PulseOutput_Home_FB (see page 1176)

 PulseControl_NearHome (see page 1209)

After a drive system has been switched on, there is a difference between the internal position value
(elapsed value) and the mechanical position of the axis; this difference cannot be predetermined.
The internal value must be synchronized with the actual position value of the axis. This is done by
means of a home return, during which a position value is registered at a known reference point
(home).

During execution of a home return instruction, pulses are continuously output until the home input
is enabled. The I/O allocation is determined by the channel used.

To decelerate movement when near the home position, designate a near home input and set bit 4
of the special data register storing the pulse output control code (sys_wHscOrPulseControlCode) to
TRUE and back to FALSE again.

The value in the elapsed value area during a home return differs from the current value. When the
return is completed, the elapsed value changes to 0.

Select one of two different operation modes:

 Type 1: The home input is effective regardless of whether or not there is a near
home input, whether deceleration is taking place, or whether deceleration has
been completed.

Without near home input:

�

�

�f

t
0Hz

With near home input:

f

t

�

�

� �

�

0Hz

1 Initial and final speed 3 Near home input: TRUE

2 Target speed 4 Home input: TRUE

5 Home input is effective at any time.

Description This instruction performs a home return according to the parameters in the specified DUT. Pulses
are output from the specified channel when the control flag for this channel is FALSE and the
execution condition is TRUE.

 Pulse output instructions

1037

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 Type 2: The home input is effective only after deceleration (started by near home
input) has been completed.

f

t

�

�

� �

�

0Hz

1 Initial and final speed 3 Near home input: TRUE

2 Target speed 4 Home input: TRUE

5 Home input is effective only after deceleration

Use the following predefined DUT: F168_PulseOutput_Home_DUT

The following parameters can be specified in the DUT:

 Control code

 Initial and final speed

 Target speed

 Acceleration/deceleration time

 Pulse stop (fixed)

Pulse output characteristics

 The pulse output frequency changes according to the specified
acceleration/deceleration time.

 The difference between target and initial speed determines the slope of the
ramps.

General programming information

 Set any high-speed counter allocated to a pulse output channel to "Unused" in
the system registers.

 When programs are being edited in RUN mode, pulse output stops but resumes
after the program changes have been downloaded.

 The high-speed counter control flag (e.g. sys_bIsHscChannel0ControlActive) and
the pulse output control flag (e.g. sys_bIsPulseChannel0Active) are assigned to
the same internal relay (e.g. R903A). Therefore, when a high-speed counter
instruction or a pulse output instruction is executed, both the high-speed counter
control flag (e.g. sys_bIsHscChannel0ControlActive) and the pulse output control
flag (e.g. sys_bIsPulseChannel0Active) for the channel used are TRUE. No other
high-speed counter instruction or pulse output instruction can be executed as
long as this flag is TRUE.

 Even when home input has occurred, executing this instruction causes pulse
output to begin.

 If the near home input is enabled while acceleration is in progress, deceleration
will start.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 We strongly recommend that you incorporate a forced stop (see page 1021)
option in your positioning program.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more

Pulse output instructions

1038

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

 Running the FP0R in FP0 compatibility mode

To run the FP0R in FP0 compatibility mode, you can download an FP0 program to the FP0R.
Please note the following restrictions:

 The FP0R supports signed 32-bit data for elapsed value and target value; the
FP0 supports signed 24-bit data. In FP0 compatibility mode, counting and pulse
output continue even if data exceeds the FP0 range.

 The duty ratio is always 25% regardless of the settings in the instructions. With
the pulse output method "pulse/direction", pulses are output approx. 300s after
the direction signal has been output; the motor driver characteristics are
simultaneously taken into consideration.

 The FP0R does not support the "no counting" setting. Instead, incremental
counting is performed with the FP0 pulse output instructions set to "no counting".

 The maximum pulse output frequency is 10000Hz.

 Make sure the pulse output instruction does not use an output that is also being
used as a normal output.

 For an FP0 program to be able to run in FP0 compatibility mode, the PLC types
(C10, C14, C16, C32, and T32) must match exactly. FP0 compatibility mode is
not available for the F32 type FP0R.

PLC types Availability of F168_PulseOutput_Home (see page 1322)

Variable Data type Function

s_dutDataTable F168_PulseOutput_Home_DUT Starting address of area containing the data table

n_iPulseOutputChannel decimal constant Pulse output: 0 or 1

For Relay T/C Register Constant

s_dutDataTable - - - - - - DT - - -

n_iPulseOutputChannel - - - - - - - - - dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 channel number or values of the data
table are outside the permissible range

 initial speed < 40

 initial speed > maximum speed

Data types

Operands

Error flags

 Pulse output instructions

1039

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

DUT The DUT F168_PulseOutput_Home_DUT is predefined in the FP Library.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

IF DF(X0_bMotorSwitch) THEN

 dutHome.iInitialAndFinalSpeed:=iInitialAndFinalSpeed

 dutHome.iTargetSpeed:=iTargetSpeed

 dutHome.iAccelerationAndDecelerationTime:=iAccelerationTime

END_IF;

IF DF(X0_bMotorSwitch) THEN

F168_PulseOutput_Home(s_dutDataTable := dutHome,

 n_iPulseOutputChannel := 0);

END_IF;

Pulse output instructions

1040

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F169_PulseOutput_
Jog

JOG operation

Use the following predefined DUT: F169_PulseOutput_Jog_DUT

The following parameters can be specified in the DUT:

 Control code

 Speed

Pulse output characteristics

The frequency and the duty can be changed in each scan. (The change becomes effective with the
next pulse output.)

General programming information

!

Warning!

As soon as you begin editing a program online (i.e., in
RUN mode) using this instruction, pulse output will
stop.

 Set any high-speed counter allocated to a pulse output channel to "Unused" in
the system registers.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 The high-speed counter control flag (e.g. sys_bIsHscChannel0ControlActive) and
the pulse output control flag (e.g. sys_bIsPulseChannel0Active) are assigned to
the same internal relay (e.g. R903A). Therefore, when a high-speed counter
instruction or a pulse output instruction is executed, both the high-speed counter
control flag (e.g. sys_bIsHscChannel0ControlActive) and the pulse output control
flag (e.g. sys_bIsPulseChannel0Active) for the channel used are TRUE. No other
high-speed counter instruction or pulse output instruction can be executed as
long as this flag is TRUE.

 Pulse output stops when the upper limit of the internal elapsed value is exceeded
if rotation is in one direction only. As a countermeasure, reset the elapsed value
to 0 before executing this instruction. Pulse output does not stop when the FP0R
is used in FP0 compatibility mode because the data range for the elapsed value
is a signed 32-bit value.

 When using incremental counting, pulse output stops when the elapsed value
exceeds 2147483647.

 When using decremental counting, pulse output stops when the elapsed value
exceeds -2147483648.

 We strongly recommend that you incorporate a forced stop (see page 1021)

Description This instruction is used for JOG operation. Pulses are output from the specified channel when the
control flag for this channel is FALSE and the execution condition is TRUE.

 Pulse output instructions

1041

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

option in your positioning program.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

 Running the FP0R in FP0 compatibility mode

To run the FP0R in FP0 compatibility mode, you can download an FP0 program to the FP0R.
Please note the following restrictions:

 The FP0R supports signed 32-bit data for elapsed value and target value; the
FP0 supports signed 24-bit data. In FP0 compatibility mode, counting and pulse
output continue even if data exceeds the FP0 range.

 The duty ratio is always 25% regardless of the settings in the instructions. With
the pulse output method "pulse/direction", pulses are output approx. 300s after
the direction signal has been output; the motor driver characteristics are
simultaneously taken into consideration.

 The FP0R does not support the "no counting" setting. Instead, incremental
counting is performed with the FP0 pulse output instructions set to "no counting".

 The maximum pulse output frequency is 10000Hz.

 Make sure the pulse output instruction does not use an output that is also being
used as a normal output.

 For an FP0 program to be able to run in FP0 compatibility mode, the PLC types
(C10, C14, C16, C32, and T32) must match exactly. FP0 compatibility mode is
not available for the F32 type FP0R.

PLC types Availability of F169_PulseOutput_Jog (see page 1322)

Variable Data type Function

s_dutDataTable F169_PulseOutput_Jog_DUT Starting address of area containing the data table

n_iPulseOutputChannel INT Pulse output: 0 or 1

For Relay T/C Register Constant

s_dutDataTable - - - - - - DT - - -

n_iPulseOutputChannel - - - - - - - - - dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

channel number or values of the data table are
outside the permissible range

Data types

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

GVL In the global variable list you define variables that can be accessed by all POUs in the project.

DUT

Pulse output instructions

1042

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

The DUT F169_PulseOutput_Jog_DUT is predefined in the FP Library.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The comment fields explain the function of this example.

LD

ST When programming with structured text, enter the following:

IF (X0_bMotorSwitch) THEN

 dutJog.ispeed := 300;

END_IF;

IF (X0_bMotorSwitch) THEN

 F169_PulseOutput_Jog(s_dutDataTable := dutJog,

 n_iPulseOutputChannel := 0);

END_IF;

 Pulse output instructions

1043

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F170_PulseOutput_
PWM

PWM output

Use the following predefined DUT: F170_PulseOutput_PWM_DUT

The following parameters can be specified in the DUT:

 Approximate frequency

 Duty ratio (for pulse duration and period)

General programming information

!

Warning!

As soon as you begin editing a program online (i.e., in
RUN mode) using this instruction, pulse output will
stop.

 Set any high-speed counter allocated to a pulse output channel to "Unused" in
the system registers.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 The high-speed counter control flag (e.g. sys_bIsHscChannel0ControlActive) and
the pulse output control flag (e.g. sys_bIsPulseChannel0Active) are assigned to
the same internal relay (e.g. R903A). Therefore, when a high-speed counter
instruction or a pulse output instruction is executed, both the high-speed counter
control flag (e.g. sys_bIsHscChannel0ControlActive) and the pulse output control
flag (e.g. sys_bIsPulseChannel0Active) for the channel used are TRUE. No other
high-speed counter instruction or pulse output instruction can be executed as
long as this flag is TRUE.

 At a point close to the minimum or maximum duty ratio, the output is delayed,
which may cause the duty ratio to differ from the specified value.

 The duty ratio can be changed for each scan. The change becomes effective
with the next pulse output. The frequency setting is only effective at the start of
execution of an instruction.

 We strongly recommend that you incorporate a forced stop (see page 1021)
option in your positioning program.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

 Using the FP0 compatibility mode of the FP0R

Description This instruction delivers a pulse width modulated output signal according to the specified DUT.
Pulses are output from the specified channel when the control flag for this channel is FALSE and
the execution condition is TRUE.

Pulse output instructions

1044

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

To run the FP0R in FP0 compatibility mode, you can download an FP0 program to the FP0R.

PLC types Availability of F170_PulseOutput_PWM (see page 1322)

Variable Data type Function

s_dutDataTable F170_PulseOutput_PWM_DUT Starting address of area containing the data table

n_iPulseOutputChannel INT Pulse output channel:: 0 or 1

For Relay T/C Register Constant

s_dutDataTable - - - - - - DT - - -

n_iPulseOutputChannel - - - - - - - - - dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 channel number or values of the data table are outside the
permissible range

Data types

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

GVL In the global variable list, you define variables that can be accessed by all POUs in the project.

DUT The DUT F170_PulseOutput_PWM_DUT is predefined in the FP Library.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST

 Pulse output instructions

1045

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

When programming with structured text, enter the following:

IF (X6_bEnablePWM) THEN

 dutPWMControl.iPulseWidthModulationDuty:=iPulseWidthModulationDuty;

END_IF;

IF (X6_bEnablePWM) THEN

 F170_PulseOutput_PWM(s_dutDataTable := dutPWMControl,

 n_iPulseOutputChannel := 2);

END_IF;

Pulse output instructions

1046

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F171_PulseOutput_
Trapezoidal

Trapezoidal control

Description

See also: PulseOutput_Trapezoidal_FB (see page 1194)

 Description for FP-Sigma, FP-X (for the FP0R, please see on page 1047)

Use the following predefined DUT: F171_PulseOutput_Trapezoidal_DUT.

The following parameters can be specified in the DUT:

 Control code

 Initial and final speed

 Target speed

 Acceleration/deceleration time

 Target value

 Pulse stop

Pulse output characteristics

t

f

6

1

2

3

4

5

3

1 Initial and final speed 4 Target value

2 Target speed 5 Pulse output control flag

3 Acceleration/deceleration time 6 Execution condition

The pulse output frequency changes according to the specified acceleration/deceleration time.

The difference between target and initial speed determines the slope of the ramps.

General programming information

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

This instruction automatically performs trapezoidal control according to the parameters in the
specified DUT. Pulses are output from the specified channel when the control flag for this channel
is FALSE and the execution condition is TRUE.

 Pulse output instructions

1047

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 FP-X: When a pulse output instruction is executed and pulses are being output,
the pulse output control flag (e.g. sys_bIsPulseChannel0Active) of the
corresponding channel is TRUE. No other pulse output instruction can be
executed as long as this flag is TRUE.

 FP: The high-speed counter control flag (e.g.
sys_bIsHscChannel0ControlActive) and the pulse output control flag (e.g.
sys_bIsPulseChannel0Active) are assigned to the same internal relay (e.g.
R903A). Therefore, when a high-speed counter instruction or a pulse output
instruction is executed, both the high-speed counter control flag (e.g.
sys_bIsHscChannel0ControlActive) and the pulse output control flag (e.g.
sys_bIsPulseChannel0Active) for the channel used are TRUE. No other
high-speed counter instruction or pulse output instruction can be executed as
long as this flag is TRUE.

 FP: Executing the circular interpolation control instruction F176 sets the circular
interpolation control flag (sys_bIsCircularInterpolationActive) to TRUE. The status
of this flag is maintained until the target value is reached (even if the execution
condition is no longer TRUE). During this time, other pulse output instructions
cannot be executed.

 When programs are being edited in RUN mode, pulse output stops but resumes
after the program changes have been downloaded.

 FP: Set any high-speed counter allocated to a pulse output channel to "Unused"
in the system registers.

 FP-X: Set "Pulse output" for the desired channel in the system registers.

 We strongly recommend that you incorporate a forced stop (see page 1021)
option in your positioning program.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

REFERENCE

 Please refer to the FPWIN Pro online help for detailed information on using system variables.

 Output relays and system variables for FP-Sigma

 Output relays and system variables for FP-X relay types

 Output relays and system variables for FP-X transistor types

 Description for FP0R

Use the following predefined DUT:
F171_PulseOutput_Trapezoidal_Type0_DUT (maximum speed = first target speed) or
F171_PulseOutput_Trapezoidal_Type1_DUT (maximum speed = 50kHz).

The target speed can be changed during pulse output. Two control methods are available:

 Type 0: The speed can be changed within the range of the target speed specified
first.

 Type 1: The speed can be changed within the range of the maximum speed
(50kHz).

Pulse output instructions

1048

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

The following parameters can be specified in the DUT:

 Control code

 Initial and final speed

 Target speed

 Acceleration time

 Deceleration time

 Target value

Pulse output characteristics

1

2

3 4 4

5

6

7

8

t

f

1 Initial and final speed 5 Target value

2 Target speed 6 Pulse output control flag

3 Acceleration time 7 Execution condition

4 Deceleration time 8 Decelerated stop request

Type 0: The difference between target speed and initial speed determines the slope of the
acceleration ramp. The difference between target speed and final speed determines the slope of
the deceleration ramp.

Type 1: The difference between the maximum speed of 50kHz and the initial speed determines the
slope of the acceleration ramp. The difference between the maximum speed of 50kHz and the final
speed determines the slope of the deceleration ramp.

Pulses are output using a duty of 25%.

With the pulse output method "pulse/direction", pulses are output approx. 300s after the direction
signal has been output; the motor driver characteristics are simultaneously taken into
consideration.

Decelerated stop

To perform a decelerated stop, set bit 5 of the data register storing the pulse output control code
from FALSE to TRUE (e.g. MOVE(16#120, sys_wHscOrPulseControlCode);).

When a decelerated stop is requested during acceleration, deceleration is performed with the same
slope as deceleration from the target speed.

 Pulse output instructions

1049

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Changing the target speed during pulse output

t

f

4 5

9

6 7

8

1

2

3

Type 1: The speed can be changed within the range of the maximum speed (50kHz).

1 Target speed 6 Deceleration

2 1st change of target speed 7 Deceleration time

3 2nd change of target speed 8 Pulse output control flag

4 Acceleration time 9 Execution condition

5 Acceleration

To change the speed, keep the execution condition TRUE.

Type 0: If a value larger than the target speed at start-up is specified, it will be corrected to the
target speed at start-up.
Type 1: If the target speed is set to a value larger than 50kHz, it will be corrected to 50kHz.

If the elapsed value crosses over the acceleration forbidden area starting position (e.g.
sys_diPulseChannel0AccelerationForbiddenAreaStartingPosition) during acceleration, acceleration
cannot be performed.

The deceleration speed cannot be lower than the corrected final speed.

General programming information

!

Warning!

As soon as you begin editing a program online (i.e., in
RUN mode) using this instruction, pulse output will
stop.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 When a pulse output instruction is executed and pulses are being output, the
pulse output control flag (e.g. sys_bIsPulseChannel0Active) of the corresponding
channel is TRUE. No other pulse output instruction can be executed as long as
this flag is TRUE.

 The instruction cannot be started when a decelerated stop has been requested.

 To restart after stopping the operation, turn the execution condition to FALSE
and then to TRUE again.

 The execution of the instruction is faster the second time it is started if the
positioning parameters remain unchanged. Changing the setting of the output
operation (pulse output or calculation only) does not effect this behavior.

 We strongly recommend that you incorporate a forced stop (see page 1021)
option in your positioning program.

Pulse output instructions

1050

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

REFERENCE

 Please refer to the FPWIN Pro online help for detailed information on using system variables.

Output relays and system variables for FP0R

PLC types Availability of F171_PulseOutput_Trapezoidal (see page 1322)

Variable Data type Function

s_dutDataTable FP-, FP-X:

F171_PulseOutput_Trapezoidal_DUT

FP0R:

F171_PulseOutput_Trapezoidal_Type0_DUT

F171_PulseOutput_Trapezoidal_Type1_DUT

Starting address of area containing the
data table

n_iPulseOutputChannel decimal constant Pulse output channel:

FP-: 0, 2

FP-X R: 0, 1

FP-X C14T: 0, 1, 2

FP-X C30T/C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

For Relay T/C Register Constant

s_dutDataTable - - - - - - DT - - -

n_iPulseOutputChannel - - - - - - - - - dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 channel number or values of the data table are outside the
permissible range

 initial speed > target speed

 FP0R/FP-X:pulse output has not been set in the system
registers

Data types

Operands

Error flags

 Pulse output instructions

1051

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

DUT The DUT F171_PulseOutput_Trapezoidal_DUT is predefined in the FP Library.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

IF DF(bMotorSwitch) THEN

 dutTrapez.diInitialAndFinalSpeed:=diInitialSpeed;

 dutTrapez.diTargetSpeed:=diTargetSpeed;

 dutTrapez.diAccelerationDecelerationTime:=diAccelerationTime;

 dutTrapez.diDeviationCounterClearSignalOutputTime:=10;

END_IF;

IF DF(bMotorSwitch) THEN

 F171_PulseOutput_Trapezoidal(s_dutDataTable := dutTrapez,

 n_iPulseOutputChannel := 0);

END_IF;

Pulse output instructions

1052

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F171_PulseOutput_
Home

Home return

Description

See also:

 PulseOutput_Home_FB (see page 1176)

 PulseControl_NearHome (see page 1209)

After a drive system has been switched on, there is a difference between the internal position value
(elapsed value) and the mechanical position of the axis; this difference cannot be predetermined.
The internal value must be synchronized with the actual position value of the axis. This is done by
means of a home return, during which a position value is registered at a known reference point
(home).

During execution of a home return instruction, pulses are continuously output until the home input
is enabled. The I/O allocation is determined by the channel used.

To decelerate movement when near the home position, designate a near home input and set bit 4
of the special data register storing the pulse output control code (sys_wHscOrPulseControlCode) to
TRUE and back to FALSE again.

The deviation counter clear output can be set to TRUE when home return has been completed.

The value in the elapsed value area during a home return differs from the current value. When the
return is completed, the elapsed value changes to 0.

Select one of two different operation modes:

 Type 1: The home input is effective regardless of whether or not there is a near
home input, whether deceleration is taking place, or whether deceleration has
been completed.

Without near home input:

�

�

�f

t
0Hz

With near home input:

f

t

�

�

� �

�

0Hz

1 Initial and final speed 3 Near home input: TRUE

2 Target speed 4 Home input: TRUE

5 Home input is effective at any time.

This instruction performs a home return according to the parameters in the specified DUT. Pulses
are output from the specified channel when the control flag for this channel is FALSE and the
execution condition is TRUE.

 Pulse output instructions

1053

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 Type 2: The home input is effective only after deceleration (started by near home
input) has been completed.

f

t

�

�

� �

�

0Hz

1 Initial and final speed 3 Near home input: TRUE

2 Target speed 4 Home input: TRUE

5 Home input is effective only after deceleration

Use the following predefined DUT: F171_PulseOutput_Home_DUT

The following parameters can be specified in the DUT:

 Control code

 Initial and final speed

 Target speed

 Acceleration/deceleration time

 Deviation counter clear signal

Pulse output characteristics

 The pulse output frequency changes according to the specified
acceleration/deceleration time.

 The difference between target and initial speed determines the slope of the
ramps.

General programming information

 Even when home input has occurred, executing this instruction causes pulse
output to begin.

 If the near home input is enabled while acceleration is in progress, deceleration
will start.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 The deviation counter clear signal is allocated to dedicated output numbers
specific to each PLC type.

 When programs are being edited in RUN mode, pulse output stops but resumes
after the program changes have been downloaded.

 FP-X: When a pulse output instruction is executed and pulses are being output,
the pulse output control flag (e.g. sys_bIsPulseChannel0Active) of the
corresponding channel is TRUE. No other pulse output instruction can be
executed as long as this flag is TRUE.

 FP: The high-speed counter control flag (e.g.
sys_bIsHscChannel0ControlActive) and the pulse output control flag (e.g.
sys_bIsPulseChannel0Active) are assigned to the same internal relay (e.g.
R903A). Therefore, when a high-speed counter instruction or a pulse output
instruction is executed, both the high-speed counter control flag (e.g.
sys_bIsHscChannel0ControlActive) and the pulse output control flag (e.g.
sys_bIsPulseChannel0Active) for the channel used are TRUE. No other
high-speed counter instruction or pulse output instruction can be executed as
long as this flag is TRUE.

Pulse output instructions

1054

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 FP: Set any high-speed counter allocated to a pulse output channel to "Unused"
in the system registers.

 FP-X: Set "Pulse output" for the desired channel in the system registers.

 FP: Executing the circular interpolation control instruction F176 sets the circular
interpolation control flag (sys_bIsCircularInterpolationActive) to TRUE. The status
of this flag is maintained until the target value is reached (even if the execution
condition is no longer TRUE). During this time, other pulse output instructions
cannot be executed.

 We strongly recommend that you incorporate a forced stop (see page 1021)
option in your positioning program.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

PLC types Availability of F171_PulseOutput_Home (see page 1322)

Variable Data type Function

s_dutDataTable F171_PulseOutput_Home_DUT Starting address of area containing the data table

n_iPulseOutputChannel decimal constant Pulse output channel:

FP-: 0, 2

FP-X R: 0, 1

FP-X C14T: 0, 1, 2

FP-X C30T/C60T: 0, 1, 2, 3

For Relay T/C Register Constant

s_dutDataTable - - - - - - DT - - -

n_iPulseOutputChannel - - - - - - - - - dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 channel number or values of the data table are outside the
permissible range

 initial speed > target speed

 FP-X: pulse output has not been set in the system registers

Data types

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

GVL In the global variable list, you define variables that can be accessed by all POUs in the project.

DUT The DUT F171_PulseOutput_Home_DUT is predefined in the FP Library.

 Pulse output instructions

1055

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

IF DF(X0_bMotorSwitch) THEN

 dutHome.diInitialAndFinalSpeed:=diInitialSpeed;

 dutHome.diTargetSpeed:=diTargetSpeed;

 dutHome.diAccelerationDecelerationTime:=diAccelerationTime;

 dutHome.diDeviationCounterClearSignalOutputTime:=10;

END_IF;

(*Example for home position return*)

IF DF(X0_bMotorSwitch) THEN

 F171_PulseOutput_Home(s_dutDataTable := dutHome,

 n_iPulseOutputChannel := 0);

END_IF;

Pulse output instructions

1056

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F171_PulseOutput_
Jog_Positioning

JOG operation and positioning

See also:

 PulseOutput_Jog_Positioning0_FB (see page 1181)

 PulseOutput_Jog_Positioning1_FB (see page 1184)

 PulseControl_JogPositionControl (see page 1208)

Select one of two different operation modes:

Type 0: The speed can be changed within the range of the specified target speed.
Type 1: The target speed can be changed once when the position control trigger input turns to
TRUE.

Pulse output characteristics

t

f

1

2

3

4 5

6

7

8
1 Initial and final speed 5 Deceleration time

2 Target speed 6 Execution condition

3 Target value 7 Position control trigger input

4 Acceleration time 8 Pulse output control flag

 The pulse output frequency changes according to the specified acceleration time
and the specified deceleration time.

 The difference between target speed and initial speed determines the slope of
the acceleration ramp.

 The difference between target speed and final speed determines the slope of the
deceleration ramp.

 After the position control trigger input has turned to TRUE, pulse output
continues, then decelerates and stops when the target value is reached.

Description The specified number of pulses is output after the position control trigger input has turned to TRUE.
A deceleration is performed before the target value is reached and pulse output stops. Pulses are
output from the specified channel when the control flag for this channel is FALSE and the execution
condition is TRUE.

 Pulse output instructions

1057

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Stopping pulse output

Pulse output can be stopped by one of the following operations:

 Turning the position control trigger to TRUE (pulse output continues until the
target value has been reached and deceleration has completed): The position
control trigger can be started by turning a position control trigger input to TRUE
or by setting bit 6 of the data register storing the pulse output control code from
FALSE to TRUE (e.g. MOVE(16#140, sys_wHscOrPulseControlCode);).

 Requesting a decelerated stop: To perform a decelerated stop, set bit 5 of the
data register storing the pulse output control code from FALSE to TRUE (e.g.
MOVE(16#120, sys_wHscOrPulseControlCode);). When a decelerated
stop is requested during acceleration, deceleration is performed with the same
slope as deceleration from the target speed.

 Executing an emergency stop: To perform an emergency stop, set bit 3 of the
data register storing the pulse output control code from FALSE to TRUE (e.g.
MOVE(16#108, sys_wHscOrPulseControlCode);).

Note: When stopping, disable all pulse output functions for the channel used in the program.

 JOG Operation Type 0

Use the following predefined DUT:
F171_PulseOutput_Jog_Positioning_Type0_DUT

The following parameters can be specified in the DUT:

 Control code

 Initial and final speed

 Target speed

 Acceleration time

 Deceleration time

 Target value

The target speed can be changed during pulse output.

Changing the target speed during pulse output
Without changing the target speed: With changing the target speed:

t

f

1

2

3

4 5

6

7

8

t

f

1

2

3

4 5

6

7

8

1 Initial and final speed 5 Deceleration time

2 Target speed 6 Execution condition

3 Target value 7 Position control trigger input

4 Acceleration time 8 Pulse output control flag

Pulse output instructions

1058

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 To change the speed, keep the execution condition TRUE.

 If the target speed is set to a value larger than 50kHz, it will be corrected to
50kHz.

 If the elapsed value crosses over the acceleration forbidden area starting position
(e.g. sys_diPulseChannel0AccelerationForbiddenAreaStartingPosition) during
acceleration, acceleration cannot be performed.

 The deceleration speed cannot be lower than the corrected final speed.

 Changing the target speed is not possible if the instruction is executed in an
interrupt program.

 JOG Operation Type 1

Use the following predefined DUT:
F171_PulseOutput_Jog_Positioning_Type1_DUT

The following parameters can be specified in the DUT:

 Control code

 Initial and final speed

 Target speed 1

 Acceleration time

 Target speed 2

 Change time

 Deceleration time

 Target value
Target speed 1 < target speed 2: Target speed 1 > target speed 2:

t

f

1

2

3

4

5 6 7

8

9

t

f

1

2
3

4

5 6 7

8

9

1 Initial and final speed 6 Change time

2 Target speed 1 7 Deceleration time

3 Target speed 2 8 Execution condition

4 Target value 9 Position control trigger input

5 Acceleration time

After the position control trigger input has turned to TRUE, the pulse output frequency will change
using the change time to accelerate or decelerate to target speed 2. Further target speed changes
are not possible. The position control trigger input will be disregarded if it is turned on during
acceleration.

 Pulse output instructions

1059

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

General programming information

!

Warning!

As soon as you begin editing a program online (i.e., in
RUN mode) using this instruction, pulse output will
stop.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 When a pulse output instruction is executed and pulses are being output, the
pulse output control flag (e.g. sys_bIsPulseChannel0Active) of the corresponding
channel is TRUE. No other pulse output instruction can be executed as long as
this flag is TRUE.

 Set the position control trigger input (X0, X1, X2, X3) in system register 402.

 For the position control trigger input, only the rising edge (TRUE) is detected.

 The instruction cannot be started when a decelerated stop has been requested.

 To restart after stopping the operation, turn the execution condition to FALSE
and then to TRUE again.

 We strongly recommend that you incorporate a forced stop (see page 1021)
option in your positioning program.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

PLC types Availability of F171_PulseOutput_Jog_Positioning (see page 1322)

Variable Data type Function

s_DUT_DataTable F171_PulseOutput_Jog_Positioning_Type0_DUT or

F171_PulseOutput_Jog_Positioning_Type1_DUT

Starting address of area containing
the data table

n_iPulseOutputChannel decimal constant Pulse output channel: 0–3

For Relay T/C Register Constant

s_dutDataTable - - - - - - DT - - -

n_iPulseOutputChannel - - - - - - - - - dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 the same channel is started twice

 channel number or values of the data table are outside the
permissible range

 initial speed > target speed

 pulse output has not been set in the system registers

Data types

Operands

Error flags

Pulse output instructions

1060

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

DUT The DUT F171_PulseOutput_Jog_Positioning_Type0_DUT is predefined in the FP Library.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

IF (Start) THEN

 dutJog.diInitialAndFinalSpeed:=diInitialAndFinalSpeed;

END_IF;

IF (Start) THEN

 F171_PulseOutput_Jog_Positioning(s_dutDataTable := dutJog, 0);

END_IF;

 Pulse output instructions

1061

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F172_PulseOutput_
Jog

JOG operation

See also:

 PulseOutput_Jog_FB (see page 1179)

 PulseOutput_Jog_TargetValue_FB (see page 1186)

 Description for FP-Sigma, FP-X

Use the following predefined DUT:
F172_PulseOutput_Jog_Type0_DUT_0 (Mode with no target value) or
F172_PulseOutput_Jog_Type1_DUT_0 (Target value match stop mode)

The following parameters can be specified in the DUT:

 Control code

 Frequency

 Target value

Pulse output characteristics

The frequency and the target value can be changed in each scan. The control code, however,
cannot be changed during execution of the instruction.

Select one of two different operation modes:

 Mode with no target value (type 0): Pulses are output in accordance with the
conditions set in the DUT as long as the execution condition is TRUE.

300Hz

0Hz

TRUE

FALSE�

�

1 Execution condition

2 CW pulse output

Description This instruction is used for JOG operation. Pulses are output from the specified channel when the
control flag for this channel is FALSE and the execution condition is TRUE.

Pulse output instructions

1062

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 Target value match stop mode (type 1): Output stops when the target value is
reached. Set this mode in the control code, and specify the target value (an
absolute value) in the DUT. (FP V1.4 or higher, FP-X)

300Hz

0Hz

TRUE

FALSE�

�

�
1 Execution condition

2 CW pulse output

3 Target value reached (pulse output stops)

General programming information

!

Warning!

As soon as you begin editing a program online (i.e., in
RUN mode) using this instruction, pulse output will
stop.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 FP-X: When a pulse output instruction is executed and pulses are being output,
the pulse output control flag (e.g. sys_bIsPulseChannel0Active) of the
corresponding channel is TRUE. No other pulse output instruction can be
executed as long as this flag is TRUE.

 FP: The high-speed counter control flag (e.g.
sys_bIsHscChannel0ControlActive) and the pulse output control flag (e.g.
sys_bIsPulseChannel0Active) are assigned to the same internal relay (e.g.
R903A). Therefore, when a high-speed counter instruction or a pulse output
instruction is executed, both the high-speed counter control flag (e.g.
sys_bIsHscChannel0ControlActive) and the pulse output control flag (e.g.
sys_bIsPulseChannel0Active) for the channel used are TRUE. No other
high-speed counter instruction or pulse output instruction can be executed as
long as this flag is TRUE.

 FP: Executing the circular interpolation control instruction F176 sets the circular
interpolation control flag (sys_bIsCircularInterpolationActive) to TRUE. The status
of this flag is maintained until the target value is reached (even if the execution
condition is no longer TRUE). During this time, other pulse output instructions
cannot be executed.

 FP: Set any high-speed counter allocated to a pulse output channel to "Unused"
in the system registers.

 FP-X: Set "Pulse output" for the desired channel in the system registers.

 If the execution of the instruction is started with an invalid frequency value, an
operation error occurs. If the frequency is changed to an invalid value during
execution of the instruction, the frequency output will be adjusted to either the
minimum or the maximum value of the permissible range.

 Changing the control code during execution of the instruction will have no effect.

 We strongly recommend that you incorporate a forced stop (see page 1021)
option in your positioning program.

 Pulse output instructions

1063

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

Description for FP0R

Use the following predefined DUT:
F172_PulseOutput_Jog_Type0_DUT_1 (Mode with no target value) or
F172_PulseOutput_Jog_Type1_DUT_1 (Target value match stop mode)

The following parameters can be specified in the DUT:

 Control code

 Initial and final speed

 Target speed

 Acceleration time

 Deceleration time

 Target value

Pulse output characteristics

t

f

1

2

3

4
1 Target speed 1 3 Pulse output control flag

2 Target speed 2 4 Execution condition

 The pulse output frequency changes according to the specified acceleration time
and the specified deceleration time.

 The difference between the maximum speed of 50kHz and the initial speed
determines the slope of the acceleration ramp.

 The difference between the maximum speed of 50kHz and the final speed
determines the slope of the deceleration ramp.

 When the execution condition turns to FALSE after starting the instruction, a
decelerated stop is performed.

 When the execution condition turns to TRUE during deceleration, acceleration is
performed again.

 The target speed can be changed during pulse output.

 Pulses are output using a duty of 25%.

 With the pulse output method "pulse/direction", pulses are output approx. 300s
after the direction signal has been output; the motor driver characteristics are
simultaneously taken into consideration.

 When a decelerated stop is requested during acceleration, deceleration is
performed with the same slope as deceleration from the target speed.

 Acceleration time and deceleration time have priority over initial speed and final

Pulse output instructions

1064

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

speed. This means that the values for acceleration time and deceleration time
will not be changed whereas the values for initial speed and final speed may be
corrected by the pulse output instruction to enable acceleration and deceleration
within the specified time. The modified values are written to data registers which
can be accessed using the system variables
sys_iPulseChannelxCorrectedInitialSpeed and
sys_iPulseChannelxCorrectedFinalSpeed (where x=channel number).

Select one of two different operation modes:

 Mode with no target value (type 0): Pulses are output in accordance with the
conditions set in the DUT as long as the execution condition is TRUE. A
decelerated stop begins whenever the execution condition is FALSE.

t

f

1

23

4

5

2

5

1 Initial and final speed 4 Pulse output control flag

2 Change of target speed 5 Decelerated stop

3 Execution condition

 Target value match stop mode (type 1): Output stops when the target value is
reached. Set this mode in the control code, and specify the target value (an
absolute value) in the DUT. A decelerated stop is performed when the target
value has been reached. Deceleration is performed within the specified
deceleration time.

t

f

1

23

4

2

5

6

1 Initial and final speed 4 Pulse output control flag

2 Change of target speed 5 Target value

3 Execution condition 6 Deceleration time

Changing the target speed during pulse output

 If the elapsed value crosses over the acceleration forbidden area starting position
(e.g. sys_diPulseChannel0AccelerationForbiddenAreaStartingPosition) during
acceleration, acceleration cannot be performed.

 The deceleration speed cannot be lower than the corrected final speed.

 Pulse output instructions

1065

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

General programming information

!

Warning!

As soon as you begin editing a program online (i.e., in
RUN mode) using this instruction, pulse output will
stop.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 When a pulse output instruction is executed and pulses are being output, the
pulse output control flag (e.g. sys_bIsPulseChannel0Active) of the corresponding
channel is TRUE. No other pulse output instruction can be executed as long as
this flag is TRUE.

 Changing the control code during execution of the instruction will have no effect.

 We strongly recommend that you incorporate a forced stop (see page 1021)
option in your positioning program.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

REFERENCE

 Please refer to the FPWIN Pro online help for detailed information on using system variables.

Output relays and system variables for FP0R

PLC types Availability of F172_PulseOutput_Jog (see page 1322)

Variable Data type Function

s_dutDataTable FP-, FP-X:

F172_PulseOutput_Jog_Type0_DUT_0

F172_PulseOutput_Jog_Type1_DUT_0

FP0R:

F172_PulseOutput_Jog_Type0_DUT_1

F172_PulseOutput_Jog_Type1_DUT_1

Starting address of area containing the data
table

n_iPulseOutputChannel decimal constant Pulse output channel:

FP-: 0, 2

FP-X R: 0, 1

FP-X C14T: 0, 1, 2

FP-X C30T/C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

Data types

Pulse output instructions

1066

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s_dutDataTable - - - - - - DT - - -

n_iPulseOutputChannel - - - - - - - - - dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 channel number or values of the data table are outside the
permissible range

 FP0R/FP-X: pulse output has not been set in the system registers

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

DUT The DUT F172_PulseOutput_Jog_Type0_DUT_0 is predefined in the FP Library.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

IF (bActivateJog) THEN

 dutJog.diSpeed:=diSpeed;

END_IF;

IF (bActivateJog) THEN

 F172_PulseOutput_Jog(s_dutDataTable := dutJog, 0);

END_IF;

 Pulse output instructions

1067

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F173_PulseOutput_
PWM

PWM output

Use the following predefined DUT: F173_PulseOutput_PWM_DUT

The following parameters can be specified in the DUT:

 Approximate frequency

 Duty ratio (for pulse duration and period)

General programming information

!

Warning!

As soon as you begin editing a program online (i.e., in
RUN mode) using this instruction, pulse output will
stop.

 The duty ratio, particularly when it is close to the minimum or maximum value,
may differ from the specified duty ratio, depending on the load voltage and the
load current.

 The duty ratio can be changed for each scan.

 The frequency constant K cannot be changed during execution of the instruction.
If it is changed, it will have no effect on the frequency but on the resolution of the
duty ratio.

 If the duty ratio is changed to a value outside the permissible range while the
instruction is being executed, the duty ratio is adjusted to the maximum value.
When execution of the instruction begins, an operation error is displayed.

 If the frequency is changed to a value outside the permissible range while the
instruction is being executed, the resolution is adjusted to 100. When execution
of the instruction begins, no operation error is displayed.

 If the duty is changed to 100% or higher while the instruction is being executed,
the frequency is adjusted to the maximum value at the specified resolution. When
execution of the instruction begins, no operation error is displayed.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 FP-X, FP0R: When a pulse output instruction is executed and pulses are being
output, the pulse output control flag (e.g. sys_bIsPulseChannel0Active) of the
corresponding channel is TRUE. No other pulse output instruction can be
executed as long as this flag is TRUE.

 FP: The high-speed counter control flag (e.g.
sys_bIsHscChannel0ControlActive) and the pulse output control flag (e.g.
sys_bIsPulseChannel0Active) are assigned to the same internal relay (e.g.
R903A). Therefore, when a high-speed counter instruction or a pulse output

Description This instruction delivers a pulse width modulated output signal according to the specified DUT.
Pulses are output from the specified channel when the control flag for this channel is FALSE and
the execution condition is TRUE.

Pulse output instructions

1068

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

instruction is executed, both the high-speed counter control flag (e.g.
sys_bIsHscChannel0ControlActive) and the pulse output control flag (e.g.
sys_bIsPulseChannel0Active) for the channel used are TRUE. No other
high-speed counter instruction or pulse output instruction can be executed as
long as this flag is TRUE.

 FP: Executing the circular interpolation control instruction F176 sets the circular
interpolation control flag (sys_bIsCircularInterpolationActive) to TRUE. The status
of this flag is maintained until the target value is reached (even if the execution
condition is no longer TRUE). During this time, other pulse output instructions
cannot be executed.

 FP: Set any high-speed counter allocated to a pulse output channel to "Unused"
in the system registers.

 FP-X, FP0R: Set "PWM output" for the desired channel in the system registers.

 We strongly recommend that you incorporate a forced stop (see page 1021)
option in your positioning program.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

PLC types Availability of F173_PulseOutput_PWM (see page 1322)

Variable Data type Function

s_dutDataTable F173_PulseOutput_PWM_DUT Starting address of area containing the data table

n_iPulseOutputChannel decimal constant Pulse output channel:

FP-: 0, 2

FP-X R: 0, 1

FP-X C14T: 0, 1, 2

FP-X C30T/C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

For Relay T/C Register Constant

s_dutDataTable - - - - - - DT - - -

n_iPulseOutputChannel - - - - - - - - - dec. or hex.

Data types

Operands

 Pulse output instructions

1069

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 channel number or values of the data table are outside the
permissible range (when executing the instruction for the first
time)

 FP0R/FP-X: pulse output has not been set in the system
registers

END_IF;

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

GVL In the global variable list, you define variables that can be accessed by all POUs in the project.

DUT The DUT F173_PulseOutput_PWM_DUT is predefined in the FP Library.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

IF (X6_bEnablePWM) THEN

 dutPWMControl.iPulseWidthModulationDuty:=iPulseWidthModulationDuty;

END_IF;

IF (X6_bEnablePWM) THEN

 F173_PulseOutput_PWM(s_dutDataTable := dutPWMControl,

 n_iPulseOutputChannel := 2);

Pulse output instructions

1070

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F174_PulseOutput_
DataTable

Data table control

Create your own DUT using the following DUT as a sample:
F174_PulseOutput_DataTable_8_Values_DUT

The following parameters can be specified in the DUT:

 Control code

 Frequency 1

 Target value 1

 Frequency 2

 Target value 2

 ...

 Frequency n

 Target value n

 Pulse stop

Pulse output characteristics

1000

2500

5000

x

f [Hz]

1000 3000 8000 100000

1

2
x Elapsed value of high-speed counter (amount of travel)

1 Execution condition

2 Pulse output control flag

 Pulses are output at the specified frequency until the target value is reached.
Then the frequency changes to the second frequency value and pulse output
continues until the second target value is reached, and so forth.

 Pulse output stops when the last target value is reached.

 A frequency of 0 signifies the final frequency and stops pulse output.

General programming information

 FP-X, FP0R: When a pulse output instruction is executed and pulses are being
output, the pulse output control flag (e.g. sys_bIsPulseChannel0Active) of the
corresponding channel is TRUE. No other pulse output instruction can be

Description This instruction performs rectangular control according to the parameters in the specified DUT with
an arbitrary number of different speeds and target values. Pulses are output from the specified
channel when the control flag for this channel is FALSE and the execution condition is TRUE.

 Pulse output instructions

1071

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

executed as long as this flag is TRUE.

 FP: The high-speed counter control flag (e.g.
sys_bIsHscChannel0ControlActive) and the pulse output control flag (e.g.
sys_bIsPulseChannel0Active) are assigned to the same internal relay (e.g.
R903A). Therefore, when a high-speed counter instruction or a pulse output
instruction is executed, both the high-speed counter control flag (e.g.
sys_bIsHscChannel0ControlActive) and the pulse output control flag (e.g.
sys_bIsPulseChannel0Active) for the channel used are TRUE. No other
high-speed counter instruction or pulse output instruction can be executed as
long as this flag is TRUE.

 If the value of the first frequency specified is out of range, an operation error
occurs. (If the value of the first frequency is 0, operation stops without any pulses
having been output.)

 If the value of the second frequency specified is out of range or 0, pulse output
stops.

 If the target value is out of range, the number of pulses output may be different
from the specified value.

 FP: Executing the circular interpolation control instruction F176 sets the circular
interpolation control flag (sys_bIsCircularInterpolationActive) to TRUE. The status
of this flag is maintained until the target value is reached (even if the execution
condition is no longer TRUE). During this time, other pulse output instructions
cannot be executed.

 FP: Set any high-speed counter allocated to a pulse output channel to "Unused"
in the system registers.

 FP, FP-X: If a periodic interrupt or high-speed counter interrupt program is run,
or the PLC link function is used at the same time, a frequency of 80kHz or less
should be used.

 FP-X: Set "Pulse output" for the desired channel in the system registers.

 When programs are being edited in RUN mode, pulse output stops but resumes
after the program changes have been downloaded.

 We strongly recommend that you incorporate a forced stop (see page 1021)
option in your positioning program.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

PLC types Availability of F174_PulseOutput_DataTable (see page 1322)

Variable Data type Function

s_dutDataTable ANY_DUT Starting address of area containing the data table
Sample: F174_PulseOutput_DataTable_8_Values_DUT

n_iPulseOutputChannel decimal
constant

Pulse output channel:

FP-: 0, 2

FP-X R: 0, 1

FP-X C14T: 0, 1, 2

FP-X C30T/C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

Data types

Pulse output instructions

1072

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

For Relay T/C Register Constant

s_dutDataTable - - - - - - DT - - -

n_iPulseOutputChannel - - - - - - - - - dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 channel number or values of the data table are outside the permissible
range

 frequency 1 is outside the permissible range

 FP0R/FP-X: pulse output has not been set in the system registers

END_IF;

Operands

Error flags

Example In this example the function is programmed in ladder diagram (LD). The same POU header is used
for all programming languages.

GVL In the global variable list, you define variables that can be accessed by all POUs in the project.

DUT The DUT F174_PulseOutput_DataTable_8_Values_DUT is predefined in the FP Library and can
be used as a sample.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

IF DF(X0_bMotorSwitch) THEN

 F174_PulseOutput_DataTable(s_dutDataTable := dutDataTable4, 4);

 Pulse output instructions

1073

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F175_PulseOutput_
Linear

Linear interpolation

See also: PulseOutput_Linear_FB (see page 1189)

 Description for FP-Sigma, FP-X (for the FP0R, please see on page 1074)

Use the following predefined DUT: F175_PulseOutput_Linear_DUT_0

The following parameters can be specified in the DUT:

 Control code

 Initial and final speed

 Target speed

 Acceleration/deceleration time

 X-axis target value

 Y-axis target value

The following parameters for each axis are calculated upon execution of the instruction and stored
in the operation result area of the DUT.

 X-axis initial and final speed

 X-axis target speed

 Y-axis initial and final speed

 Y-axis target speed

 X-axis frequency range

 Y-axis frequency range

 X-axis number of acceleration/deceleration steps

 Y-axis number of acceleration/deceleration steps

Pulse output characteristics

5000

2000

y

x
5000 X-axis target value (channel 0)

2000 Y-axis target value (channel 2) (FP-X: channel 1)

The two axes are controlled so that a linear path is followed to the target position.

Description Pulses are output from two channels in accordance with the parameters in the specified DUT, so
that the path to the target position forms a straight line. Pulses are output from the specified
channel when the control flag for this channel is FALSE and the execution condition is TRUE.

Pulse output instructions

1074

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

General programming information

 The target value for each axis must be within the range of -8388608–8388607.
When this instruction is used in combination with other pulse output instructions,
e.g. F171_PulseOutput_Trapezoidal (see page 1045), the target value in these
instructions must be within the same range.

 When using in applications requiring precision, test runs with the actual machine
are necessary.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 FP-X: When a pulse output instruction is executed and pulses are being output,
the pulse output control flag (e.g. sys_bIsPulseChannel0Active) of the
corresponding channel is TRUE. No other pulse output instruction can be
executed as long as this flag is TRUE.

 FP: The high-speed counter control flag (e.g.
sys_bIsHscChannel0ControlActive) and the pulse output control flag (e.g.
sys_bIsPulseChannel0Active) are assigned to the same internal relay (e.g.
R903A). Therefore, when a high-speed counter instruction or a pulse output
instruction is executed, both the high-speed counter control flag (e.g.
sys_bIsHscChannel0ControlActive) and the pulse output control flag (e.g.
sys_bIsPulseChannel0Active) for the channel used are TRUE. No other
high-speed counter instruction or pulse output instruction can be executed as
long as this flag is TRUE.

 FP: Executing the circular interpolation control instruction F176 sets the circular
interpolation control flag (sys_bIsCircularInterpolationActive) to TRUE. The status
of this flag is maintained until the target value is reached (even if the execution
condition is no longer TRUE). During this time, other pulse output instructions
cannot be executed.

 FP: Set any high-speed counter allocated to a pulse output channel to "Unused"
in the system registers.

 FP-X: Set "Pulse output" for the desired channel in the system registers.

 When programs are being edited in RUN mode, pulse output stops but resumes
after the program changes have been downloaded.

 We strongly recommend that you incorporate a forced stop (see page 1021)
option in your positioning program.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

REFERENCE

 Please refer to the FPWIN Pro online help for detailed information on using system variables.

 Description for FP0R

Use the following predefined DUT: F175_PulseOutput_Linear_DUT_1

The following parameters can be specified in the DUT:

General programming information

 Control code

 Pulse output instructions

1075

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 Initial and final speed

 Target speed

 Acceleration time

 Deceleration time

 X-axis target value

 Y-axis target value

The following parameters for each axis are calculated upon execution of the instruction and stored
in the operation result area of the DUT.

 X-axis initial and final speed

 X-axis target speed

 Y-axis initial and final speed

 Y-axis target speed

Pulse output characteristics

5000

2000

y

x

5000 X-axis target value (channel 0)

2000 Y-axis target value (channel 1)

Pulses are output from the X-axis (channel 0) and the Y-axis (channel 1), so that the initial speed is
500Hz, the target speed is 5kHz, and the acceleration time and deceleration time is 300ms. The
two axes are controlled so that a linear path is followed to the target position.

Pulses are output using a duty of 25%.

With the pulse output method "pulse/direction", pulses are output approx. 300s after the direction
signal has been output; the motor driver characteristics are simultaneously taken into
consideration.

General programming information

 Pulse output stops when the target value is reached.

 The target value for each axis must be within the range of -8388608–8388607.
When this instruction is used in combination with other pulse output instructions,
e.g. F171_PulseOutput_Trapezoidal (see page 1045), the target value in these
instructions must be within the same range.

 When using in applications requiring precision, test runs with the actual machine
are necessary.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 When a pulse output instruction is executed and pulses are being output, the
pulse output control flag (e.g. sys_bIsPulseChannel0Active) of the corresponding
channel is TRUE. No other pulse output instruction can be executed as long as
this flag is TRUE.

 When programs are being edited in RUN mode, pulse output stops but resumes
after the program changes have been downloaded.

Pulse output instructions

1076

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

 We strongly recommend that you incorporate a forced stop (see page 1021)
option in your positioning program.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

REFERENCE

 Please refer to the FPWIN Pro online help for detailed information on using system variables.

Output relays and system variables for FP0R

PLC types Availability of F175_PulseOutput_Linear (see page 1322)

Variable Data type Function

n_iPulseOutputChannel Constant Pulse output channel:

FP-: 0, 2

FP-X R: 0, 1

FP-X C14T: 0, 1, 2

FP-X C30T/C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

For interpolation, channel 0 and 1 or channel 2 and
3 are used as pairs. You may only specify 0 or 2 (for
C14T: 0 only).

s_dutDataTable FP-, FP-X:

F175_PulseOutput_Linear_DUT_0

FP0R:

F175_PulseOutput_Linear_DUT_1

Starting address of area containing the data table

For Relay T/C Register Constant

s_dutDataTable - - - - - - DT - - -

n_iPulseOutputChannel - - - - - - - - - dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 channel number or values of the data table are outside the
permissible range

 Fmin > Fmax

 Fmax > 100kHz

 FP-X C14T, C30/60T (using channel 2 and 3): Fmax > 20kHz

 Relative value control: [elapsed value + target value] is outside
the range of -8388608 to +8388607

 Absolute value control: target value is outside the range
of-8388608 to +8388607

 FP-X: pulse output has not been set in the system registers

Data types

Operands

Error flags

 Pulse output instructions

1077

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example the function is programmed in ladder diagram (LD). The same POU header is used
for all programming languages. This example is programmed for the FP-. The parameters for the
FP0R are only slightly different.

DUT The DUT F175_PulseOutput_Linear_DUT_0 is predefined in the FP Library.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

IF DF(bTrigger) THEN

 F175_PulseOutput_Linear(n_iPulseOutputChannel := 0,

 s_dutDataTable := dutLinearData);

END_IF;

Pulse output instructions

1078

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F176_PulseOutput_
Center

Circular interpolation (center position)

See also: PulseOutput_Center_FB (see page 1173)

Use the following predefined DUT: F176_PulseOutput_Center_DUT

The following parameters can be specified in the DUT:

 Control code

 Composite speed

 X-axis target value

 Y-axis target value

 X-axis center value

 Y-axis center value

The following parameters for each axis are calculated upon execution of the instruction and stored
in the operation result area of the DUT.

 Radius

Pulse output characteristics

X

Fy
Fv

Fx

r

Y

S(Xs, Ys)

O (Xo, Yo)

P (Xp, Yp)

E (Xe, Ye)

� �

θ

θ

1 Rotation direction: Reverse 2 Rotation direction: Forward

Fv: Composite speed O (Xo,Yo): Center position

Fx: X-axis speed S (Xs,Ys): Current position (Start)

Fy: Y-axis speed P (Xp,Yp) Pass position

r: Radius E (Xe,Ye) Target position (End)

Description Pulses are output from two channels in accordance with the parameters in the specified DUT, so
that the path to the target position forms an arc. The radius of the circle is calculated by specifying
the center position and the end position. Pulses are output from the specified channel when the
control flag for this channel is FALSE and the execution condition is TRUE.

 Pulse output instructions

1079

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

| Ye- Yo|

r

| Xe- Xo|
rFx= Fvsin θ= Fv Fy= Fvcosθ = Fv

Example: Let channel 0 be the X-axis and channel 2 be the Y-axis. The position control mode is
absolute value control.

The current position is (=60°, Xs=5000, Ys=8660). The center position O (Xo=0, Yo=0) is used as
a reference point. Pulses are output from the X-axis (channel 0) and the Y-axis (channel 2) at a
speed of Fv=2000Hz until the target position (=-30°, Xe=8660, Ye=-5000) is reached.

General programming information

 The execution condition for this instruction must be continually TRUE. When the
execution condition is FALSE, pulse output stops.

 The high-speed counter control flag (e.g. sys_bIsHscChannel0ControlActive) and
the pulse output control flag (e.g. sys_bIsPulseChannel0Active) are assigned to
the same internal relay (e.g. R903A). Therefore, when a high-speed counter
instruction or a pulse output instruction is executed, both the high-speed counter
control flag (e.g. sys_bIsHscChannel0ControlActive) and the pulse output control
flag (e.g. sys_bIsPulseChannel0Active) for the channel used are TRUE. No other
high-speed counter instruction or pulse output instruction can be executed as
long as this flag is TRUE.

 Executing the circular interpolation control instruction F176 sets the circular
interpolation control flag (sys_bIsCircularInterpolationActive) to TRUE. The status
of this flag is maintained until the target value is reached (even if the execution
condition is no longer TRUE). During this time, other pulse output instructions
cannot be executed. To restart circular interpolation, perform a forced stop (stop
pulse output (see page 1021)) to set the circular interpolation control flag
(sys_bIsCircularInterpolationActive) to FALSE.

 If "Continue" has been selected for the operation connection mode, use a special
flag (sys_bIsCircularInterpolationOverwritingPossible) to permit overwriting of the
target value. The relay is TRUE for one scan when the circular interpolation
instruction is executed.

 The target value for each axis must be within the range of -8388608–8388607.
When this instruction is used in combination with other pulse output instructions,
e.g. F171_PulseOutput_Trapezoidal (see page 1045), the target value in these
instructions must be within the same range.

 The accuracy of circular interpolation may degrade if the scan time is too long.

 Online editing during RUN mode is not available for this instruction.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 If you specify the same value for the current position and the target position, a
circle drawing operation will result.

 As there is no interpolation function for the home return, the home return should
be executed for each channel.

 When using in applications requiring precision, test runs with the actual machine
are necessary.

 Set any high-speed counter allocated to a pulse output channel to "Unused" in
the system registers.

 We strongly recommend that you incorporate a forced stop (see page 1021)
option in your positioning program.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

Pulse output instructions

1080

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Flag setting during command execution

�

�

�

�

�

a b c

d

e

c

e

1 Execution condition X0

2 Pulse output control flag, channel 0 (sys_bIsPulseChannel0Active)

3 Pulse output control flag, channel 2 (sys_bIsPulseChannel2Active)

4 Circular interpolation control flag (sys_bIsCircularInterpolationActive)

5 Target value overwriting possible flag (sys_bIsCircularInterpolationOverwritingPossible)

a Start

b Execution condition FALSE

c Target value reached

d Start continue mode

e 1 scan

PLC types Availability of F176_PulseOutput_Center (see page 1322)

Variable Data type Function

n_iPulseOutputChannel decimal constant Pulse output channel: 0, 2

s_dutDataTable F176_PulseOutput_Center_DUT Starting address of area containing the data table

For Relay T/C Register Constant

s_dutDataTable - - - - - - DT - - -

n_iPulseOutputChannel - - - - - - - - - dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 channel number or values of the data table are outside the
permissible range

 Relative value control: [elapsed value + target value] is outside
the range of -8388608 to +8388607

 Absolute value control: target value is outside the range
of-8388608 to +8388607

 center position O = end position E

 center position O = start position S

Data types

Operands

Error flags

 Pulse output instructions

1081

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example the function is programmed in ladder diagram (LD). The same POU header is used
for all programming languages.

DUT The DUT F176_PulseOutput_Center_DUT is predefined in the FP Library.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

IF DF(Trigger) THEN

 F176_PulseOutput_Center(n_iPulseOutputChannel := 0,

 s_dutDataTable := dutCenterData);

END_IF;

Pulse output instructions

1082

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F176_PulseOutput_
Pass

Circular interpolation (pass position)

See also: PulseOutput_Pass_FB (see page 1191)

Use the following predefined DUT: F176_PulseOutput_Pass_DUT

The following parameters can be specified in the DUT:

 Control code

 Composite speed

 X-axis target value

 Y-axis target value

 X-axis pass value

 Y-axis pass value

The following parameters for each axis are calculated upon execution of the instruction and stored
in the operation result area of the DUT.

 Radius

 X-axis center value

 Y-axis center value

Pulse output characteristics

X

Fy
Fv

Fx

r

Y

S(Xs, Ys)

O (Xo, Yo)

P (Xp, Yp)

E (Xe, Ye)

� �

θ

θ

1 Rotation direction: Reverse 2 Rotation direction: Forward

Fv: Composite speed O (Xo,Yo): Center position

Fx: X-axis speed S (Xs,Ys): Current position (start)

Fy: Y-axis speed P (Xp,Yp) Pass position

Description Pulses are output from two channels in accordance with the parameters in the specified DUT, so
that the path to the target position forms an arc. The center position and radius of the arc are
calculated by specifying the pass position and the end position. Pulses are output from the
specified channel when the control flag for this channel is FALSE and the execution condition is
TRUE.

 Pulse output instructions

1083

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

r: Radius E (Xe,Ye) Target position (End)

| Ye- Yo|

r

| Xe- Xo|
rFx= Fvsin θ= Fv Fy= Fvcosθ = Fv

Example: Let channel 0 be the X-axis and channel 2 be the Y-axis. The position control mode is
absolute value control.

The current position is (=60°, Xs=5000, Ys=8660). Pulses are output from the X-axis (channel 0)
and the Y-axis (channel 2) at a speed of Fv=2000Hz. When the pass position (=-20°, Xp=9396,
Yp=3420) has been passed and the target position has been reached, pulse output stops (=-30°,
Xe=8660, Ye=-5000).

General programming information

 The execution condition for this instruction must be continually TRUE. When the
execution condition is FALSE, pulse output stops.

 The high-speed counter control flag (e.g. sys_bIsHscChannel0ControlActive) and
the pulse output control flag (e.g. sys_bIsPulseChannel0Active) are assigned to
the same internal relay (e.g. R903A). Therefore, when a high-speed counter
instruction or a pulse output instruction is executed, both the high-speed counter
control flag (e.g. sys_bIsHscChannel0ControlActive) and the pulse output control
flag (e.g. sys_bIsPulseChannel0Active) for the channel used are TRUE. No other
high-speed counter instruction or pulse output instruction can be executed as
long as this flag is TRUE.

 Executing the circular interpolation control instruction F176 sets the circular
interpolation control flag (sys_bIsCircularInterpolationActive) to TRUE. The status
of this flag is maintained until the target value is reached (even if the execution
condition is no longer TRUE). During this time, other pulse output instructions
cannot be executed. To restart circular interpolation, perform a forced stop (stop
pulse output (see page 1021)) to set the circular interpolation control flag
(sys_bIsCircularInterpolationActive) to FALSE.

 If "Continue" has been selected for the operation connection mode, use a special
flag (sys_bIsCircularInterpolationOverwritingPossible) to permit overwriting of the
target value. The relay is TRUE for one scan when the circular interpolation
instruction is executed.

 The target value for each axis must be within the range of -8388608–8388607.
When this instruction is used in combination with other pulse output instructions,
e.g. F171_PulseOutput_Trapezoidal (see page 1045), the target value in these
instructions must be within the same range.

 The accuracy of circular interpolation may degrade if the scan time is too long.

 Online editing during RUN mode is not available for this instruction.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 As there is no interpolation function for the home return, the home return should
be executed for each channel.

 When using in applications requiring precision, test runs with the actual machine
are necessary.

 Set any high-speed counter allocated to a pulse output channel to "Unused" in
the system registers.

 We strongly recommend that you incorporate a forced stop (see page 1021)
option in your positioning program.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

Pulse output instructions

1084

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Flag setting during command execution

�

�

�

�

�

a b c

d

e

c

e

1 Execution condition X0

2 Pulse output control flag, channel 0 (sys_bIsPulseChannel0Active)

3 Pulse output control flag, channel 2 (sys_bIsPulseChannel2Active)

4 Circular interpolation control flag (sys_bIsCircularInterpolationActive)

5 Target value overwriting possible flag (sys_bIsCircularInterpolationOverwritingPossible)

a Start

b Execution condition FALSE

c Target value reached

d Start continue mode

e 1 scan

PLC types Availability of F176_PulseOutput_Pass (see page 1322)

Variable Data type Function

n_iPulseOutputChannel decimal constant Pulse output channel: 0, 2

s_dutDataTable F176_PulseOutput_Pass_DUT Starting address of area containing the data table

For Relay T/C Register Constant

s_dutDataTable - - - - - - DT - - -

n_iPulseOutputChannel - - - - - - - - - dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 channel number or values of the data table are outside the permissible
range

 Relative value control: [elapsed value + target value] is outside the
range of -8388608 to +8388607

 Absolute value control: target value is outside the range of-8388608 to
+8388607

 start position S = end position E

 start position S = pass position P

 pass position P = end position E

 start position S, pass position P, and end position E approximate a
straight line.

Data types

Operands

Error flags

 Pulse output instructions

1085

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

DUT The DUT F176_PulseOutput_Pass_DUT is predefined in the FP Library.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

IF DF(Trigger) THEN

 F176_PulseOutput_Pass(n_iPulseOutputChannel := 0,

 s_dutDataTable := dutPassData);

END_IF;

Pulse output instructions

1086

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

F177_PulseOutput_
Home

Home Return

Description

See also:

 PulseOutput_Home_FB (see page 1176)

 PulseControl_NearHome (see page 1209)

After a drive system has been switched on, there is a difference between the internal position value
(elapsed value) and the mechanical position of the axis; this difference cannot be predetermined.
The internal value must be synchronized with the actual position value of the axis. This is done by
means of a home return, during which a position value is registered at a known reference point
(home).

During execution of a home return instruction, pulses are continuously output until the home input
is enabled. The I/O allocation is determined by the channel used.

To decelerate movement when near the home position, designate a near home input and set bit 4
of the special data register storing the pulse output control code (sys_wHscOrPulseControlCode) to
TRUE and back to FALSE again.

The deviation counter clear output can be set to TRUE when home return has been completed.

Select one of two different operation modes:

 Type 0: The home input is effective regardless of whether or not there is a near
home input, whether deceleration is taking place, or whether deceleration has
been completed.

Without near home input:

�

�

�f

t
0Hz

With near home input:

f

t

2

0Hz

1

3

5

4

6

1 Initial speed 4 Home input: TRUE

2 Target speed 5 Creep speed

3 Near home input: TRUE 6 Home input is effective at any time.

 Type 1: The home input is effective only after deceleration (started by near home
input) has been completed.

This instruction performs a home return according to the parameters in the specified DUT. Pulses
are output from the specified channel when the control flag for this channel is FALSE and the
execution condition is TRUE.

 Pulse output instructions

1087

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

f

t0Hz

2

1

3

5

4

6

1 Initial speed 4 Home input: TRUE

2 Target speed 5 Creep speed

3 Near home input: TRUE 6 Home input is effective only after
deceleration

Use the following predefined DUT: F177_PulseOutput_Home_Type0_DUT or
F177_PulseOutput_Home_Type1_DUT

The following parameters can be specified in the DUT:

 Control code

 Initial speed

 Target speed

 Acceleration time

 Deceleration time

 Creep speed

 Deviation counter clear signal (output time)

Pulse output characteristics

 The pulse output frequency changes according to the specified acceleration time
and the specified deceleration time.

 The difference between target and initial speed determines the slope of the
ramps.

 Pulses are output using a duty of 25%.

 With the pulse output method "pulse/direction", pulses are output approx. 300s
after the direction signal has been output; the motor driver characteristics are
simultaneously taken into consideration.

 General programming information

 Set "Pulse output" for the desired channel in the system registers.

 Even when home input has occurred, executing this instruction causes pulse
output to begin.

 If the near home input is enabled while acceleration is in progress, deceleration
will start.

 The deviation counter clear signal is allocated to dedicated output numbers
specific to each PLC type.

 If both the main program and the interrupt program contain code for the same
channel, make sure both are not executed simultaneously.

 When a pulse output instruction is executed and pulses are being output, the
pulse output control flag (e.g. sys_bIsPulseChannel0Active) of the corresponding
channel is TRUE. No other pulse output instruction can be executed as long as
this flag is TRUE.

 When programs are being edited in RUN mode, pulse output stops but resumes
after the program changes have been downloaded.

 We strongly recommend that you incorporate a forced stop (see page 1021)

Pulse output instructions

1088

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

option in your positioning program.

 The status of the high-speed counter control flag or pulse output control flag may
change while a scan is being carried out. For example, if the flag is used more
than once as an input condition, different statuses may exist within one scan. To
ensure proper execution of the program, the status of the special internal relay
should be copied to a variable at the beginning of the program.

PLC types Availability of F177_PulseOutput_Home (see page 1322)

Variable Data type Function

s_dutDataTable F177_PulseOutput_Home_Type0_DUT or
F177_PulseOutput_Home_Type1_DUT

Starting address of area containing the
data table

n_iPulseOutputChannel decimal constant Pulse output channel: 0–3

For Relay T/C Register Constant

s_dutDataTable - - - - - - DT - - -

n_iPulseOutputChannel - - - - - - - - - dec. or hex.

No. IEC address Set If

R9007 %MX0.900.7 permanently

R9008 %MX0.900.8 for an instant

 channel number or values of the data
table are outside the permissible range

 initial speed > target speed

Data types

Operands

Error flags

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

GVL In the global variable list, you define variables that can be accessed by all POUs in the project.

DUT The DUT F177_PulseOutput_Home_Type1_DUT is predefined in the FP Library.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Pulse output instructions

1089

P
ar

t
III

F

P
 I

n
st

ru
ct

io
n

s

LD

ST When programming with structured text, enter the following:

IF DF(X0_bMotorSwitch) THEN

 dutHomeType1.diInitialSpeed:=diInitialSpeed;

 dutHomeType1.diTargetSpeed:=diTargetSpeed;

 dutHomeType1.diAccelerationTime:=diAccelerationTime;

 dutHomeType1.diDecelerationTime:=diDecelerationTime;

 dutHomeType1.diCreepSpeed:=diCreepSpeed;

 dutHomeType1.diDeviationCounterClearSignalOutputTime:=0;

END_IF;

(*Example for home position return*)

IF DF(X0_bMotorSwitch) THEN

 F177_PulseOutput_Home(s_dutDataTable := dutHomeType1,

 n_iPulseOutputChannel := 0);

END_IF;

Chapter 36

 Analog unit instructions

Analog unit instructions

1092

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Unit_AnalogInOut_
FP0_A21

Reads data from the FP0-A21 unit

Description

REFERENCE

The online help only provides a short overview of DIP switch settings and wiring. For technical
information, please refer to the manual FP0A21AnalogIOUnitTechnicalManual_ARCT1F390 on
your FPWIN Pro installation CD.

PLC types see page 1332

Input channel setting by DIP switches 1,2,3 and 5

0 – 5 V, 0 – 20 mA -10 – +10 V

averaging

ON

1

2

3

4

5

no
averaging,
see note 1

with
averaging,
see note 2

no averaging,
see note 1

with averaging,
see note 2

 Off On Off On Off On Off On

1

2

3

4

5

This function block reads data from the FP0-A21 unit.

 Analog unit instructions

1093

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Thermocouples, see notes 3, 4

K Type J Type T Type

Temperature
of terminal to
1000 °C

-100 °C to
Temperature
of terminal

Temperature
of terminal to
750 °C

-100 °C to
Temperature
of terminal

Temperature
of terminal to
350 °C

-100 °C to
Temperature of
terminal

ON

1

2

3

4

5

Off On Off On Off On Off On Off On Off On

1

2

3

4

5

 1. No averaging: Conversion data is set for the specified input contact point
area for each A/D conversion, on each channel.

2. With averaging: on each channel, for each A/D conversion, the maximum and
minimum values from the data of the last ten times are excluded, and the
data from the other eight times is averaged, and the result set.

3. If a thermocouple setting is used, averaging is carried out, regardless of the
switch settings.

4. After turning on the analog unit, 20 minutes are required for the transient
state to reach a measurement accuracy of 99%. During this time, deviations
of 10°C can occur.

99%

±10 °C

20 min
time

measurement accuracy

5. The DIP switch settings are read once at switching the CPU power to ON.
Changes of the DIP switches are not recognized until the next reset of the
CPU (power OFF ON).

Analog unit instructions

1094

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Input wiring

Voltage input Current input

V 0

I 0

V 1

I 1

COM

V

I

COM

IN

OUT

Input instrument
(CH1)

Input instrument
(CH0)

V 0

I 0

V 1

I 1

COM

V

I

COM

IN

OUT Input instrument
(CH1)

Input instrument
(CH0)

Connect input instrument between IN/V and IN/COM
terminal.

First, connect both IN/V terminal and IN/I terminal. And
then connect input instrument between it and

IN/COM terminal.

Thermocouple input

when measured at temperature higher than the
temperature of the terminal

when measured at temperature lower than the
temperature of the terminal

V 0

I 0

V 1

I 1

COM

V

I

COM

IN

OUT

(+)

(-)

(+)

Thermocouple
(CH0)

Thermocouple
(CH1)

V 0

I 0

V 1

I 1

COM

V

I

COM

IN

OUT

(-)

(+)

(-)

Thermocouple
(CH0)

Thermocouple
(CH1)

Connect IN/V terminal to the (+) side of the
thermocouple, and connect IN/COM terminal to the (-)
side of the thermocouple.

Connect IN/V terminal to the (-) side of the thermocouple,
and connect IN/COM terminal to the (+) side of the
thermocouple.

Output channel setting by DIP switch 4

 0 – 20 mA -10 – +10 V

 Off On Off On

ON

1

2

3

4

5

1

2

3

4

5

 Analog unit instructions

1095

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Output wiring

Voltage output Current output

V 0

I 0

V 1

I 1

COM

V

I

COM

IN

OUT

Output
instrument

V 0

I 0

V 1

I 1

COM

V

I

COM

IN

OUT

Output
instrument

Connect output instrument between OUT/V and
OUT/COM terminal.

Connect output instrument between OUT/I and

OUT/COM terminal.

D/A conversion values

Value of WY Digital value Analog output

-2000 0 -10 V

0 2047 0 V
Voltage
output (V)

2000 4095 +10 V

0 0 0 mA

2000 2047 10 mA

Current
output (mA)

4000 4095 20 mA

Input variable Data type Function

iIOWordOffset The offset of the first WX/WY address of the RTD unit according
to its position.

FP0R, FP0, FP-Sigma: (use
ExpansionUnitToIOWordOffset_FP0 (see page 1128)) or

unit 1 => address 2, unit 2 => address 4, unit 3 => address 6

FP-X: (use ExpansionUnotToIOWordOffset_FPX_FP0 (see page
1129)) or

FP0 adapter address of
unit 1

address of
unit 2

address of
unit 3

1st unit 30 32 34

2nd unit 40 42 44

3rd unit 50 52 54

4th unit 60 62 64

5th unit 70 72 72

6th unit 80 82 84

7th unit 90 92 94

8th unit 100 102 104

iOutChannel

INT

Output value channel

-20002–000->-10V–10V.

0–4000->4mA-20mA

Output variable

iInChannel0–iInChannel1

INT

Input value at corresponding output channel 0–1

0V–5V, 0mA–20mA -> 0–4000.

-10V–10V, -100mV–100mV -> -2000–2000

Data types

Analog unit instructions

1096

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

 iInChannel1 => iInChannel1);

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST When programming with structured text, enter the following:

Unit_AnalogInOut_FP0_A21(iOutChannel := iOutChannel,

 iModuleOffsetWX := iModuleOffsetWX,

 iInChannel0 => iInChannel0,

 Analog unit instructions

1097

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Unit_AnalogInput_
FP0_A80

Reads data from the FP0-A80 unit

REFERENCE

The online help only provides a short overview of DIP switch settings and wiring. For technical
information, please refer to the manual FP0 A/D Converter Unit ARCT1F321 manual on your FPWIN
Pro installation CD.

PLC types see see page 1333

Analog mode switch setting

Use the DIP switches at the front of the unit to set the analog channels:

Input channels, configured by DIP switches 1 and 2:

 0 – 5 V,

0 – 20 mA
see note 1

-10 – +10 V -100 – +100 mV

Off On Off On Off On Off On

ON

1

2

3

4

5

1

2

3

4

5

or

Description This function block reads data from the input channels of the FP0-A80 unit. The result is stored as
16-bit words in the output variables iInChannel0–iInChannel7. The unit has eight channels and
supports D/A conversion.

Analog unit instructions

1098

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Number of channels, configured by DIP switches 3 and 4:

 Off On Off On Off On Off On

1

2

3

4

5

channel for
converted data

0 and 1 0–3 0–5 0–7

ON

1

2

3

4

5

number of input
channel

2 4 6 8

Averaging, configured by DIP switch 5:

 without averaging,
see note 3

with averaging,
see note 3

 Off On Off On

ON

1

2

3

4

5

1

2

3

4

5

 Analog unit instructions

1099

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Input wiring

Voltage input Current input

V0

I 0

COM

V1

I 1

V2

I 2

V3

I 3

V4

I 4

COM

V5

I 5

V6

I 6

V7

I 7

Input instrument (ch0)

Input instrument (ch1)

Input instrument (ch2)

Input instrument (ch3)

Input instrument (ch4)

Input instrument (ch5)

Input instrument (ch6)

Input instrument (ch7)

V0

I 0

COM

V1

I 1

V2

I 2

V3

I 3

V4

I 4

COM

V5

I 5

V6

I 6

V7

I 7

Input instrument (ch0)

Input instrument (ch1)

Input instrument (ch2)

Input instrument (ch3)

Input instrument (ch4)

Input instrument (ch5)

Input instrument (ch6)

Input instrument (ch7)

Connect input instrument between V and COM terminal. First, connect both V terminal and I terminal. And then
connect input instrument between it and COM terminal.

A/D conversion values

Input current (mA) A/D conversion value

0.0 0

2.5 500

5.0 1000

7.5 1500

10.0 2000

12.5 2500

15.0 3000

17.5 3500

20.0 4000

Processing if the range is exceeded

0mA or less (including
negative value)

0

20mA or more 4000

Input voltage (V) A/D conversion value

0.0 0

0.5 400

1.0 800

1.5 1200

2.0 1600

Analog unit instructions

1100

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Input current (mA) A/D conversion value

2.5 2000

3.0 2400

3.5 2800

4.0 3200

4.5 3600

5.0 4000

Processing if the range is exceeded

0V or less (including
negative value)

0

5V or more 4000

Input variable Data
type

Function

iIOWordOffset INT The offset of the first WX/WY address of the RTD unit according
to its position.

FP0R, FP0, FP-Sigma: (use
ExpansionUnitToIOWordOffset_FP0 (see page 1128)) or

unit 1 => address 2, unit 2 => address 4, unit 3 => address 6

FP-X: (use ExpansionUnotToIOWordOffset_FPX_FP0 (see page
1129)) or

FP0 adapter address of
unit 1

address of
unit 2

address of
unit 3

1st unit 30 32 34

2nd unit 40 42 44

3rd unit 50 52 54

4th unit 60 62 64

5th unit 70 72 72

6th unit 80 82 84

7th unit 90 92 94

8th unit 100 102 104

Output variable

iInChannel0–iInChannel7 INT input values on the corresponding output channel 0–7:

0V–5V, 0mA–20mA -> 0–4000

-10V–10V, -100mV–100mV -> -2000–2000

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Analog unit instructions

1101

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

 iInChannel7 => iInChannel7);

LD

ST When programming with structured text, enter the following:

Uint_AnalogInput(iModuleOffsetWX := iModuleOffsetWX,

 iInChannel0 => iInChannel0,

 iInChannel1 => iInChannel1,

 iInChannel2 => iInChannel2,

 iInChannel3 => iInChannel3,

 iInChannel4 => iInChannel4,

 iInChannel5 => iInChannel5,

 iInChannel6 => iInChannel6,

Analog unit instructions

1102

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Unit_AnalogInput_
FP0_RTD_INT

Reads analog data from the FP0-RTD6 unit

For the RTD input data you can use the following devices: Pt100 (according to IEC751), Pt1000
(according to IEC751), Ni1000 (according to DIN43760) or a resitor.

  Between power ON and the first valid conversion data, the digital value
will be 8191 or 16383. When programming, be sure not to use the data
obtained during this period.

 When the RTD is broken, the digital value will change to 8191 or 16383.
When programming avoid any risks resulting from a broken RTD. A
broken RTD needs to be replaced.

REFERENCE

The online help only provides a short overview of DIP switch settings and wiring. For technical
information, please refer to the manual FP0 RTD Unit ACGM0159 on your FPWIN Pro installation
CD.

PLC types see 1333

Input range setting by DIP switches

The DIP switches configure the analog channels. You set the measurement range (type of sensor
or resistor) and the sampling cycle.

The following switch settings are read once when the control unit is turned ON. Changes will not be
reflected if they are performed while the control unit is turned ON.

Description This function block reads RTD (Resistance Temperature Detector) data on the input channels of
the FP0-RTD6 unit. The RTD unit converts the data to digital data transferred to the output
channels as INTEGER values.

 Analog unit instructions

1103

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Measurement range (switch 1 to 4):

Channel switch Off On Off On Off On Off On

0, 1, 2
1

2

ON

1

2

3

4

5

 3, 4, 5
3

4

 Measurement Pt100 Pt1000 Ni1000 Resistor

Sampling cycle (switch 5)

 switch Off On Off On

1

2

3

4

5

 Sampling cycle 0.1 s 1 s

Input wiring

Wiring method

CH0

CH4

CH3

CH2

CH1

CH5

Input line wiring

RTD

RTD = resistance temperature detector

Analog unit instructions

1104

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

 Keep a distance of more than 100mm between the
input line and the power line/high-voltage line.

A/D conversion values

Type

temperature unit °C temperature unit °F

range: -200.0°C–+500.0°C -328.0°F–+800.0°F

resolution: 0.1 0.1°F

 analog input
value °C

digital output
value

analog input
value °F

digital output
value

 -200.0 -2000 -328.0 -3280

 +500.0 +5000 +800.0 +8000

 -200.1  -328.1

 +500.1 +800.1

if input value
exceeds the range

 RTD broken

8191

RTD broken

8191

range: -80.00°C–+80.00°C -80.00°F–+80.00°F

resolution: 0.01 0.01°F

 analog input
value °C

digital output
value

analog input
value °F

digital output
value

 -80.00 -8000 -80.00 -8000

 +80.00 +8000 +80.00 +8000

 -80.01  -80.01

 +80.01  +80.01

Pt100

if input value
exceeds the range

RTD broken

8191

RTD broken

8191

range: -200.0°C–+300.0°C -328.0°F–+572.0°F

resolution: 0.1 0.1°F

 analog input
value °C

digital output
value

analog input
value °F

digital output
value

 -200.0 -2000 -328.0 -3280

 +300.0 +3000 +572.0 +5720

-200.1 -328.0

 +300.0  +572.0

if input value
exceeds the range

RTD broken

8191

RTD broken

8191

range: -80.00°C–+80.00°C -80.00°F–+80.00°F

resolution: 0.01 0.01°F

 analog input
value °C

digital output
value

analog input
value °F

digital output
value

 -80.00 -8000 -80.00 -8000

 +80.00 +8000 +80.00 +8000

 -80.01  -80.01

 +80.01  +80.01

Pt1000

if input value
exceeds the range

RTD broken

8191

RTD broken

8191

range: -30.0°C–150.0°C -22.0°F–302.0°F

resolution: 0.1 0.1°F

 analog input
value °C

digital output
value

analog input
value °F

digital output
value

Ni1000

 -30.0 -300 -22.0 -220

 Analog unit instructions

1105

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

 +150.0 +1500 +302.0 +3020

 -30.1  -22.1

 +150.1  +302.1

if input value
exceeds the range

RTD broken

8191

RTD broken

8191

range: -30.00°C–+80.00°C -22.00°F–+80.00°F

resolution: 0.01 0.01°F

 analog input
value °C

digital output
value

analog input
value °F

digital output
value

 -30.00 -3000 -22.00 -2200

 +80.00 +8000 +80.00 +8000

 -30.01  -22.01

 +80.01  +80.01

if input value
exceeds the range

 RTD broken

8191

RTD broken

8191

range: 20–2200

resolution: 1

 +20 +20

 +2200 +2200

 +19

 +2201

if input value
exceeds the range

resistor broken

16383

range: 20.0–163.0

 +20.0 +200

 +1630.0 +16300

 +19.9

 +1630.1

Resistor

if input value
exceeds the range

resistor broken

16383

Analog unit instructions

1106

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Input variable Data type Function

iIOWordOffset

INT

The offset of the first WX/WY address of the RTD unit according
to its position.

FP0R, FP0, FP-Sigma: (use
ExpansionUnitToIOWordOffset_FP0 (see page 1128)) or

unit 1 => address 2, unit 2 => address 4, unit 3 => address 6

FP-X: (use ExpansionUnotToIOWordOffset_FPX_FP0 (see page
1129)) or

FP0 adapter address of
unit 1

address of
unit 2

address of
unit 3

1st unit 30 32 34

2nd unit 40 42 44

3rd unit 50 52 54

4th unit 60 62 64

5th unit 70 72 72

6th unit 80 82 84

7th unit 90 92 94

8th unit 100 102 104

bChannel0HighResolution–b
Channel5HighResolution

sets the resolution at the corresponding channel:

 FALSE: low resolution

 TRUE: high resolution

Do not change this value during runtime.

bTemperatureInFahrenheit sets the temperature measurement

 FALSE: °C

 TRUE: °F

bChannel012DIPSwitchSetTo
Resistor

bChannel345DIPSwitchSetTo
Resistor

BOOL

settings according to the RTD device

 FALSE if you have set the DIP switch to Pt100, Pt1000,
Ni1000

 TRUE if you have set the DIP switch to resistor

Output variable

iInChannel0–iInChannel5

INT

stores the digital data from the corresponding input channels of
the FP0-RTD6 unit

Temperature low resolution 0.1 °C or °F according to settings:
e.g. 20.12°C -> channel value 201 (outside range 8191)

Temperature high resolution 0.01 °C or °F according to settings:
e.g. 20.12°C -> channel value 2012 (outside range 8191)

Resistor low resolution 1Ω: 20Ω-2200Ω->chanel value 20-2200
(outside range 16383)

Resistor high resolution 0.1Ω: 20Ω-1630Ω->channel value
200-16300 (outside range 16383)

Use ExpansionUnitNumberToIOWordOffset_FP0 (see page 1125) to calculate the word offset of
the analog unit connected to an FP0.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

 Analog unit instructions

1107

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

ST When programming with structured text, enter the following:

fbInstance11(iIOWordOffset := iIOOffsetFP0,

 bChannel0HighResolution := bHighResolutionChannel0,

 bChannel1HighResolution := bHighResolutionChannel1,

 bChannel2HighResolution := bHighResolutionChannel2,

 bChannel3HighResolution := bHighResolutionChannel3,

 bChannel4HighResolution := bHighResolutionChannel4,

 bChannel5HighResolution := bHighResolutionChannel5,

 bTemperatureInFahrenheit := bHighResolutionChannel6,

 bChannel012DIPSwitchSetToResistor := bSetToResistor012,

 bChannel345DIPSwitchSetToResistor := bSetToResistor345,

 iChannel0 => iIn1,

 iChannel1 => iIn2,

 iChannel2 => iIn3,

 iChannel3 => iIn4,

 iChannel4 => iIn5,

 iChannel5 => iIn6);

Analog unit instructions

1108

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Unit_AnalogInput_
FP0_RTD_REAL

Reads analog data from the FP0-RTD6 unit

For the RTD input data you can use the following devices: Pt100 (according to IEC751), Pt1000
(according to IEC751), Ni1000 (according to DIN43760) or a resitor.

  Between power ON and the first valid conversion data, the digital value
will be 8191 or 16383. When programming, be sure not to use the data
obtained during this period.

 When the RTD is broken, the digital value will change to 8191 or 16383.
When programming avoid any risks resulting from a broken RTD. A
broken RTD needs to be replaced.

REFERENCE

The online help only provides a short overview of DIP switch settings and wiring. For technical
information, please refer to the manual FP0 RTD Unit ACGM0159 on your FPWIN Pro installation
CD.

PLC types see 1333

Input range setting by DIP switches

The DIP switches configure the analog channels. You set the measurement range (type of sensor
or resistor) and the sampling cycle.

The following switch settings are read once when the control unit is turned ON. Changes will not be
reflected if they are performed while the control unit is turned ON.

Description This function block reads RTD (Resistance Temperature Detector) data on the input channels of
the FP0-RTD6 unit. The RTD unit converts the data to digital data transferred to the output
channels as REAL values.

 Analog unit instructions

1109

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Measurement range (switch 1 to 4):

Channel switch Off On Off On Off On Off On

0, 1, 2
1

2

ON

1

2

3

4

5

 3, 4, 5
3

4

 Measurement Pt100 Pt1000 Ni1000 Resistor

Sampling cycle (switch 5)

 switch Off On Off On

1

2

3

4

5

 Sampling cycle 0.1 s 1 s

Input wiring

Wiring method

CH0

CH4

CH3

CH2

CH1

CH5

Input line wiring

RTD

RTD = resistance temperature detector

Analog unit instructions

1110

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

 Keep a distance of more than 100mm between the
input line and the power line/high-voltage line.

A/D conversion values

Type

temperature unit °C temperature unit °F

range: -200.0°C–+500.0°C -328.0°F–+800.0°F

resolution: 0.1 0.1°F

 analog input
value °C

digital output
value

analog input
value °F

digital output
value

 -200.0 -2000 -328.0 -3280

 +500.0 +5000 +800.0 +8000

 -200.1  -328.1

 +500.1 +800.1

if input value
exceeds the range

 RTD broken

8191

RTD broken

8191

range: -80.00°C–+80.00°C -80.00°F–+80.00°F

resolution: 0.01 0.01°F

 analog input
value °C

digital output
value

analog input
value °F

digital output
value

 -80.00 -8000 -80.00 -8000

 +80.00 +8000 +80.00 +8000

 -80.01  -80.01

 +80.01  +80.01

Pt100

if input value
exceeds the range

RTD broken

8191

RTD broken

8191

range: -200.0°C–+300.0°C -328.0°F–+572.0°F

resolution: 0.1 0.1°F

 analog input
value °C

digital output
value

analog input
value °F

digital output
value

 -200.0 -2000 -328.0 -3280

 +300.0 +3000 +572.0 +5720

-200.1 -328.0

 +300.0  +572.0

if input value
exceeds the range

RTD broken

8191

RTD broken

8191

range: -80.00°C–+80.00°C -80.00°F–+80.00°F

resolution: 0.01 0.01°F

 analog input
value °C

digital output
value

analog input
value °F

digital output
value

 -80.00 -8000 -80.00 -8000

 +80.00 +8000 +80.00 +8000

 -80.01  -80.01

 +80.01  +80.01

Pt1000

if input value
exceeds the range

RTD broken

8191

RTD broken

8191

range: -30.0°C–150.0°C -22.0°F–302.0°F

resolution: 0.1 0.1°F

 analog input
value °C

digital output
value

analog input
value °F

digital output
value

Ni1000

 -30.0 -300 -22.0 -220

 Analog unit instructions

1111

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

 +150.0 +1500 +302.0 +3020

 -30.1  -22.1

 +150.1  +302.1

if input value
exceeds the range

RTD broken

8191

RTD broken

8191

range: -30.00°C–+80.00°C -22.00°F–+80.00°F

resolution: 0.01 0.01°F

 analog input
value °C

digital output
value

analog input
value °F

digital output
value

 -30.00 -3000 -22.00 -2200

 +80.00 +8000 +80.00 +8000

 -30.01  -22.01

 +80.01  +80.01

if input value
exceeds the range

 RTD broken

8191

RTD broken

8191

range: 20–2200

resolution: 1

 +20 +20

 +2200 +2200

 +19

 +2201

if input value
exceeds the range

resistor broken

16383

range: 20.0–163.0

 +20.0 +200

 +1630.0 +16300

 +19.9

 +1630.1

Resistor

if input value
exceeds the range

resistor broken

16383

Analog unit instructions

1112

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Input variable Data type Function

iIOWordOffset

INT

The offset of the first WX/WY address of the RTD unit according
to its position.

FP0R, FP0, FP-Sigma: (use
ExpansionUnitToIOWordOffset_FP0 (see page 1128)) or

unit 1 => address 2, unit 2 => address 4, unit 3 => address 6

FP-X: (use ExpansionUnotToIOWordOffset_FPX_FP0 (see page
1129)) or

FP0 adapter address of
unit 1

address of
unit 2

address of
unit 3

1st unit 30 32 34

2nd unit 40 42 44

3rd unit 50 52 54

4th unit 60 62 64

5th unit 70 72 72

6th unit 80 82 84

7th unit 90 92 94

8th unit 100 102 104

bChannel0HighResolution–b
Channel5HighResolution

sets the resolution at the corresponding channel:

 FALSE: low resolution

 TRUE: high resolution

Do not change this value during runtime. If you change this value
during runtime the channel value will be wrong for about one
second.

bTemperatureInFahrenheit sets the temperature measurement

 FALSE: °C

 TRUE: °F

bChannel012DIPSwitchSetTo
Resistor

bChannel345DIPSwitchSetTo
Resistor

BOOL

settings according to the RTD device

 FALSE if you have set the DIP switch to Pt100, Pt1000,
Ni1000

 TRUE if you have set the DIP switch to resistor

Output variable

rInChannel0–rInChannel5

REAL

stores the digital data from the corresponding input channels of
the FP0-RTD6 unit as REAL values

Temperature low resolution 0.1 °C or °F according to settings:
e.g. 20.12°C -> channel value 20.1 (outside range 819.1)

Temperature high resolution 0.01 °C or °F according to settings
e.g. 20.12°C -> channel value 20.12 (outside range 81.91)

Resistor low resolution 1Ω: 20Ω-2200Ω->channel value 20-2200
(outside range 16383)

Resistor high resolution 0.1Ω: 20Ω-1630Ω->channel value
20.0-1630.0 (outside range 1638.3)

Use ExpansionUnitNumberToIOWordOffset_FP0 (see page 1125) to calculate the word offset of
the analog unit connected to an FP0.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

 Analog unit instructions

1113

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

ST When programming with structured text, enter the following:

fbInstance12(iIOWordOffset := iIOOffsetFP0,

 bChannel0HighResolution := bHighResolutionChannel0,

 bChannel1HighResolution := bHighResolutionChannel1,

 bChannel2HighResolution := bHighResolutionChannel2,

 bChannel3HighResolution := bHighResolutionChannel3,

 bChannel4HighResolution := bHighResolutionChannel4,

 bChannel5HighResolution := bHighResolutionChannel5,

 bTemperatureInFahrenheit := bHighResolutionChannel6,

 bChannel012DIPSwitchSetToResistor := bSetToResistor012,

 bChannel345DIPSwitchSetToResistor := bSetToResistor345);

rReal0 := fbInstance7.rChannel0;

rReal1 := fbInstance7.rChannel1;

rReal2 := fbInstance7.rChannel2;

rReal3 := fbInstance7.rChannel3;

rReal4 := fbInstance7.rChannel4;

Analog unit instructions

1114

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Unit_AnalogInput_
FP0_TC4_TC8

Reads data from the FP0-TC4/FP0-TC8 unit

REFERENCE

For technical information, please refer to the manual FP0 Analog unit manual on your FPWIN Pro
installation CD.

PLC types see see page 1333

DIP switch settings

Use the DIP switches at the front side to set the thermocouple type, the temperature unit (°C, °F)
and the number of input channels.

  The DIP switch settings are read once at switching the CPU power to
ON. Changes of the DIP switches are not recognized until the next
reset of the CPU (power OFF ON).

Type of thermocouple, configured by DIP switch 1 and 2

K type J type T type R type

ON

1

2

3

4

5

 Off On Off On Off On Off On

1

2

3

4

5

Description This function block reads the analog input data of the analog unit FP0-TC4 (four analog input
channels) or FP0-TC8 (eight analog input channels). The result is stored as 16-bit words in the
output variables iChannel0–iChannel3 for FP0-TC4 and iChannel0–iChannel7 for FP0-TC8. The
function block supports the thermo couple types K, J, T and R. Furthermore it supports averaging
and detects if the thermocouple is broken.

 Analog unit instructions

1115

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Temperature unit configured by DIP switch 3

°C °F

Off On Off On

ON

1

2

3

4

5

1

2

3

4

5

Input channels configured by DIP switches 4 and 5

Off On Off On Off On Off On

1

2

3

4

5

channel for
converted data

0 and 1 0–3 0–5 0–7

ON

1

2

3

4

5

number of input
channel

2 4 6 8

Input wiring

FP0-TC4 FP0-TC8

CH0
+

-

CH1
+

-

CH2
+

-

CH3
+

-

NC

CH0
+

-

CH1
+

-

CH2
+

-

CH3
+

-

NC

CH4
+

-

CH5
+

-

CH6
+

-

CH7
+

-

NC

Analog unit instructions

1116

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

  Keep a distance of more than 100mm between the input line and the
power line/high-voltage line.

 A shielded compensating lead wire is recommended.

thermocouple
+

-

A/D conversion values

Type

input temperature
°C

digial value

range: -100.0°C–500.0°C

 -100.0 -1000

 +500.0 +5000

 -100.1 -1001

 +500.1 5001 or 8000

K,J

if input value
exceeds the
range

broken thermocouple 8000

range: -100.0°C–400.0°C

 -100.0 -1000

 +400.0 +4000

 -100.1 -1001

 +400.1 4001 or 8000

T

if input value
exceeds the
range

broken thermocouple 8000

range: -100.0°C–1500.0°C

 0 0

 +1500.0 +15000

 -0.0 0

 +1500.1 15001 or 16000

R

 if input value
exceeds the
range

broken thermocouple 16000

 Analog unit instructions

1117

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Input variable Data type Function

iIOWordOffset

INT

The offset of the first WX/WY address of the RTD unit according
to its position.

FP0R, FP0, FP-Sigma: (use
ExpansionUnitToIOWordOffset_FP0 (see page 1128)) or

unit 1 => address 2, unit 2 => address 4, unit 3 => address 6

FP-X: (use ExpansionUnotToIOWordOffset_FPX_FP0 (see page
1129)) or

FP0 adapter address of
unit 1

address of
unit 2

address of
unit 3

1st unit 30 32 34

2nd unit 40 42 44

3rd unit 50 52 54

4th unit 60 62 64

5th unit 70 72 72

6th unit 80 82 84

7th unit 90 92 94

8th unit 100 102 104

Output variable

iChannel0–iChannel7

input values on the corresponding output channel (0–3 for
FP0-TC4, channel0–7 for FP0-TC8):

Range K, J type (-100,1°C to 500,1°C->-1001 to 5001 or
-148,1°F to 790,1°F -> -1481 to 7901)

Range T type: (-100,1°C to 400,1°C -> -1001 to 4001 or -148,1°F
to 752,1°F -> -1481 to 7521)

Range R type: (0°C to 1500,1°C -> 0 to 15001 or 32°F to
1590,1°F -> 320 to 15901)

8000 (when the thermocouple is broken)

This function block reads the analog input data from the FP0-TC4 (TC8) unit and stores the digital
values in the corresponding ínput channels:

Range °C values digital values °F values digital values

K, J Type -100.1–500.1 -1001–5001 -148.1–790.1 -1481–7901

T Type -100.1–400.1 -1001–4001 -148.1–752.1 -1481–7521

R Type 0–1500.1 0–15001 32–1590.1 320–15901

8000 when the thermocouple is broken

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body Use ExpansionUnitNumberToIOWordOffset_FP0 (see page 1125) to calculate the word offset of
the analog unit connected to an FP0.

Analog unit instructions

1118

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

LD

ST fbInstance10(iIOWordOffset := iIOOffsetFP0);

iIn1 := fbInstance10.iChannel0;

iIn2 := fbInstance10.iChannel1;

iIn3 := fbInstance10.iChannel2;

iIn4 := fbInstance10.iChannel3;

iIn5 := fbInstance10.iChannel4;

iIn6 := fbInstance10.iChannel5;

iIn7 := fbInstance10.iChannel6;

iIn8 := fbInstance10.iChannel7;

 Analog unit instructions

1119

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Unit_AnalogInOut_
FPG_A44

Reads data from the FPG-A44 unit

PLC types see page 1335

 Wiring diagram

EMC shield bar in proximity to the plug module.

Description This function block reads data from the FPG-A44 unit. The unit converts analog input data (0-10 V
DC and 0-20 mA DC) into 16-bit word digital output values.

Analog unit instructions

1120

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

A/D conversion values

Input value (mA)

range: 0–20mA

output value

20.00 65535

19.00 62258

18.00 58982

17.00 55705

16.00 52428

15.00 49151

14.00 45875

13.00 42598

12.00 39321

11.00 36044

10.00 32768

9.00 29491

8.00 26214

7.00 22937

6.00 19661

5.00 16384

4.00 13107

3.00 9830

2.00 6554

1.00 3277

0.00 0

Input voltage (V)

range: 0.00–10.00 V

output value

10.00 65535

9.50 62258

9.00 58982

8.50 55705

8.00 52428

7.50 49151

7.00 45875

6.50 42598

6.00 39321

5.50 36044

5.00 32768

4.50 29491

4.00 26214

3.50 22937

3.00 19661

2.50 16384

2.00 13107

3.00 9830

2.00 6554

1.00 3277

0.00 0

 Analog unit instructions

1121

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Input variable Data type Function

iOutChannel0–

iOutChannel3

Stores the value from the corresponding channel number of
the FPG-A44 unit.

iSlotNumber

INT

Specifies the slot number

bSetInChannel0ToCurrent–

bSetInChannel3ToCurrent

If TRUE, the operation mode is set to the current output type
for the corresponding input channel number.

Otherwise, the voltage output type is set.

bSetOutChannel0ToCurrent–

bSetOutChannel3ToCurrent

BOOL
If TRUE, the operation mode is set to the current output type
for the corresponding output channel number.

Otherwise, voltage output type is set.

Output variable

uiInChannel0–

uiInChannel3

UINT Stores the converted values from the corresponding
channels

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

Analog unit instructions

1122

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

 uiInChannel3 => uiInChannel3);

ST When programming with structured text, enter the following:

Unit_AnalogInOut_FPG_A44(iOutChannel0 := iOutChannel0,

 iOutChannel1 := iOutChannel1,

 iOutChannel2 := iOutChannel2,

 iOutChannel3 := iOutChannel3,

 iSlotNumber := 4,

 bSetInChannel0ToCurrent := bSetInChannel0ToCurrent,

 bSetInChannel1ToCurrent := bSetInChannel1ToCurrent,

 bSetInChannel2ToCurrent := bSetInChannel2ToCurrent,

 bSetInChannel3ToCurrent := bSetInChannel3ToCurrent,

 bSetOutChannel0ToCurrent := bSetOutChannel0ToCurrent,

 bSetOutChannel1ToCurrent := bSetOutChannel1ToCurrent,

 bSetOutChannel2ToCurrent := bSetOutChannel2ToCurrent,

 bSetOutChannel3ToCurrent := bSetOutChannel3ToCurrent,

 uiInChannel0 => uiInChannel0,

 uiInChannel1 => uiInChannel1,

 uiInChannel2 => uiInChannel2,

 Analog unit instructions

1123

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Unit_AnalogOutput
_FP0_A04I

Reads data from the FP0-A04 unit

Description

REFERENCE

For technical information, please refer to the manual FP0 Analog unit manual on your FPWIN Pro
installation CD.

PLC types see see page 1333

Wiring of analog outputs

I0

COM

I1

COM

I2

COM

I3

COM

NC

A

A

A

A

OUTPUT

A: Analog device

This function block reads data from the FP0-A04 current output type from the output channels 0–3
and stores the digital data in the input channels iOutChannel0–iOutChannel3. The valid range is
from 4–20 mA (0–4000).

Analog unit instructions

1124

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

  The COM contacts are connected internally.

 The COM contacts are connected internally.

 Keep a distance of more than 100mm between the output line and the power
line/high-voltage line.

 For wiring the analog outputs shielded twisted pair cables are recommended. Connect
the shield with the frame ground of the analog unit.

 For wiring the analog outputs shielded twisted pair cables are recommended. Connect
the shield with the frame ground of the analog unit.

D/A conversion values

digital input value

range: 0–4000

current output (mA)

range: 4–20 mA

0 4.0

500 6.0

1000 8.0

1500 10.0

2000 12.0

2500 14.5

3000 16.0

3500 18.5

4000 20.0

values outside of range

 -1

 +4001
constant, the converted value exactly is based on the latest valid input value

Input variable Data type Function

iIOWordOffset

INT

The offset of the first WX/WY address of the RTD unit according to its
position.

FP0R, FP0, FP-Sigma: (use ExpansionUnitToIOWordOffset_FP0 (see
page 1128)) or

unit 1 => address 2, unit 2 => address 4, unit 3 => address 6

FP-X: (use ExpansionUnotToIOWordOffset_FPX_FP0 (see page 1129)) or

FP0 adapter address of
unit 1

address of
unit 2

address of
unit 3

1st unit 30 32 34

2nd unit 40 42 44

3rd unit 50 52 54

4th unit 60 62 64

5th unit 70 72 72

6th unit 80 82 84

7th unit 90 92 94

8th unit 100 102 104

iOutChannel0–
iOutChannel3

INT 0–4000 -> 4mA–20mA on the corresponding channel

Output variable Data type Function

bPowerIsOn Status data of unit (1: ON, 0: OFF)

bErrorChannel0–b
ErrorChannel3

BOOL Status data channel (1: error, 0: normal)

Data types

 Analog unit instructions

1125

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body If bEnable is set to TRUE, the function block converts the digital data (0–4000) of the analog unit
FP0-A04I with current output into analog data at the corresponding output channels (4–20mA).

LD

ST IF bEnable THEN

 fbInstance2(iIOWordOffset := iIOOffsetFP0,

 iOutChannel0 := iOut1,

 iOutChannel1 := iOut2,

 iOutChannel2 := iOut3,

 iOutChannel3 := iOut4,

 bPowerIsOn => bOutPower2,

 bErrorChannel0 => bOutError1,

 bErrorChannel1 => bOutError2,

 bErrorChannel2 => bOutError3,

 bErrorChannel3 => bOutError4);

END_IF;

Analog unit instructions

1126

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Unit_AnalogOutput
_FP0_A04V

Reads data from the FP0-A04 unit

REFERENCE

For technical information, please refer to the manual FP0 Analog unit manual on your FPWIN Pro
installation CD.

PLC types see on page 1333

 The function block needs two PLC cycle scans to write all four channels into the
FP0-A04V Unit. Do not use pulse relay at EN input.

Wiring of analog outputs

V0

COM

V1

COM

V2

COM

V3

COM

NC

A

A

A

A

OUTPUT

A: Analog device

Description
This function block reads digital data from the FP0-A04 unit voltage output type from the output
channels 0–3 and stores the analog data in the input channels iOutChannel0–iOutChannel3. The
valid range is from -10–+10 V (-2000–+2000).

 Analog unit instructions

1127

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

  The COM contacts are connected internally.

 Keep a distance of more than 100mm between the output line and the
power line/high-voltage line.

 For wiring the analog outputs shielded twisted pair cables are
recommended. Connect the shield with the frame ground of the analog
unit.

D/A conversion values

digital input value

range: -2000–+2000

output voltage (V)

range: -10–+10 V

-2000 -10.0

-1500 -7.5

1000 -5.0

-500 -2.5

0 0.0

+500 +2.5

+1000 +5.0

+1500 +7.5

+2000 +10.0

values outside of range

 -2001

 +2001

constant, the converted
value exactly is based on
the latest valid input value

Input variable Data type Function

iIOWordOffset

INT

The offset of the first WX/WY address of the RTD unit
according to its position.

FP0R, FP0, FP-Sigma: (use
ExpansionUnitToIOWordOffset_FP0 (see page 1128)) or

unit 1 => address 2, unit 2 => address 4, unit 3 => address
6

FP-X: (use ExpansionUnotToIOWordOffset_FPX_FP0 (see
page 1129)) or

FP0 adapter address of
unit 1

address of
unit 2

address of
unit 3

1st unit 30 32 34

2nd unit 40 42 44

3rd unit 50 52 54

4th unit 60 62 64

5th unit 70 72 72

6th unit 80 82 84

7th unit 90 92 94

8th unit 100 102 104

iOutChannel0–iOutChannel3 INT -20002–+000 -> -10V–+10V on the corresponding channel

Output variable Data type Function

bPowerIsOn Status data of unit (1: ON, 0: OFF)

bErrorChannel0–bErrorChannel3
BOOL

Status data channel (1: error, 0: normal)

Data types

Analog unit instructions

1128

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body If bEnable is set to TRUE, the function block converts the digital data (-2000–+2000) of the analog
unit FP0-A04V with current output into analog data at the corresponding output channels
(-10–+10V).

LD

ST When programming with structured text, enter the following:

IF bEnable THEN

fbInstance4(iIOWordOffset := iIOOffsetFP0,

 iOutChannel0 := iOut1,

 iOutChannel1 := iOut2,

 iOutChannel2 := iOut3,

 iOutChannel3 := iOut4,

 bPowerIsOn => bOutPower2,

 bErrorChannel0 => bOutError1,

 bErrorChannel1 => bOutError2,

 bErrorChannel2 => bOutError3,

 bErrorChannel3 => bOutError4);

END_IF;

 Analog unit instructions

1129

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

ExpansionUnitNumberToIO
WordOffset_FP0

Calculate the IO offset of analog units for FP0

REFERENCE

For technical information, please refer to the manual FP0 RTD Unit ACGM0159 on your FPWIN Pro
installation CD.

PLC types see see page 1320

Input variable Data type Function

iExpansionUnitNumber INT FP0 expansion unit number 1–3

Output variable

iIOWordOffset INT Offset of the I/O word (WX/WY 2/4/6)

Description This instruction calculates the word offset using an FP0 analog unit connected to an FP0.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body The function block converts the FP0 expansion unit position number 1–3, where 0 is the FP0 or
FP CPU, to the corresponding I/O word offset 2, 4 and 6.

LD

ST Unit_AnalogInOut_FP0_A21(iIOWordOffset :=
ExpansionUnitNumberToIOWordOffset_FP0(2),

 iOutChannel := iA21out,

 iInChannel0 => iA21in0,

 iInChannel1 => iA21in1);

Analog unit instructions

1130

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

ExpansionUnitNumberToIO
WordOffset_FPX_FP0

Calculates the IO offset of analog units for FP-X

REFERENCE

For technical information, please refer to the manual FP0 RTD Unit ACGM0159 on your FPWIN Pro
installation CD.

PLC types see see page 1320

Input variable Data type Function

iFPX_ExpansionUnitNumber FP-X expansion unit number 1–8

iFP0_ExpansionUnitNumber
INT

FP0 expansion unit number 1–3

Output variable

iIOWordOffset INT Offset of the I/O word (WX/WY)

Description This instruction calculates the word offset using an FP0 analog unit connected to an FP-X or
FP-X0.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body This instruction evaluates the IO word offset for an FP0 analog unit connected to an FP-X CPU.
The input iFPX_ExpansionUnitNumber is the FP-X unit position number (1–8) to which the FP0
expansion adapter is connected. The input iFP0_ExpansionUnitNumber is the FP0 analog unit
position number (1–3) connected next to the FP0 expansion adapter.

 Analog unit instructions

1131

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

LD

ST Unit_AnalogOutput_FP0_A04I(iIOWordOffset :=
ExpansionUnitNumberToIOWordOffset_FPX_FP0(3, 2),

 iOutChannel0 := iAOutCh0,

 iOutChannel1 := iAOutCh1,

 iOutChannel2 := iAOutCh2,

 iOutChannel3 := iAOutCh2,

 bPowerIsOn => bPwrOn,

 bErrorChannel0 => bErrAOutCh0,

 bErrorChannel1 => bErrAOutCh1,

 bErrorChannel2 => bErrAOutCh2,

 bErrorChannel3 => bErrAOutCh3);

Chapter 37

 GT panel instructions

GT panel instructions

1134

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

GT_ActivateScreen Control the GT panel screen

PLC types see page 1327

Input variable Data type Function

wScreenNumber WORD Screen number

tComTimeOut TIME Communication timeout

Input/output variable Data type Function

bDisableUserChange Disable screen change by touch operation on GT

bActivateScreen
BOOL

Activate new screen

dutGTBitArea GT_BasicComBitArea GT basic communication bit area

dutGTWordArea GT_BasicComWordArea GT basic communication word area

Output variable Data type Function

bError
BOOL

Turns on when the screen is not switched within
the communication timeout

Description Function block to activate or change a specified GT screen from the PLC using the variables
described in the table for data types.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

 GT panel instructions

1135

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

LD

ST fb_GT_ActivateScreen(wScreenNum := wNewPageNo,

 tComTimeOut := T#3s,

 bDisableUserChange := bHoldPage,

 bActivateScreen := bActivateNewPage,

 dutGTBitArea := g_GT_BitArea,

 dutGTWordArea := g_GT_WordArea,

 bErrorActivateScreen =>
bErrorActivateScreen);

GT panel instructions

1136

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

GT_ChangeBacklight
Brightness

Changes the backlight brightness of a GT panel

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1327

Input variable Data type Function

iBrightness INT Brightness value 0–15

Input/output variable

dutGTBitArea GT_BasicComBitArea GT basic communication bit area

Output variable

bError BOOL Turns on if the brightness value is out of range

Description This instruction changes the backlight brightness of the GT Panel using the variables described in
the table for data types.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

ST fb_GT_ChangeBacklightBrightness((* EN := TRUE, *)

 iBrightness := iBrightness,

 dutGTBitArea := g_GT_BitArea,

 bError => bErrorBacklightBrightness

 (* , ENO => ?BOOL? *));

Chapter 38

 High-speed counter instructions

High-speed counter instructions

1138

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

38.1 Introduction

Control FPWIN Pro offers two concepts for programming with high-speed counter instructions:

 FP instructions

 Tool instructions

For users programming for different PLC types of the FP series or users who are tired of setting control code
bits and looking up available channel numbers, the tool instructions offer new and comfortable features. These
include information functions for evaluating status flags and settings, control functions for configuring
high-speed counters and pulse outputs, PLC-independent functions and DUTs, as well as variable channel
numbers. However, the FP instructions may be easier to use for beginners or users familiar with FPWIN GR.

Most of the information, which is accessible via information and control functions, is stored in special internal
relays and special data registers. These relays and registers can also be accessed using PLC-independent
system variables.

To take advantage of the features you prefer, the instructions of both libraries can be mixed.

 � NOTE

When programming with the tool instructions, be sure to refer to the detailed information
provided via the links to the related F/P instructions.

Main features FP instructions Tool instructions

Pre version 6.4 support 

Use of inline functions 

Use of FPWIN GR function names 

Less code with constant channel numbers 

Control codes 

Control functions 

Information functions 

Variable channel numbers 

Universal functions for all PLCs 

DUT for common channel configuration for all
PLCs for all pulse output instructions

 

 High-speed counter instructions

1139

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

38.2 High-speed counter control instructions

In this section:

- HscControl_CountingDisable (see page 1140)

- HscControl_CountingEnable (see page 1142)

- HscControl_ElapsedValueContinue (see page 1144)

- HscControl_ElapsedValueReset (see page 1146)

- HscControl_HscInstructionClear (see page 1148)

- HscControl_ResetInputDisable (see page 1150)

- HscControl_ResetInputEnable (see page 1151)

- HscControl_SetDefaults (see page 1152)

- HscControl_WriteElapsedValue (see page 1153)

High-speed counter instructions

1140

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

HscControl_Counting
Disable

Disables counting on a high-speed counter channel

See also:

 Tool instructions: overview of high-speed counter instructions

 HscControl_CountingEnable (see page 1141)

 HscInfo_IsCountingDisabled (see page 1159)

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1327

Variable Data type Function

iChannel INT High-speed counter channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction disables counting on the high-speed counter channel specified by iChannel. Bit 1
of the high-speed counter control code (see page 891) is set to TRUE.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable bDisableCounting changes from FALSE to TRUE, counting on the channel
specified by iChannel is disabled.

LD

 High-speed counter instructions

1141

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

ST When programming with structured text, enter the following:

if DF(bDisableCounting) then

 HscControl_CountingDisable(iChannel := iChannel);

end_if;

High-speed counter instructions

1142

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

HscControl_Counting
Enable

Enables counting on a high-speed counter channel

See also:

 Tool instructions: overview of high-speed counter instructions

 HscControl_CountingDisable (see page 1139)

 HscInfo_IsCountingDisabled (see page 1159)

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1327

Variable Data type Function

iChannel INT High-speed counter channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction enables counting on the high-speed counter channel specified by iChannel after
counting has been disabled with HscControl_CountingDisable (see page 1139). Bit 1 of the
high-speed counter control code (see page 891) is set to FALSE.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable bEnableCounting changes from FALSE to TRUE, counting on the channel
specified by iChannel is enabled.

LD

 High-speed counter instructions

1143

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

ST When programming with structured text, enter the following:

if DF(bEnableCounting) then

 HscControl_CountingEnable(iChannel := iChannel);

end_if;

High-speed counter instructions

1144

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

HscControl_Elapsed
ValueContinue

Continues counting after reset

See also:

 Tool instructions: overview of high-speed counter instructions

 HscControl_WriteElapsedValue (see page 1152)

 HscInfo_ReadElapsedValue (see page 1163)

 HscInfo_IsElapsedValueReset (see page 1160)

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1327

Variable Data type Function

iChannel INT High-speed counter channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction resumes counting on the channel specified by iChannel after a reset of the
elapsed value using HscControl_ElapsedValueReset (see page 1145). Bit 0 of the high-speed
counter control code (see page 891) is set to FALSE.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable bElapsedValueContinue is set to TRUE, counting resumes on the channel
specified by iChannel.

LD

 High-speed counter instructions

1145

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

ST When programming with structured text, enter the following:

if (bElapsedValueContinue) then

 HscControl_ElapsedValueContinue(iChannel := iChannel);

end_if;

High-speed counter instructions

1146

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

HscControl_Elapsed
ValueReset

Sets elapsed value to 0

See also:

 Tool instructions: overview of high-speed counter instructions

 HscControl_WriteElapsedValue (see page 1152)

 HscControl_ElapsedValueContinue (see page 1143)

 HscInfo_IsElapsedValueReset (see page 1160)

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1327

Variable Data type Function

iChannel INT High-speed counter channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction sets the elapsed value of the high-speed counter channel specified by iChannel to
0. Bit 0 of the high-speed counter control code (see page 891) is set to TRUE.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable bResetElapsedValue changes from FALSE to TRUE, the elapsed value on the
channel specified by iChannel is set to 0.

LD

 High-speed counter instructions

1147

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

ST When programming with structured text, enter the following:

if (bResetElapsedValue) then

 HscControl_ElapsedValueReset(iChannel := iChannel);

end_if;

High-speed counter instructions

1148

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

HscControl_HscInstruction
Clear

Clears high-speed counter instruction

See also:

 Tool instructions: overview of high-speed counter instructions

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1327

Variable Data type Function

iChannel INT High-speed counter channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction cancels the execution of a high-speed counter instruction on the channel specified
by iChannel. Bit 3 of the high-speed counter control code (see page 891) is set to TRUE and
subsequently reset to FALSE.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable bClearHscInstruction is set to TRUE, the execution of a high-speed counter
instruction on the channel specified by iChannel is canceled.

LD

ST

 High-speed counter instructions

1149

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

When programming with structured text, enter the following:

if (bClearHscInstruction) then

 HscControl_HscInstructionClear(iChannel := iChannel);

end_if;

High-speed counter instructions

1150

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

HscControl_ResetInput
Disable

Disables reset input

See also:

 Tool instructions: overview of high-speed counter instructions

 HscInfo_IsResetInputDisabled (see page 1161)

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1327

Variable Data type Function

iChannel INT High-speed counter channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction disables the reset input of the high-speed counter channel specified by iChannel.
Bit 2 of the high-speed counter control code (see page 891) is set to TRUE.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable bResetInputDisable changes from FALSE to TRUE, the reset input of the
channel specified by iChannel is disabled.

LD

ST When programming with structured text, enter the following:

if DF(bResetInputDisable) then

 HscControl_ResetInputDisable(iChannel := iChannel);

end_if;

 High-speed counter instructions

1151

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

HscControl_ResetInput
Enable

Enables reset input

See also:

 Tool instructions: overview of high-speed counter instructions

 HscInfo_IsResetInputDisabled (see page 1161)

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1327

Variable Data type Function

iChannel INT High-speed counter channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction enables the reset input of the channel specified by iChannel. Bit 2 of the
high-speed counter control code (see page 891) is set to FALSE.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable bResetInputEnable changes from FALSE to TRUE, the reset input of the
channel specified by iChannel is enabled.

LD

ST When programming with structured text, enter the following:

if DF(bResetInputEnable) then

 HscControl_ResetInputEnable(iChannel := iChannel);

end_if;

High-speed counter instructions

1152

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

HscControl_SetDefaults Sets defaults for high-speed counter channel

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1327

Variable Data type Function

iChannel INT High-speed counter channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction sets all bits of the high-speed counter control code (see page 891) of the channel
specified by iChannel to 0. 0 is the default setting.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable bSetDefaults changes from FALSE to TRUE, all settings of the channel
specified by iChannel are set to their default values.

LD

ST When programming with structured text, enter the following:

if DF(bSetDefaults) then

 HscControl_SetDefaults(iChannel := iChannel);

end_if;

 High-speed counter instructions

1153

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

HscControl_Write
ElapsedValue

Writes elapsed value into high-speed counter channel

See also:

 Tool instructions: overview of high-speed counter instructions

 HscControl_ElapsedValueReset (see page 1145)

 HscInfo_ReadElapsedValue (see page 1163)

 HscInfo_IsElapsedValueReset (see page 1160)

 FP instructions Writing and reading the elapsed value (see page 894)

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1327

Variable Data type Function

diElapsedValue DINT Elapsed value to be written into the channel specified by
iChannel

iChannel INT High-speed counter channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction writes an elapsed value into the high-speed counter channel specified by
iChannel.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body When the variable bWrite changes from FALSE to TRUE, the elapsed value specified by
diElapsedValue is written into the channel specified by iChannel.

High-speed counter instructions

1154

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

LD

ST When programming with structured text, enter the following:

if DF(bWrite) then

 HscControl_WriteElapsedValue(diElapsedValue := diElapsedValue,

 iChannel := iChannel);

end_if;

 High-speed counter instructions

1155

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

38.3 High-speed counter information instructions

In this section:

- HscInfo_GetControlCode (see page 1156)

- HscInfo_GetCurrentSpeed (see page 1157)

- HscInfo_IsActive (see page 1158)

- HscInfo_IsChannelEnabled (see page 1159)

- HscInfo_IsCountingDisabled (see page 1160)

- HscInfo_IsElapsedValueReset (see page 1161)

- HscInfo_IsResetInputDisabled (see page 1162)

- HscInfo_ReadElapsedValue (see page 1164)

- HscInfo_ReadTargetValue (see page 1165)

High-speed counter instructions

1156

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

HscInfo_GetControl
Code

Returns control code of high-speed counter channel

See also:

Tool instructions: overview of high-speed counter instructions

PLC types see page 1327

Variable Data type Function

iChannel INT High-speed counter channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable WORD Stores the control code

Description This instruction returns the control code (see page 891) of the high-speed counter channel
specified by iChannel.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bGetControlCode) then

 wChannelControlCode := HscInfo_GetControlCode(iChannel := iChannel);

end_if;

 High-speed counter instructions

1157

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

HscInfo_GetCurrent
Speed

Returns current speed of high-speed counter channel

PLC types see page 1327

Input variable Data type Function

iChannel INT High-speed counter channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

dutMemory DUT (see
page 51)

HscInfo_GetCurrentSpeed_DUT

Output variable

diCurrentSpeed DINT Stores the current speed of the channel specified by iChannel

Description This instruction returns the current speed in Hz of the high-speed counter channel specified by
iChannel.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bGetCurrentSpeed) then

 HscInfo_GetCurrentSpeed(iChannel := iChannel,

 dutMemory := Memory_DUT,

 diCurrentSpeed => diCurrentSpeed);

end_if;

High-speed counter instructions

1158

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

HscInfo_IsActive Checks if high-speed counter is active

See also:

 Tool instructions: overview of high-speed counter instructions

 HscControl_HscInstructionClear (see page 1147)

PLC types see page 1327

Variable Data type Function

iChannel INT High-speed counter channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable BOOL TRUE if the high-speed counter channel specified by iChannel is
active

Description This instruction evaluates the high-speed counter control flag and returns TRUE if the high-speed
counter channel specified by iChannel is active.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

bChannelActive := HscInfo_IsActive(iChannel := iChannel);

 High-speed counter instructions

1159

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

HscInfo_IsChannel
Enabled

Checks if high-speed counter channel is enabled

See also:

 Tool instructions: overview of high-speed counter instructions

 Required system register settings

PLC types see page 1327

Variable Data type Function

iChannel INT High-speed counter channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable BOOL TRUE if the channel specified by iChannel is enabled

Description This instruction returns TRUE if the high-speed counter channel specified by iChannel has been
enabled in the system registers and is supported by the selected PLC type.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bChannelEnabled_Check) then

 bChannelEnabled := HscInfo_IsChannelEnabled(iChannel := iChannel);

end_if;

High-speed counter instructions

1160

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

HscInfo_IsCounting
Disabled

Checks if counting is disabled

See also:

 Tool instructions: overview of high-speed counter instructions

 HscControl_CountingDisable (see page 1139)

 HscControl_CountingEnable (see page 1141)

 FP instructions Enabling/disabling counting operations (see page 891)

PLC types see page 1327

Variable Data type Function

iChannel INT High-speed counter channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable BOOL TRUE if counting on the channel specified by iChannel is
disabled

Description This instruction returns TRUE if counting on the channel specified by iChannel has been disabled.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bCountingDisabled_Check) then

 bCountingDisabled := HscInfo_IsCountingDisabled(iChannel := iChannel);

end_if;

 High-speed counter instructions

1161

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

HscInfo_IsElapsed
ValueReset

Checks if elapsed value is set to 0

See also:

 Tool instructions: overview of high-speed counter instructions

 HscControl_ElapsedValueReset (see page 1145)

 HscControl_ElapsedValueSet (see page 1143)

 FP instructions Resetting the elapsed value (software reset) (see page 891)

PLC types see page 1327

Variable Data type Function

iChannel INT High-speed counter channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable BOOL TRUE if the channel specified by iChannel has been reset

Description This instruction returns TRUE if the elapsed value of the high-speed counter channel specified by
iChannel has been reset to 0.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bElapsedValueReset_Check) then

 bElapsedValueReset := HscInfo_IsElapsedValueReset(iChannel := iChannel);

end_if;

High-speed counter instructions

1162

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

HscInfo_IsResetInput
Disabled

Checks if reset input is disabled

See also:

 Tool instructions: overview of high-speed counter instructions

 HscControl_ResetInputEnable (see page 1151)

 HscControl_ResetInputDisable (see page 1149)

 FP instructions Enabling/disabling the reset input (hardware reset) (see page
891)

PLC types see page 1327

Variable Data type Function

iChannel INT High-speed counter channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable BOOL TRUE if the reset input of the channel specified by iChannel is
disabled

Description This instruction returns TRUE if the reset input of the channel specified by iChannel has been
disabled.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bResetInput_Check) then

 bResetInputDisabled := HscInfo_IsResetInputDisabled(iChannel :=
iChannel);

end_if;

 High-speed counter instructions

1163

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

High-speed counter instructions

1164

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

HscInfo_ReadElapsed
Value

Reads elapsed value from high-speed counter channel

See also:

 Tool instructions: overview of high-speed counter instructions

 HscControl_WriteElapsedValue (see page 1152)

 HscControl_ElapsedValueReset (see page 1145)

 HscControl_ElapsedValueContinue (see page 1143)

 FP instructions Writing and reading the elapsed value (see page 894)

PLC types see page 1327

Variable Data type Function

iChannel INT High-speed counter channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable DINT Stores the elapsed value from the channel specified by iChannel

Description This instruction reads the elapsed value from the high-speed counter channel specified by
iChannel.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bReadElapsedValue) then

 diElapsedValue := HscInfo_ReadElapsedValue(iChannel := iChannel);

end_if;

 High-speed counter instructions

1165

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

HscInfo_ReadTarget
Value

Reads target value from high-speed counter channel

See also:

Tool instructions: overview of high-speed counter instructions

Variable Data type Function

iChannel INT High-speed counter channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable DINT Stores the target value of the channel specified by iChannel

Description This instruction reads the target value from the high-speed counter channel specified by iChannel.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bReadTargetValue) then

 diTargetValue := HscInfo_ReadTargetValue(iChannel := iChannel);

end_if;

High-speed counter instructions

1166

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

38.4 High-speed counter target value match control

In this section:

- Hsc_TargetValueMatch_Reset (see page 1167)

- Hsc_TargetValueMatch_Set (see page 1169)

 High-speed counter instructions

1167

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Hsc_TargetValue
Match_Reset

Target value match OFF (high-speed counter)

This non-inline instruction is part of the tool instructions for high-speed counters. For a detailed
description of the instruction(s) used internally, please refer to the online help:
F167_HighSpeedCounter_Reset (see page 904)

To validate the combination of channel and Y output, the compiler requires the following name pattern for
global variables:
%sHsc_TargetValueMatch_Channel%d_Y%d%s

Always use this pattern for global variables in target value match control.

 Channel%d must be a high-speed counter channel number enabled in the system registers

 Y%d must be an explicit output address supported by the PLC

FP-, FP0, FP-e: Y0–Y7

FP- (V3.1 or higher), FP0R: Y0–Y1F

FP-X: Y0–Y29F

 %s is an optional descriptor at the beginning and the end of the pattern

�

Optiona
l

Fixed pattern Optional

g_b Hsc_TargetValueMatch_ChannelA_Y11F _MotorOn

This global variable generates the code for channel A and output Y11F.

PLC types See 1327

Input variable Data type Function

bExecute
BOOL

A rising edge activates the function; evaluate the high-speed counter
control flag using HscInfo_IsActive (see page 1157)

iChannel

INT

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0, FP-e: 0, 1

pYOutput
POINTER

Pointer result obtained by GetPointer from a global variable that supplies
the channel number and output relay

diTargetValue

DINT

Specify a 32-bit data value for the target value within the following range:

FP0, FP-e: -838808–+8388607

FP, FP-X, FP0R: -2147483467–+2147483648

Description If the elapsed value matches the target value diTargetValue of the high-speed counter channel
specified by iChannel, the output relay specified by pYOutput immediately turns to FALSE.

Data types

High-speed counter instructions

1168

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Output variable Data type Function

iError BOOL TRUE if the combination of Channel%d and pYOuput.iOffset does not
match a valid combination of channel number and output relay as
determined by the global variable

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
(ST).The same POU header is used for all programming languages.

GVL In the global variable list you define variables that can be accessed by all POUs in the project.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body Use HscInfo_IsActive (see page 1157) to evaluate the channel specified by iChannel1. If a rising
edge is detected at bReset and if bIsActive is not TRUE, the instruction is executed. The
combination of channel number and output contact is validated in the global variable
g_bHsc_TargetValueMatch_Channel1_Y7_YellowLamp_On. When the high-speed counter on
channel 1 reaches the target value diTargetValue1, output Y7 is set to FALSE.

LD

ST bIsActive:=HscInfo_IsActive(iChannel1);

Hsc_TargetValueMatch_Reset(bExecute := DF(bReset) AND NOT bIsActive,

 iChannel := iChannel1,

 pYOutput :=
GetPointer(g_bHsc_TargetValueMatch_Channel1_Y7_YellowLamp_On),

 diTargetValue := diTargetValue1,

 bError => bErrorReset);

 High-speed counter instructions

1169

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Hsc_TargetValue
Match_Set

Target value match ON (high-speed couter)

This non-inline instruction is part of the tool instructions for high-speed counters. For a detailed
description of the instruction(s) used internally, please refer to the online help:
F166_HighSpeedCounter_Set (see page 900)

To validate the combination of channel and Y output, the compiler requires the following name
pattern for global variables:
%sHsc_TargetValueMatch_Channel%d_Y%d_%s

Always use this pattern for global variables in target value match control.

 Channel%d must be a high-speed counter channel number enabled in the system
registers

 Y%d must be an explicit output address supported by the PLC

FP-, FP0, FP-e: Y0–Y7

FP- (V3.1 or higher), FP0R: Y0–Y1F

FP-X: Y0–Y29F

 _%s is an optional descriptor at the beginning and the end of the pattern

�

Optional Fixed pattern Optional

g_b Hsc_TargetValueMatch_ChannelA_Y11F _MotorOn

This global variable generates the code for channel A and output Y11F.

PLC types See 1327

Input variable Data type Function

bExecute BOOL A rising edge activates the function; evaluate the high-speed counter
control flag using HscInfo_IsActive (see page 1157)

iChannel INT FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

pYOutput
POINTER

Pointer result obtained by GetPointer from a global variable that supplies
the channel number and output relay

diTargetValue DINT Specify a 32-bit data value for the target value within the following range:

FP0, FP-e: -838808–+8388607

FP, FP-X, FP0R: -2147483467–+2147483648

Description If the elapsed value matches the target value diTargetValue of the high-speed counter channel
specified by iChannel, the output relay specified by pYOutput immediately turns to TRUE.

Data types

High-speed counter instructions

1170

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Output variable Data type Function

bError BOOL TRUE if the combination of Channel%d and pYOuput.iOffset does not
match a valid combination of channel number and output relay as
determined by the global variable

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
(ST).The same POU header is used for all programming languages.

GVL In the global variable list you define variables that can be accessed by all POUs in the project.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body Use HscInfo_IsActive (see page 1157) to evaluate the channel specified by iChannel1. If a rising
edge is detected at bSet and if bIsActive is not TRUE, the instruction is executed. The
combination of channel number and output contact is validated in the global variable
g_bHsc_TargetValueMatch_Channel1_Y1_RedLamp_On. When the high-speed counter on
channel 1 reaches the target value diTargetValue0, output Y1 is set to TRUE.

LD

ST bIsActive:=HscInfo_IsActive(iChannel1);

Hsc_TargetValueMatch_Set(bExecute := DF(bSet) AND NOT bIsActive,

 iChannel := iChannel1,

 pYOutput :=
GetPointer(g_bHsc_TargetValueMatch_Channel1_Y1_RedLamp_On),

 diTargetValue := diTargetValue0,

 bError => bErrorSet);

Chapter 39

 Pulse output instructions

Pulse output instructions

1172

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

39.1 Introduction

Control FPWIN Pro offers two concepts for programming with pulse output instructions:

 FP instructions

 Tool instructions

For users programming for different PLC types of the FP series or users who are tired of setting control code
bits and looking up available channel numbers, the tool instructions offer new and comfortable features. These
include information functions for evaluating status flags and settings, control functions for configuring
high-speed counters and pulse outputs, PLC-independent functions and DUTs, as well as variable channel
numbers. However, the FP instructions may be easier to use for beginners or users familiar with FPWIN GR.

Most of the information, which is accessible via information and control functions, is stored in special internal
relays and special data registers. These relays and registers can also be accessed using PLC-independent
system variables.

To take advantage of the features you prefer, the instructions of both libraries can be mixed.

 � NOTE

When programming with the tool instructions, be sure to refer to the detailed information
provided via the links to the related F/P instructions.

Main features FP instructions Tool instructions

Pre version 6.4 support 

Use of inline functions 

Use of FPWIN GR function names 

Less code with constant channel numbers 

Control codes 

Control functions 

Information functions 

Variable channel numbers 

Universal functions for all PLCs 

DUT for common channel configuration for all
PLCs for all pulse output instructions

 

 Pulse output instructions

1173

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

39.2 Pulse output function blocks

In this section:

- PulseOutput_Center_FB (see page 1174)

- PulseOutput_Home_FB (see page 1177)

- PulseOutput_Jog_FB (see page 1180)

- PulseOutput_Jog_Positioning0_FB (see page 1182)

- PulseOutput_Jog_Positioning1_FB (see page 1185)

- PulseOutput_Jog_TargetValue_FB (see page 1187)

- PulseOutput_Linear_FB (see page 1189)

- PulseOutput_Pass_FB (see page 1192)

- PulseOutput_Trapezoidal_FB (see page 1195)

Pulse output instructions

1174

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseOutput_Center_FB Circular interpolation (center position)

This non-inline instruction is part of the tool instructions for pulse output. For a detailed description
of the instruction(s) used internally, please refer to the online help: F176_PulseOutput_Center (see
page 1077)

Use PulseInfo_IsActive (see page 1223) to check if the control flag for the selected channel is
FALSE.

PLC types see see page 1329

Description Pulses are output from two channels in accordance with the parameters in the function block and in
the specified DUT, so that the path to the target position forms an arc. The radius of the circle is
calculated by specifying the center position and the end position. Pulses are output from the
specified channel when the control flag for this channel is FALSE and the execution condition is
TRUE.

 Pulse output instructions

1175

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Input variable Data type Function

bExecute Activates the function block (with permanent trigger)

bAbsolute BOOL Absolute value control = TRUE, Relative value control =
FALSE

bCounterclockwise Rotation direction: Reverse = TRUE, Forward = FALSE

diTargetSpeed Target speed: Composite speed of both axes =
100–20000 (100Hz–20kHz)

diTargetValue_X

diTargetValue_Y

diCenterValue_X

diCenterValue_Y

DINT

Target value [pulses]: -8388608–8388607

dutChannelConfiguration_X_Y Predefined system DUT for channel configuration:
PulseOutput_Channel_Configuration_DUT

Channel: 0, 2

Output variable Data type Function

bError BOOL Refers to an internal mismatch of input values to avoid a
PLC error.

diRadius DINT Radius [pulses]

Data types

Example In this example the function has been programmed in ladder diagram (LD). Please refer to the
online help for a structured text (ST) example. The same POU header is used for all programming
languages.

DUT Use the following predefined DUT: PulseOutput_Channel_Configuration_DUT

POU header All input and output variables used for programming this function have been declared in the POU
header.

Pulse output instructions

1176

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

LD

 Pulse output instructions

1177

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseOutput_Home_FB Home return

This non-inline instruction is part of the tool instructions for pulse output. For a detailed description
of the instruction(s) used internally, please refer to the online help:

 FP, FP-X: F171_PulseOutput_Home (see page 1051)

 FP0R: F177_PulseOutput_Home (see page 1085)

 FP-e, FP0: F168_PulseOutput_Home (see page 1035)

Use PulseInfo_IsActive (see page 1223) to check if the control flag for the selected channel is
FALSE.

Use PulseInfo_IsHomeInputTrue (see page 1227) to check if the home input is TRUE.

 Note the following to avoid malfunctions or an operation error:

 Ensure to set the system register to pulse output mode with home input.

 The home input may not be occupied by other instructions like pulse-catch input, interrupt
input or high-speed counter.

PLC types see page 1330

Description This instruction performs a home return according to the parameters in the function block and in
the specified DUT. Pulses are output from the specified channel when the control flag for this
channel is FALSE and the execution condition is TRUE.

Pulse output instructions

1178

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Input variable Data type Function

bExecute A rising edge activates the function block

bReverse
BOOL

Movement direction: Forward = FALSE, Reverse = TRUE

diInitialSpeed

diTargetSpeed

Initial speed/Target speed: Set this value according to the
frequency range selected in
PulseOutput_Channel_Configuration_DUT:

FP, FP-X: 1 to 9800 (1.5Hz–9.8kHz)
48 to 100000 (48Hz–100kHz)
191 to 100000 (191–100kHz)

FP0R: 1 to 50000 (1Hz–50kHz)

FP0, FP-e: 40 to 5000 (40Hz–5kHz)

diAccelerationTime Acceleration/deceleration time (FP, FP-X):
With 30 steps: 30ms–32760ms (specify in steps of 30)
With 60 steps: 60ms–32760ms (specify in steps of 60)

Acceleration/deceleration time (FP0, FP-e): 30ms–32760ms

Acceleration time (FP0R): 1ms–32760ms

diDecelerationTime Deceleration time (FP0R): 1ms–32760ms

diCreepSpeed

DINT

Creep speed (FP0R): 1 to 50000 (1Hz–50kHz)

dutChannelConfiguration Predefined system DUT for channel configuration:
PulseOutput_Channel_Configuration_DUT

Output variable Data type Function

bError BOOL Refers to an internal mismatch of input values to avoid a PLC
error.

Data types

Example In this example the function has been programmed in ladder diagram (LD). Please refer to the
online help for a structured text (ST) example. The same POU header is used for all programming
languages.

DUT Use the following predefined DUT: PulseOutput_Channel_Configuration_DUT

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Pulse output instructions

1179

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

LD

Pulse output instructions

1180

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseOutput_Jog_FB JOG operation

This non-inline instruction is part of the tool instructions for pulse output. For a detailed description
of the instruction(s) used internally, please refer to the online help: F172_PulseOutput_Jog (see
page 1060). Use PulseInfo_IsActive (see page 1223) to check if the control flag for the selected
channel is FALSE.

PLC types see see page 1329

Input variable Data type Function

bExecute With edge or permanent if change of speed required

bReverse
BOOL

Movement direction: Forward = FALSE, Reverse = TRUE

diInitialAndFinalSpeed Initial and final speed (FP0R): 1 to 50000 (1Hz–50kHz)

diTargetSpeed Target speed: Set this value according to the frequency range
selected in PulseOutput_Channel_Configuration_DUT:

FP, FP-X: 1 to 9800 (1.5Hz–9.8kHz)
48 to 100000 (48Hz–100kHz)
191 to 100000 (191–100kHz)

FP0R: 1 to 50000 (1Hz–50kHz)

FP0, FP-e: 40 to 5000 (40Hz–5kHz)

diAccelerationTime Acceleration time (FP0R): 1ms–32760ms (up to the maximum
speed)

diDecelerationTime

DINT

Deceleration time (FP0R): 1ms–32760ms (from the maximum
speed)

dutChannelConfiguration Predefined system DUT for channel configuration:
PulseOutput_Channel_Configuration_DUT

Output variable Data type Function

bError BOOL Refers to an internal mismatch of input values to avoid a PLC
error.

Description This instruction is used for JOG operation. Pulses are output from the specified channel when the
control flag for this channel is FALSE and the execution condition is TRUE.

Data types

Example In this example the function has been programmed in ladder diagram (LD). Please refer to the
online help for a structured text (ST) example. The same POU header is used for all programming
languages.

 Pulse output instructions

1181

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

DUT Use the following predefined DUT: PulseOutput_Channel_Configuration_DUT

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

Pulse output instructions

1182

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseOutput_Jog_
Positioning0_FB

JOG operation and positioning

The speed can be changed within the range of the specified target speed.

This non-inline instruction is part of the tool instructions for pulse output. For a detailed description
of the instruction(s) used internally, please refer to the online help:
F171_PulseOutput_Jog_Positioning (see page 1055). Use PulseInfo_IsActive (see page 1223) to
check if the control flag for the selected channel is FALSE. Use PulseControl_PulseOutputStop
(see page 1213) to stop pulse output on a specified channel. Use PulseControl_DeceleratedStop
(see page 1202) to perform a decelerated stop.

PLC types see see page 1329

Input variable Data type Function

bExecute BOOL With edge or permanent if change of speed required

bAbsolute BOOL:=FAL
SE

Only incremental mode supported, must be FALSE always,
otherwise an error is output.

diInitialAndFinalSpeed Initial and final speed (FP0R): 1 to 50000 (1Hz–50kHz)

diTargetSpeed Target speed: Set this value according to the frequency range
selected in PulseOutput_Channel_Configuration_DUT:

FP, FP-X: 1 to 9800 (1.5Hz–9.8kHz)
48 to 100000 (48Hz–100kHz)
191 to 100000 (191–100kHz)

FP0R: 1 to 50000 (1Hz–50kHz)

FP0, FP-e: 40 to 5000 (40Hz–5kHz)

diAccelerationTime Acceleration time (FP0R): 1ms–32760ms (up to the maximum
speed)

diDecelerationTime Deceleration time (FP0R): 1ms–32760ms (from the maximum
speed)

diTargetValue

DINT

Target value [pulses]: -2147483648–2147483647

dutChannelConfiguration Predefined system DUT for channel configuration:
PulseOutput_Channel_Configuration_DUT

Description This instruction is used for JOG operation. The specified number of pulses is output after the
position control trigger input has turned to TRUE. A deceleration is performed before the target
value is reached and pulse output stops. Pulses are output from the specified channel when the
control flag for this channel is FALSE and the execution condition is TRUE.

Data types

 Pulse output instructions

1183

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Output variable Data type Function

bError BOOL Refers to an internal mismatch of input values to avoid a PLC
error.

TRUE if the applied channel is not enabled in the system
registers or if bAbsolute is TRUE

Example In this example the function has been programmed in ladder diagram (LD). Please refer to the
online help for a structured text (ST) example. The same POU header is used for all programming
languages.

DUT Use the following predefined DUT: PulseOutput_Channel_Configuration_DUT

POU header All input and output variables used for programming this function have been declared in the POU
header.

Pulse output instructions

1184

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

LD

 Pulse output instructions

1185

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseOutput_Jog_
Positioning1_FB

JOG operation and positioning

The target speed can be changed once when the position control trigger input turns to TRUE.

This non-inline instruction is part of the tool instructions for pulse output. For a detailed description
of the instruction(s) used internally, please refer to the online help:
F171_PulseOutput_Jog_Positioning (see page 1055)

Use PulseInfo_IsActive (see page 1223) to check if the control flag for the selected channel is
FALSE.

Use PulseControl_PulseOutputStop (see page 1213) to stop pulse output on a specified channel.
Use PulseControl_DeceleratedStop (see page 1202) to perform a decelerated stop.

PLC types see see page 1329

Input variable Data type Function

bExecute BOOL With edge or permanent if change of speed required

bAbsolute BOOL:=FALSE Only incremental mode supported, must be FALSE always,
otherwise an error is output.

diInitialAndFinalSpeed Initial and final speed = 1 to 50000 (1Hz–50kHz)

diTargetSpeed1 Target speed = 1 to 50000 (1Hz–50kHz)

diAccelerationTime Acceleration time = 1ms–32760ms

diTargetSpeed2 Target speed = 1 to 50000 (1Hz–50kHz)

diChangeTime Change time = 1ms–32760ms

diDecelerationTime Deceleration time = 1ms–32760ms

diTargetValue

DINT

Target value [pulses]: -2147483648–2147483647

dutChannelConfiguration Predefined system DUT for channel configuration:
PulseOutput_Channel_Configuration_DUT

Output variable Data type Function

bError BOOL Refers to an internal mismatch of input values to avoid a PLC
error.

TRUE if the applied channel is not enabled in the system
registers or if bAbsolute is TRUE

Description This instruction is used for JOG operation. The specified number of pulses is output after the
position control trigger input has turned to TRUE. A deceleration is performed before the target
value is reached and pulse output stops. Pulses are output from the specified channel when the
control flag for this channel is FALSE and the execution condition is TRUE.

Data types

Pulse output instructions

1186

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Example In this example the function has been programmed in ladder diagram (LD). Please refer to the
online help for a structured text (ST) example. The same POU header is used for all programming
languages.

DUT Use the following predefined DUT: PulseOutput_Channel_Configuration_DUT

POU header All input and output variables used for programming this function have been declared in the POU
header.

LD

 Pulse output instructions

1187

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseOutput_Jog_
TargetValue_FB

JOG operation with target value

Description

This non-inline instruction is part of the tool instructions for pulse output. For a detailed description
of the instruction(s) used internally, please refer to the online help: F172_PulseOutput_Jog (see
page 1060). Use PulseInfo_IsActive (see page 1223) to check if the control flag for the selected
channel is FALSE.

PLC types see page 1329

Input variable Data type Function

bExecute With edge or permanent if change of speed requiredWith edge
or permanent if change of speed required

bAbsolute
BOOL

FP0R: Absolute value control = TRUE, Relative value control =
FALSE

diInitialAndFinalSpeed FP0R: Initial and final speed = 1 to 50000 (1Hz–50kHz)

diTargetSpeed Target speed: Set this value according to the frequency range
selected in PulseOutput_Channel_Configuration_DUT:

FP, FP-X: 1 to 9800 (1.5Hz–9.8kHz)
48 to 100000 (48Hz–100kHz)
191 to 100000 (191–100kHz)

FP0R: 1 to 50000 (1Hz–50kHz)

FP0, FP-e: 40 to 5000 (40Hz–5kHz)

diAccelerationTime Acceleration time (FP0R): 1ms–32760ms (up to the maximum
speed)

diDecelerationTime Deceleration time (FP0R): 1ms–32760ms (from the maximum
speed)

diTargetValue

DINT

Target value [pulses]: -2147483648–2147483647

dutChannelConfiguration Predefined system DUT for channel configuration:
PulseOutput_Channel_Configuration_DUT

Output variable Data type Function

bError BOOL Refers to an internal mismatch of input values to avoid a PLC
error.

 Additional error condition for FP, FP-X :

TRUE if the applied channel is not enabled in the system
registers or if bAbsolute is TRUE

This instruction is used for JOG operation. Pulses are output from the specified channel when the
control flag for this channel is FALSE and the execution condition is TRUE. Pulse output stops
when the target value is reached.

Data types

Pulse output instructions

1188

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Example In this example the function has been programmed in ladder diagram (LD). Please refer to the
online help for a structured text (ST) example. The same POU header is used for all programming
languages.

DUT Use the following predefined DUT: PulseOutput_Channel_Configuration_DUT

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

 Pulse output instructions

1189

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseOutput_Linear_FB Linear interpolation

This non-inline instruction is part of the tool instructions for pulse output. For a detailed description
of the instruction(s) used internally, please refer to the online help: F175_PulseOutput_Linear (see
page 1072). Use PulseInfo_IsActive (see page 1223) to check if the control flag for the selected
channel is FALSE.

PLC types see page 1330

Input variable Data type Function

bExecute With edge or permanent if change of speed required

bAbsolute
BOOL

Absolute value control = TRUE, Relative value control = FALSE

diInitialAndFinalSpeed Initial and final speed: Composite speed = 1 to 50000
(1Hz–50kHz)

diTargetSpeed Target speed: Composite speed = 1 to 50000 (1Hz–50kHz)

diAccelerationTime Acceleration/deceleration time (FP, FP-X): 0ms–32767ms

Acceleration time (FP0R): 0ms–32767ms

diDecelerationTime Deceleration time (FP0R): 0ms–32767ms

diTargetValue_X X-axis target value [pulses] -8388608–8388607

diTargetValue_Y

DINT

Y-axis target value [pulses] -8388608–8388607

dutChannelConfiguration_X_Y Predefined system DUT for channel configuration:
PulseOutput_Channel_Configuration_DUT

For interpolation, channel 0 and 1 or channel 2 and 3 are used as pairs. You may
only specify 0 or 2 (for C14T: 0 only).

Output variable Data type Function

bError BOOL Refers to an internal mismatch of input values to avoid a PLC
error.

Is set only if global constant
MC_PulseOutput_Library_Basic_bCheckInputs is set to TRUE.

riInitialAndFinalSpeed_X X-axis initial and final speed [Hz]

riTargetSpeed_X X-axis target speed [Hz]

riInitialAndFinalSpeed_Y Y-axis initial and final speed [Hz]

riTargetSpeed_Y

REAL

Y-axis target speed [Hz]

dutAdditionalOutputs FP, FP-X: PulseOutput_Linear_AdditionalOutputs_DUT

Description Pulses are output from two channels in accordance with the parameters in the function block and in
the specified DUT, so that the path to the target position forms a straight line. Pulses are output
from the specified channel when the control flag for this channel is FALSE and the execution
condition is TRUE.

Data types

Pulse output instructions

1190

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Example In this example the function has been programmed in ladder diagram (LD). Please refer to the
online help for a structured text (ST) example. The same POU header is used for all programming
languages.

DUT Use the following predefined DUT: PulseOutput_Channel_Configuration_DUT

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Pulse output instructions

1191

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

LD

Pulse output instructions

1192

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseOutput_Pass_FB Circular interpolation (pass position)

This non-inline instruction is part of the tool instructions for pulse output. For a detailed description
of the instruction(s) used internally, please refer to the online help: F176_PulseOutput_Pass (see
page 1081). Use PulseInfo_IsActive (see page 1223) to check if the control flag for the selected
channel is FALSE.

PLC types see page 1330

Input variable Data type Function

bExecute BOOL Activates the function block

bAbsolute

Absolute value control = TRUE, Relative value control =
FALSE

bCounterclockwise

Operation connection mode: Reverse = TRUE, Forward =
FALSE

diTargetSpeed Target speed: Composite speed of both axes = 100–20000
(100Hz–20kHz)

diTargetValue_X

diTargetValue_Y

diPassValue_X

diPassValue_Y

DINT

Target value [pulses]: -8388608–8388607

dutChannelConfiguration_X_Y Predefined system DUT for channel configuration:
PulseOutput_Channel_Configuration_DUT

Channel: 0, 2

Output variable Data type Function

bError BOOL Refers to an internal mismatch of input values to avoid a
PLC error.

diRadius Radius [pulses]

diCenterValue_X X-axis center value [pulses] = -8388608–8388607

diCenterValue_Y

DINT

Y-axis center value [pulses] = -8388608–8388607

Description Pulses are output from two channels in accordance with the parameters in the function block and in
the specified DUT, so that the path to the target position forms an arc. Pulses are output from the
specified channel when the control flag for this channel is FALSE and the execution condition is
TRUE.

Data types

 Pulse output instructions

1193

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Example In this example the function has been programmed in ladder diagram (LD). Please refer to the
online help for a structured text (ST) example. The same POU header is used for all programming
languages.

DUT Use the following predefined DUT: PulseOutput_Channel_Configuration_DUT

POU header All input and output variables used for programming this function have been declared in the POU
header.

Pulse output instructions

1194

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

LD

 Pulse output instructions

1195

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseOutput_Trapezoidal_FB Trapezoidal control

This non-inline instruction is part of the tool instructions for pulse output. For a detailed description
of the instruction(s) used internally, please refer to the online help:

 FP, FP-X, FP0R: F171_PulseOutput_Trapezoidal (see page 1045)

 FP0, FP-e: F168_PulseOutput_Trapezoidal (see page 1032)

Use PulseInfo_IsActive (see page 1223) to check if the control flag for the selected channel is
FALSE.

PLC types see page 1330

Input variable Data type Function

bExecute FP-SIGMA, FP-X, FP0, FP-e: Only with edge trigger

FP0R: With edge or permanent if change of speed required

bAbsoluteValueControl

BOOL

Absolute value control = TRUE, Relative value control = FALSE

diInitialAndFinalSpeed Initial and final speed: Set this value according to the frequency
range selected in PulseOutput_Channel_Configuration_DUT:

FP, FP-X: 1 to 9800 (1.5Hz–9.8kHz)
48 to 100000 (48Hz–100kHz)
191 to 100000 (191–100kHz)

FP0R: 1 to 50000 (1Hz–50kHz)

FP0, FP-e: 40 to 5000 (40Hz–5kHz)

diTargetSpeed Target speed: Set this value according to the frequency range
selected in PulseOutput_Channel_Configuration_DUT:

FP, FP-X: 1 to 9800 (1.5Hz–9.8kHz)
48 to 100000 (48Hz–100kHz)
191 to 100000 (191–100kHz)

FP0R: 1 to 50000 (1Hz–50kHz)

FP0, FP-e: 40 to 5000 (40Hz–5kHz)

diAccelerationTime Acceleration/deceleration time (FP, FP-X):
With 30 steps: 30ms–32760ms (specify in steps of 30)
With 60 steps: 60ms–32760ms (specify in steps of 60)

Acceleration/deceleration time (FP0, FP-e): 30ms–32760ms

Acceleration time (FP0R): 1ms–32760ms

diDecelerationTime Deceleration time (FP0R): 1ms–32760ms

diTargetValue

DINT

Target value [pulses]: -2147483648–2147483647

Description This instruction automatically performs trapezoidal control according to the parameters in the
function block and in the specified DUT. Pulses are output from the specified channel when the
control flag for this channel is FALSE and the execution condition is TRUE.

Data types

Pulse output instructions

1196

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Input variable Data type Function

dutChannelConfiguration Predefined system DUT for channel configuration:
PulseOutput_Channel_Configuration_DUT

Output variable Data type Function

bError BOOL Refers to an internal mismatch of input values to avoid a PLC
error.

Data types

Example In this example the function has been programmed in ladder diagram (LD). Please refer to the
online help for a structured text (ST) example. The same POU header is used for all programming
languages.

DUT Use the following predefined DUT: PulseOutput_Channel_Configuration_DUT

POU header All input and output variables used for programming this function have been declared in the POU
header.

 Pulse output instructions

1197

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

LD

Pulse output instructions

1198

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

39.3 Pulse control instructions

In this section:

- PulseControl_CountingDisable (see page 1199)

- PulseControl_CountingEnable (see page 1201)

- PulseControl_DeceleratedStop (see page 1203)

- PulseControl_ElapsedValueContinue (see page 1205)

- PulseControl_ElapsedValueReset (see page 1207)

- PulseControl_JogPositionControl (see page 1209)

- PulseControl_NearHome (see page 1210)

- PulseControl_PulseOutputContinue (see page 1212)

- PulseControl_PulseOutputStop (see page 1214)

- PulseControl_SetDefaults (see page 1216)

- PulseControl_WriteElapsedValue (see page 1217)

- Pulse_TargetValueMatchClear (see page 1219)

 Pulse output instructions

1199

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseControl_Counting
Disable

Disables counting on a pulse output channel

See also:

 Pulse output tool instructions in the online help

 PulseInfo_IsCountingDisabled (see page 1225)

 PulseControl_CountingEnable (see page 1200)

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable BOOL TRUE if pulse counting has been disabled

Description This instruction disables counting on the channel specified by iChannel. Bit 1 of the pulse output
control code (see page 1021) is set to TRUE.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

Pulse output instructions

1200

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

ST When programming with structured text, enter the following:

if DF(bDisableCounting) then

 PulseControl_CountingDisable(iChannel := iChannel);

end_if;

 Pulse output instructions

1201

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseControl_Counting
Enable

Enables counting on a pulse output channel

See also:

 Pulse output tool instructions in the online help

 PulseControl_CountingDisable (see page 1198)

 PulseInfo_IsCountingDisabled (see page 1225)

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction enables counting on the pulse output channel specified by iChannel after counting
has been disabled with PulseControl_CountingDisable (see page 1198). Bit 1 of the pulse output
control code (see page 1021) is set to FALSE.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

Pulse output instructions

1202

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

ST When programming with structured text, enter the following:

if DF(bEnableCounting) then

 PulseControl_CountingEnable(iChannel := iChannel);

end_if;

 Pulse output instructions

1203

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseControl_Decelerated
Stop

Performs a decelerated stop

See also:

 Pulse output tool instructions in the online help

 PulseControl_PulseOutputStop (see page 1213)

 PulseInfo_IsPulseOutputStopped (see page 1228)

 FP instructions Writing the pulse output control code (see page 1021) (FP0R)

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction performs a decelerated stop on the channel specified by iChannel. When a
decelerated stop is requested during acceleration, deceleration is performed with the same slope
as deceleration from the target speed.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

Pulse output instructions

1204

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

ST When programming with structured text, enter the following:

if DF(bDeceleratedStop) then

 PulseControl_DeceleratedStop(iChannel := iChannel);

end_if;

 Pulse output instructions

1205

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseControl_Elapsed
ValueContinue

Continues pulse counting after reset

See also:

 Pulse output tool instructions in the online help

 PulseInfo_IsElapsedValueReset (see page 1226)

 PulseInfo_ReadElapsedValue (see page 1233)

 PulseControl_ElapsedValueContinue (see page 1206)

 PulseControl_WriteElapsedValue (see page 1216)

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction resumes pulse counting on the channel specified by iChannel after a reset of the
elapsed value using PulseControl_ElapsedValueReset (see page 1206). Bit 0 of the pulse output
control code (see page 1021) is set to FALSE.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

Pulse output instructions

1206

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

ST When programming with structured text, enter the following:

if (bElapsedValueContinue) then

 PulseControl_ElapsedValueContinue(iChannel := iChannel);

end_if;

 Pulse output instructions

1207

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseControl_Elapsed
ValueReset

Sets elapsed value to 0

See also:

 Pulse output tool instructions in the online help

 PulseInfo_IsElapsedValueReset (see page 1226)

 PulseControl_ElapsedValueContinue (see page 1204)

 PulseControl_WriteElapsedValue (see page 1216)

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction sets the elapsed value of the pulse output channel specified by iChannel to 0. Bit 0
of the pulse output control code (see page 1021) is set to TRUE. Use
PulseControl_ElapsedValueContinue (see page 1204) to continue counting on the pulse output
channel. Use PulseInfo_IsElapsedValueReset (see page 1226) to check the current state. Pulse
output continues when resetting the elapsed value.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

Pulse output instructions

1208

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

ST When programming with structured text, enter the following:

if (bElapsedValueReset) then

 PulseControl_ElapsedValueReset(iChannel := iChannel);

end_if;

 Pulse output instructions

1209

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseControl_JogPosition
Control

Starts position control

See also:

 Pulse output tool instructions in the online help

 FP instructions F171_PulseOutput_Jog_Positioning (see page 1055)

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction sets and resets bit 6 of the pulse output control code (see page 1021) to start
position control on the channel specified by iChannel. The position control trigger is used with the
JOG operation instructions PulseOutput_Jog_Positioning0_FB (see page 1181) and
PulseOutput_Jog_Positioning1_FB (see page 1184).

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bJogPositionControl) then

 PulseControl_JogPositionControl(iChannel := iChannel);

end_if;

Pulse output instructions

1210

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseControl_Near
Home

Starts deceleration when near home

See also:

 Tool instructions PulseOutput_Home_FB (see page 1176), Pulse output tool
instructions in the online help

 FP instructions

F168_PulseOutput_Home (see page 1035) (FP0, FP-e)

F171_PulseOutput_Home (see page 1051) (FP, FP-X)

F177_PulseOutput_Home (see page 1085) (FP0R)

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction starts deceleration on the channel specified by iChannel when near the home input
by setting bit 4 of the pulse output control code (see page 1021) to TRUE and back to FALSE
again. Use PulseInfo_IsHomeInputTrue (see page 1227) to check if the home input is TRUE.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

 Pulse output instructions

1211

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

ST When programming with structured text, enter the following:

if DF(bSetNearHome) then

 PulseControl_NearHome(iChannel := iChannel);

end_if;

Pulse output instructions

1212

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseControl_PulseOutput
Continue

Continues pulse output

See also:

 Pulse output tool instructions in the online help

 PulseControl_PulseOutputStop (see page 1213)

 PulseInfo_IsPulseOutputStopped (see page 1228)

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction continues pulse output at the channel specified by iChannel after pulse output has
been stopped using PulseControl_PulseOutputStop (see page 1213). Bit 3 of the pulse output
control code (see page 1021) is set to FALSE.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

 Pulse output instructions

1213

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

ST When programming with structured text, enter the following:

if DF(bContinuePulseOutput) then

 PulseControl_PulseOutputContinue(iChannel := iChannel);

end_if;

Pulse output instructions

1214

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseControl_PulseOutputStop Stops pulse output

See also:

 PulseInfo_IsPulseOutputStopped (see page 1228)

 PulseControl_PulseOutputContinue (see page 1211)

 Stopping pulse output

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction stops the pulse output on the channel specified by iChannel by setting bit 3 of the
pulse output control code (see page 1021) to TRUE. Use PulseControl_PulseOutputContinue (see
page 1211) to continue pulse output after the interrupt.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST

 Pulse output instructions

1215

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

When programming with structured text, enter the following:

if DF(bStopPulseOutput) then

 PulseControl_PulseOutputStop(iChannel := iChannel);

end_if;

Pulse output instructions

1216

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseControl_Set
Defaults

Sets defaults for pulse output channel

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction sets all bits of the pulse output control code (see page 1021) of the channel
specified by iChannel to 0. 0 is the default setting.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if DF(bSetDefaults) then

 PulseControl_SetDefaults(iChannel := iChannel);

end_if;

 Pulse output instructions

1217

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseControl_Write
ElapsedValue

Writes elapsed value into a pulse output channel

See also:

 Pulse output tool instructions in the online help

 PulseInfo_IsElapsedValueReset (see page 1226)

 PulseControl_ElapsedValueContinue (see page 1204)

 PulseInfo_ReadElapsedValue (see page 1233)

 Writing and reading the elapsed value (see page 1026)

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1329

Variable Data type Function

diElapsedValue DINT Elapsed value to be written into the channel specified by
iChannel

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction writes an elapsed value into pulse output channel specified by iChannel.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

Pulse output instructions

1218

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

LD

ST When programming with structured text, enter the following:

if DF(bWriteElapsedValue) then

 PulseControl_WriteElapsedValue(ElapsedValue := diElapsedValue,

 iChannel := iChannel);

end_if;

 Pulse output instructions

1219

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Pulse_TargetValue
MatchClear

Clears target value match control

See also:

 Pulse output tool instructions in the online help

 PulseInfo_IsTargetValueMatchActive (see page 1229)

 PulseInfo_ReadTargetValueMatchValue (see page 1235)

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1335

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction clears the target value match control on the channel specified by iChannel.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if DF(bClearTargetValueMatch) then

 Pulse_TargetValueMatchClear(iChannel := iChannel);

end_if;

Pulse output instructions

1220

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

39.4 Pulse information instructions

In this section:

- PulseInfo_GetControlCode (see page 1221)

- PulseInfo_GetCurrentSpeed (see page 1222)

- PulseInfo_IsActive (see page 1224)

- PulseInfo_IsChannelEnabled (see page 1225)

- PulseInfo_IsCountingDisabled (see page 1226)

- PulseInfo_IsElapsedValueReset (see page 1227)

- PulseInfo_IsHomeInputTrue (see page 1228)

- PulseInfo_IsPulseOutputStopped (see page 1229)

- PulseInfo_IsTargetValueMatchActive (see page 1230)

- PulseInfo_ReadAccelerationForbiddenAreaStartingPosition (see page 1231)

- PulseInfo_ReadCorrectedFinalSpeed (see page 1232)

- PulseInfo_ReadCorrectedInitialSpeed (see page 1233)

- PulseInfo_ReadElapsedValue (see page 1234)

- PulseInfo_ReadTargetValue (see page 1235)

- PulseInfo_ReadTargetValueMatchValue (see page 1236)

 Pulse output instructions

1221

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseInfo_GetControl
Code

Returns control code of pulse output channel

See also: Pulse output tool instructions in the online help

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable WORD Stores the control code

Description This instruction returns the control code (see page 1021) of the pulse output channel specified by
iChannel.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bReadControlCode) then

 wChannelControlCode := PulseInfo_GetControlCode(iChannel := iChannel);

end_if;

Pulse output instructions

1222

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseInfo_GetCurrent
Speed

Returns current speed on pulse output channel

See also: Pulse output tool instructions in the online help

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

dutMemory PulseInfo_GetCurrentSpeed_DUT

diCurrentSpeed DINT Current speed in Hz

Description This instruction returns the current speed in Hz of the pulse output channel specified by iChannel.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

DUT Use the following predefined DUT: PulseInfo_GetCurrentSpeed_DUT

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

 Pulse output instructions

1223

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

ST When programming with structured text, enter the following:

if (bGetCurrentSpeed) then

 PulseInfo_GetCurrentSpeed(iChannel := iChannel,

 dutMemory := Memory_DUT,

 diCurrentSpeed => diCurrentSpeed);

end_if;

Pulse output instructions

1224

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseInfo_IsActive Check if pulse output is active

See also: Pulse output tool instructions in the online help

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable BOOL TRUE if pulse output is active

Description This instruction evaluates the pulse output control flag and returns TRUE if the pulse output
channel specified by iChannel is active.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bPulseOutput_Check) then

 bPulseOutputActive := PulseInfo_IsActive(iChannel := iChannel);

end_if;

 Pulse output instructions

1225

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseInfo_IsChannel
Enabled

Checks if pulse output channel is enabled

See also:

 Pulse output tool instructions in the online help

 Required system register settings

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable BOOL TRUE if the pulse output channel specified by iChannel is
enabled

Description This instruction returns TRUE if the pulse output channel specified by iChannel has been enabled
in the system registers and is supported by the selected PLC type.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bPulseChannel_Check) then

 bChannelEnabled := PulseInfo_IsChannelEnabled(iChannel := iChannel);

end_if;

Pulse output instructions

1226

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseInfo_IsCounting
Disabled

Checks if pulse counting is disabled

See also:

 Pulse output tool instructions in the online help

 PulseControl_CountingDisable (see page 1198)

 PulseControl_CountingEnable (see page 1200)

 FP instructions Enabling/disabling counting operations (see page 1021)

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Description This instruction returns TRUE if counting on the channel specified by iChannel has been disabled.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bChannelCounting_Check) then

 bCountingDisabled := PulseInfo_IsCountingDisabled(iChannel :=
iChannel);

end_if;

 Pulse output instructions

1227

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseInfo_IsElapsed
ValueReset

Checks if elapsed value is set to 0

See also:

 Pulse output tool instructions in the online help

 PulseInfo_ReadElapsedValue (see page 1233)

 PulseControl_ElapsedValueReset (see page 1206)

 PulseControl_ElapsedValueContinue (see page 1204)

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable BOOL TRUE if the channel specified by iChannel has been reset

Description This instruction returns TRUE if the elapsed value of the pulse output channel specified by
iChannel has been reset to 0.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bIsElapsedValueReset) then

 bElapsedValueReset := PulseInfo_IsElapsedValueReset(iChannel :=
iChannel);

end_if;

Pulse output instructions

1228

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseInfo_IsHome
InputTrue

Checks if home input is TRUE

See also:

 Pulse output tool instructions in the online help

 PulseOutput_Home_FB (see page 1176)

PLC types see page 1329

Variable Data type Function

Output variable BOOL TRUE if the home input has been reached

Description This instruction returns TRUE if the home input of the channel specified by iChannel is TRUE.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bHomeInput_Check) then

 bHomeInput := PulseInfo_IsHomeInputTrue(iChannel := iChannel);

end_if;

 Pulse output instructions

1229

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseInfo_IsPulse
OutputStopped

Check if pulse output has stopped

See also:

 Pulse output tool instructions in the online help

 Stopping pulse output

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable BOOL TRUE if pulse output has been stopped

Description This instruction returns TRUE if pulse output has been stopped, e.g. with
PulseControl_DeceleratedStop (see page 1202) or PulseControl_PulseOutputStop (see page
1213). Use PulseControl_PulseOutputContinue (see page 1211) to resume pulse output.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bPulseOutput_Check) then

 bPulseOutputStopped := PulseInfo_IsPulseOutputStopped(iChannel :=
iChannel);

end_if;

Pulse output instructions

1230

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseInfo_IsTarget
ValueMatchActive

Checks if target value match control is active

See also:

 Pulse output tool instructions in the online help

 PulseControl_TargetValueMatchClear (see page 1218)

 PulseInfo_ReadTargetValueMatchValue (see page 1235)

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable BOOL TRUE if target value match control is active

Description This instruction returns TRUE if target value match control (see page 1237) is active on the
channel specified by iChannel.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bTargetValueMatch_Check) then

 bActive := PulseInfo_IsTargetValueMatchActive(iChannel := iChannel);

end_if;

 Pulse output instructions

1231

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseInfo_ReadAccelerationForbidden
AreaStartingPosition

Read acceleration forbidden area starting
position

See also: Pulse output tool instructions in the online help

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable DINT Stores the start position of the acceleration forbidden area

Description This instruction reads the starting position of an acceleration forbidden area. If the elapsed value
crosses over this position when the speed is being changed, acceleration cannot be continued any
more.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

diForbiddenAreaStartingPosition :=
PulseInfo_ReadAccelerationForbiddenAreaStartingPosition(iChannel :=
iChannel);

Pulse output instructions

1232

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseInfo_ReadCorrected
FinalSpeed

Reads corrected value of final speed

See also: Pulse output tool instructions in the online help

PLC types see page 1329

Variable Data type Function

iChannel Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable

INT

Stores the value of the corrected final speed

Description This instruction returns the value of the corrected final speed on the channel specified by
iChannel.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

iCorrectedFinalSpeed:= PulseInfo_ReadCorrectedFinalSpeed(iChannel :=
iChannel);

 Pulse output instructions

1233

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseInfo_ReadCorrecte
dInitialSpeed

Reads corrected value of initial speed

See also: Pulse output tool instructions in the online help

PLC types see page 1329

Variable Data type Function

iChannel Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable

INT

Stores the value of the corrected initial speed

Description This instruction returns the value of the corrected initial speed on the channel specified by
iChannel.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

iCorrectedInitialSpeed := PulseInfo_ReadCorrectedInitialSpeed(iChannel :=
iChannel);

Pulse output instructions

1234

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseInfo_ReadElapsed
Value

Reads elapsed value from pulse output channel

See also:

 Pulse output tool instructions in the online help

 PulseInfo_IsElapsedValueReset (see page 1226)

 PulseControl_ElapsedValueContinue (see page 1204)

 PulseControl_WriteElapsedValue (see page 1216)

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable DINT Stores the elapsed value from the channel specified by iChannel

Description This instruction reads the elapsed value from the pulse output channel specified by iChannel. Use
PulseControl_WriteElapsedValue (see page 1216) to modify the elapsed value and
PulseControl_ElapsedValueReset (see page 1206) to set the elapsed value to 0.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bRead) then

 diElapsedValue := PulseInfo_ReadElapsedValue(iChannel := iChannel);

end_if;

 Pulse output instructions

1235

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseInfo_ReadTarget
Value

Reads target value from pulse output channel

See also: Tool instructions: overview of high-speed counter instructions

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable DINT Stores the target value of the channel specified by iChannel

Description This instruction reads the target value from the pulse output channel specified by iChannel.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bRead) then

 diTargetValue := PulseInfo_ReadTargetValue(iChannel := iChannel);

end_if;

Pulse output instructions

1236

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

PulseInfo_ReadTarget
ValueMatchValue

Reads output control target value from pulse output channel

See also:

 Pulse output tool instructions in the online help

 Pulse_TargetValueMatch_Set (see page 1240)

 Pulse_TargetValueMatch_Reset (see page 1237)

 Pulse_TargetValueMatch_Clear (see page 1218)

 Info_IsTargetValueMatch_Active (see page 1229)

PLC types see page 1329

Variable Data type Function

iChannel INT Pulse output channel:

FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

Output variable DINT Stores the output control target value

Description This instruction returns the output control target value of the pulse output channel specified by
iChannel. The output control target value is used by the target value match instructions.

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body

LD

ST When programming with structured text, enter the following:

if (bRead) then

 diTargetValueMatchValue := PulseInfo_ReadTargetValueMatchValue(iChannel
:= iChannel);

end_if;

 Pulse output instructions

1237

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

39.5 Pulse output target value match control

In this section:

- Pulse_TargetValueMatch_Reset (see page 1238)

- Pulse_TargetValueMatch_Set (see page 1241)

Pulse output instructions

1238

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Pulse_TargetValue
Match_Reset

Target value match OFF (pulse output)

See also:

Pulse output tool instructions in the online help

This non-inline instruction is part of the tool instructions for pulse output. For a detailed description
of the instruction(s) used internally, please refer to the online help: F167_PulseOutput_Reset (see
page 1029)

To validate the combination of channel and Y output, the compiler requires the following name
pattern for global variables: %sPulse_TargetValueMatch_Channel%d_Y%d%s

Always use this pattern for global variables in target value match control.

 Channel%d must be a pulse output channel number enabled in the system registers

 Y%d must be an explicit output address supported by the PLC

FP-, FP0, FP-e: Y0–Y7

FP- (V3.1 or higher), FP0R: Y0–Y1F

FP-X: Y0–Y29F

 %s is an optional descriptor at the beginning and the end of the pattern

 Y%d must be an explicit output address supported by the PLC

FP-, FP0, FP-e: Y0–Y7

FP- (V3.1 or higher), FP0R: Y0–Y1F

FP-X: Y0–Y29F

 %s is an optional descriptor at the beginning and the end of the pattern

�

Optional Fixed pattern Optional

g_b Pulse_TargetValueMatch_ChannelA_Y11F _MotorOn

This global variable generates the code for channel A and output Y11F.

PLC types see see page 1329

Description If the elapsed value matches the target value diTargetValue of the pulse output channel specified
by iChannel, the output relay specified by pYOutput immediately turns to FALSE.

 Pulse output instructions

1239

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Input variable Data type Function

bExecute
BOOL

A rising edge activates the function; evaluate the pulse output
channel control flag using PulseInfo_IsTargetValueMatchActive (see
page 1229)

iChannel INT FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

pYOutput
POINTER

Pointer result obtained by GetPointer from a global variable that
supplies the channel number and output relay

diTargetValue

DINT

Specify a 32-bit data value for the target value within the following
range:

FP0, FP-e: -838808–+8388607

FP, FP-X, FP0R: -2147483467–+2147483648

Output variable Data type Function

bError BOOL TRUE if the combination of Channel%d and pYOuput.iOffset does
not match a valid combination of channel number and output relay
as determined by the global variable

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
(ST).The same POU header is used for all programming languages.

GVL In the global variable list you define variables that can be accessed by all POUs in the project.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body Use PulseInfo_IsTargetValueMatchActive (see page 1229) to evaluate the channel iChannel1 is
active. If a rising edge is detected at bReset and if bIsActive is not TRUE, the instruction is
executed. The combination of channel number and output contact is validated in the global variable
g_bPulse_TargetValueMatch_Channel1_Y19_Motor1_On. When pulse output on channel 1
reaches the target value diTargetValue1, output Y19 is set to FALSE.

LD

Pulse output instructions

1240

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

ST bIsActive:=PulseInfo_IsTargetValueMatchActive(iChannel1);

Pulse_TargetValueMatch_Reset(bExecute := DF(bReset) AND NOT bIsActive,

 iChannel := iChannel1,

 pYOutput :=
GetPointer(g_bPulse_TargetValueMatch_Channel1_Y19_Motor1_On),

 diTargetValue := diTargetValue1,

 bError => bErrorReset);

 Pulse output instructions

1241

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Pulse_TargetValue
Match_Set

Target value match ON (pulse output)

See also:

Pulse output tool instructions in the online help

This non-inline instruction is part of the tool instructions for pulse output. For a detailed description
of the instruction(s) used internally, please refer to the online help: F166_PulseOutput_Set (see
page 1026)

To validate the combination of channel and Y output, the compiler requires the following name
pattern for global variables: %sPulse_TargetValueMatch_Channel%d_Y%d%s

Always use this pattern for global variables in target value match control.

 Channel%d must be a pulse output channel number enabled in the system registers

 Y%d must be an explicit output address supported by the PLC

FP-, FP0, FP-e: Y0–Y7

FP- (V3.1 or higher), FP0R: Y0–Y1F

FP-X: Y0–Y29F

 %s is an optional descriptor at the beginning and the end of the pattern

 Y%d must be an explicit output address supported by the PLC

FP-, FP0, FP-e: Y0–Y7

FP- (V3.1 or higher), FP0R: Y0–Y1F

FP-X: Y0–Y29F

 %s is an optional descriptor at the beginning and the end of the pattern

�

Optional Fixed pattern Optional

g_b Pulse_TargetValueMatch_ChannelA_Y11F _MotorOn

This global variable generates the code for channel A and output Y11F.

PLC types see see page 1329

Description If the elapsed value matches the target value diTargetValue of the pulse output channel specified
by iChannel, the output relay specified by pYOutput immediately turns to TRUE.

Pulse output instructions

1242

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

Input variable Data type Function

bExecute
BOOL

A rising edge activates the function; evaluate the pulse output
channel control flag using PulseInfo_IsTargetValueMatchActive
(see page 1229)

iChannel INT FP: 0, 2

FP-X R: 0, 1

FP-X 16K C14T: 0, 1, 2

FP-X 32K C30T, C60T: 0, 1, 2, 3

FP0R: 0, 1, 2, 3

FP0: 0, 1

FP-e: 0, 1

pYOutput
POINTER

Pointer result obtained by GetPointer from a global variable that
supplies the channel number and output relay

diTargetValue

DINT

Specify a 32-bit data value for the target value within the
following range:

FP0, FP-e: -838808–+8388607

FP, FP-X, FP0R: -2147483467–+2147483648

Output variable Data type Function

bError BOOL TRUE if the combination of Channel%d and pYOuput.iOffset
does not match a valid combination of channel number and
output relay as determined by the global variable

Data types

Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
(ST).The same POU header is used for all programming languages.

GVL In the global variable list you define variables that can be accessed by all POUs in the project.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Body Use PulseInfo_IsTargetValueMatchActive (see page 1229) to evaluate the channel iChannel1 is
active. If a rising edge is detected at bSet and if bIsActive is not TRUE, the instruction is
executed. The combination of channel number and output contact is validated in the global variable
g_bPulse_TargetValueMatch_Channel1_YA_Horn1_On. When pulse output on channel 1
reaches the target value diTargetValue0, output YA is set to TRUE.

LD

 Pulse output instructions

1243

P
ar

t
IV

T

o
o

l
In

st
ru

ct
io

n
s

ST bIsActive:=PulseInfo_IsTargetValueMatchActive(iChannel1);

Pulse_TargetValueMatch_Set(bExecute := DF(bSet) AND NOT bIsActive,

 iChannel := iChannel1,

 pYOutput :=
GetPointer(g_bPulse_TargetValueMatch_Channel1_YA_Horn1_On),

 diTargetValue := diTargetValue0,

 bError => bErrorSet);

Chapter 40

 Appendix Programming Information

Appendix Programming Information

1246

40.1 FP TOOL Library

The FP TOOL Library contains advanced address, information and copy functions available for all PLCs to
make programming easier. Below please find a selection of these functions. For more detailed information and
examples, see Online help.

!

Program can be adversely effected!
These functions can cause substantial problems by
accessing incorrect memory areas if they are not used
in the sense they were meant for. Especially other
parts of the program can be adversely effected.

Name Function

Addresses Instructions

Adr_Of_Var Address of a variable at the input/output of a FP function

AdrLast_Of_Var Address of a variable at the input/output of a FP function

Adr_Of_VarOffs Address of a variable with offset at the input/output of a FP function

Size Information Instructions

Size_Of_Var Yields the size of a variable in words (with Enable)

Elem_OfArray1D Yields the number of elements in an array (with Enable)

Elem_OfArray2D Yields the number of elements of the 1st and 2nd dimension of an array (with
Enable)

Elem_OfArray3D Yields the number of elements of the 1st, 2nd and 3rd dimension of an array
(with Enable)

Pointer Instructions

GetPointer Provides pointer information

AreaOffs_ToVar Copies the content of an address specified by memory area and address
offset to a variable (with Enable)

Var_ToAreaOffs Copies the value of a variable to an address specified by memory area and
address offset to a variable (with Enable)

Is_AreaDT Yields TRUE if the memory area of a variable is a DT area (with Enable)

Is_AreaFL Yields TRUE if the memory area of a variable is a FL area (with Enable)

AdrDT_Of_Offs DT address from the address offset for the input/output of a FP function

AdrFL_Of_Offs FL address from the address offset for the input/output of a FP function

Additional Copy Instructions

 This functions are allowed to be compiled because of the
down-compatibility to lower versions but cannot be selected in
the "Instructions" dialog anymore.

Any16_ToBool16 Replaced from version 5 onwards by the function INT_TO_BOOL16 or
WORD_TO_BOOL16.

Bool16_ToAny16 Replaced from version 5 onwards by the function BOOL16_TO_INT or
BOOL16_TO_WORD.

Any32_ToBool32 Replaced from version 5 onwards by the function DINT_TO_BOOL32 or
DWORD_TO_BOOL32.

Bool32_ToAny32 Replaced from version 5 onwards by the function BOOL32_TO_DINT or
BOOL32_TO_DWORD.

Any16_ToSpecDT Replaced from version 5 onwards by the function INT_TO_SDT or
WORD_TO_SDT.

SpecDT_ToAny16 Replaced from version 5 onwards by the function SDT_TO_INT or
SDT_TO_WORD.

 Appendix Programming Information

1247

Name Function

Any32_ToSpecDT Replaced from version 5 onwards by the function DINT_TO_SDDT or
DWORD_TO_SDDT.

SpecDT_ToAny32 Replaced from version 5 onwards by the function SDDT_TO_DINT or
SDDT_TO_DWORD.

SFC Control Instructions

Instructions that control all SFC programs simultaneously

StartStopAllSfcs

StartStopAllSfcsAndInitData

Stops and restarts all Sequential Function Chart (SFC) programs

A function that reveals the status of all SFCs

AllSfcsStopped Indicates whether all Sequential Function Chart (SFC) programs were stopped

Instructions that control a specific SFC

StartStopSfc

StartStopSfcAndInitData

Stops and restarts a specific Sequential Function Chart (SFC) program

ControlSfc

ControlSfcAndData

Controls a specific Sequential Function Chart (SFC) program

ActivateStepsOfStoppedSfc Continues a Sequential Function Chart (SFC) program that has been stopped

Instructions that reveal the statuses of a specific SFC

SfcStopped Indicates whether a specific Sequential Function Chart (SFC) program was
stopped

SfcTransitionsInhibited Indicates whether the transitions of a specific Sequential Function Chart (SFC)
program are locked

SfcRunning Indicates whether a certain Sequential Function Chart (SFC) program is
running

SfcOutputsReset Indicates whether the inputs of a specific Sequential Function Chart (SFC)
program have been reset

Appendix Programming Information

1248

40.2 Floating Point Instructions

The floating point F/P instructions are designed specifically for applications that require variables of the data
type REAL. Most of these can be replaced by the more flexible IEC commands. By doing so you will reduce the
number of commands with which you need to be familiar.

The following floating point instructions are described in detail in this manual because they are not easily
duplicated with IEC instructions: F327_INT (see page 686), F328_DINT (see page 688), F333_FINT (see page
690), F334_FRINT (see page 692), F335_FSIGN (see page 694), F337_RAD (see page 696) and F338_DEG
(see page 698).

For details and examples on the other floating point instructions, see Online help. For quick reference, please
refer to the table below.

Name Function Equivalent IEC function
used with EN/ENO

F309_FMV Constant floating point data move MOVE

F310_FADD Floating point data add ADD

F311_FSUB Floating point data subtract SUB

F312_FMUL Floating point data multiply MUL

F313_FDIV Floating point data divide DIV

F314_FSIN Floating point Sine operation SIN

F315_FCOS Floating point Cosine operation COS

F316_FTAN Floating point Tangent operation TAN

F317_ASIN Floating point Arcsine operation ASIN

F318_ACOS Floating point Arccosine operation ACOS

F319_ATAN Floating point Arctangent operation ATAN

F320_LN Floating point data natural logarithm LN

F321_EXP Floating point data exponent EXP

F322_LOG Floating point data logarithm LOG

F323_PWR Floating point data power EXPT

F324_FSQR Floating point data square root SQRT

F325_FLT 16-bit integer  Floating point data INT_TO_REAL

F326_DFLT 32-bit integer  Floating point data DINT_TO_REAL

F329_FIX Floating point data  16-bit integer

Rounding the first decimal point down

TRUNC_TO_INT

F330_DFIX Floating point data  32-bit integer

Rounding the first decimal point down

TRUNC_TO_DINT

F331_ROFF Floating point data  16-bit integer

Rounding the first decimal point off

REAL_TO_INT

F332_DROFF Floating point data  32-bit integer

Rounding the first decimal point off

REAL_TO_DINT

F336_FABS Floating point data absolute ABS

 Appendix Programming Information

1249

Name Function Equivalent IEC function
used with EN/ENO

F345_FCMP Floating point data compare GE, GT, EQ, LE, LT, NE

F347_FLIMT Floating point data upper and lower limit
control

LIMIT

Appendix Programming Information

1250

40.3 Index Registers

Like other registers, index registers are used to read and write 16-bit data. There are seven 16-bit registers (IX,
IY, IZ to ID). Use index registers to indirectly specify a memory area number. Changing an address using an
index register value is called “index modification”.

In FPWIN Pro the user has only access to IX, IY. Indexes IZ through ID are used by the system for array
calculation, for fb indexing, or special implementations of certain FP instructions. (see note)

Possible index modifications include:

 Memory areas in addition to data registers (DT).

 An index register cannot modify another index register.

 In FPWIN Pro, an index register cannot modify a constant value.

Example

Modifying a memory area address.
Address = Base address + value in IX, IY, IZ through ID
Modifying DT11

IXDT11

11
11
11

+
+
+

DT11
DT21
DT1

0
10
-10

=
=
=

Base address Target addressIX value

When the index register is used as an address modifier, be sure to check that the shifted address does not
exceed its last address. If the shifted address exceeds its last address, an operation error occurs.

When a 32-bit constant is modified, the specified register number and the following register number are used in
combination to handle the data as a 32-bit data. (When modifying a 32-bit constant, do not specify ID.)

 It is strongly suggested that you use arrays instead of using index registers to
modify memory areas because a conflict could arise from the user and system using
the same index register. For more detailed information on using index registers, see
“Programmable Controller FP10SH Programming” Manual (ACG-M0081-1).

 Appendix Programming Information

1251

40.4 Real Numbers

Instructions used with the FP10SH and the FP2 series allow the use of real numbers for calculation. Real
number types available are floating point constants and BCD constants.

40.4.1 Floating Point Constant (f)

Floating point constants consist of two words processed by single precision floating point logic. There are up to
seven effective digits. The mantissa is 23 bits and the exponent is 8 bits. (Based on IEEE754)

31 30 29 23 22 16... ... 14 13 12 3 2 1 015 ...
Bit position

Exponents (8-bit) Mantissa (23-bit)

0 positive

1 negative

Sign bit:

Numbers which can be used are: ±(1.175494 x 10-38 to 3.402823 x 1038).

40.4.2 BCD Type Constant

BCD-type floating-point constants are processed as three words as shown below.

Example

DTx

DTx+1

DTx+2

Sign: 0 when positive
1 when negative

Integer:

Decimal:

Numbers which can be used are as follows: -9999.9999 to 9999.9999

The principal instructions which allow use of BCD constants are:

 F300 BSIN BCD type sine operation

 F301 BCOS BCD type cosine operation

 F302 BTAN BCD type tangent operation

 F303 BASIN BCD type arcsine operation

 F304 BACOS BCD type arccosine operation

 F305 BATAN BCD type arctangent operation

In FPWIN Pro use 16# to specify a BCD constant. This data type is implemented as ARRAY 0..2 OF WORD.

Appendix Programming Information

1252

40.5 Overflow and Underflow

During execution of a processing instruction, it sometimes happens that the allowed value range is exceeded.
Exceeding the maximum value is called “overflow”, and falling short of the minimum value is called “underflow.”
If overflow or underflow occurs, the R9009 carry flag CY will turn ON.

40.5.1 Values When Overflow/Underflow Occurs

All of the maximum and minimum values handled by FP series programmable controller's form a loop as shown
in the diagram.

Binary 16-bit processing

 32767 7FFF

 1
 0
 -1

16# 0001
16# 0000
16# FFFF

 -32767 8000

IX value

Max. value

Min. value

Overflow

Underflow

Maximum and minimum
values form a loop

Example 1: 32767 + 1 (overflow)

The result of processing will be K-32768 and the carry flag will turn ON.

Example 2: -32768 - 1 (underflow)

The result of processing will be 32767 and the carry flag will turn ON.

BCD 4-digit processing

 16#9999

 16#0

Max. value

Min. value

Overflow

Underflow

Maximum and minimum
values form a loop

Example 1: 16#9999+ 16#1 (overflow)

The result of processing will be 16#0 and the carry flag will turn ON.

Example 2: 16#0 - 16#1 (underflow)

The result of processing will be 16#9999 and the carry flag will turn ON.

 Appendix Programming Information

1253

40.5.2 Decimal to binary/BCD/gray code table

Decimal
number

Binary data BCD data
(Binary Coded Decimal)

Gray code

0
1
2
3
4
5
6
7

0000 0000 0000 0000
0000 0000 0000 0001
0000 0000 0000 0010
0000 0000 0000 0011
0000 0000 0000 0100
0000 0000 0000 0101
0000 0000 0000 0110
0000 0000 0000 0111

0000 0000 0000 0000
0000 0000 0000 0001
0000 0000 0000 0010
0000 0000 0000 0011
0000 0000 0000 0100
0000 0000 0000 0101
0000 0000 0000 0110
0000 0000 0000 0111

0000 0000 0000 0000
0000 0000 0000 0001
0000 0000 0000 0011
0000 0000 0000 0010
0000 0000 0000 0110
0000 0000 0000 0111
0000 0000 0000 0101
0000 0000 0000 0100

8
9
10
11
12
13
14
15

0000 0000 0000 1000
0000 0000 0000 1001
0000 0000 0000 1010
0000 0000 0000 1011
0000 0000 0000 1100
0000 0000 0000 1101
0000 0000 0000 1110
0000 0000 0000 1111

0000 0000 0000 1000
0000 0000 0000 1001
0000 0000 0001 0000
0000 0000 0001 0001
0000 0000 0001 0010
0000 0000 0001 0011
0000 0000 0001 0100
0000 0000 0001 0101

0000 0000 0000 1100
0000 0000 0000 1101
0000 0000 0000 1111
0000 0000 0000 1110
0000 0000 0000 1010
0000 0000 0000 1011
0000 0000 0000 1001
0000 0000 0000 1000

16
17
18
19
20
21
22
23

0000 0000 0001 0000
0000 0000 0001 0001
0000 0000 0001 0010
0000 0000 0001 0011
0000 0000 0001 0100
0000 0000 0001 0101
0000 0000 0001 0110
0000 0000 0001 0111

0000 0000 0001 0110
0000 0000 0001 0111
0000 0000 0001 1000
0000 0000 0001 1001
0000 0000 0010 0000
0000 0000 0010 0001
0000 0000 0010 0010
0000 0000 0010 0011

0000 0000 0001 1000
0000 0000 0001 1001
0000 0000 0001 1011
0000 0000 0001 1010
0000 0000 0001 1110
0000 0000 0001 1111
0000 0000 0001 1101
0000 0000 0001 1100

24
25
26
27
28
29
30
31

0000 0000 0001 1000
0000 0000 0001 1001
0000 0000 0001 1010
0000 0000 0001 1011
0000 0000 0001 1100
0000 0000 0001 1101
0000 0000 0001 1110
0000 0000 0001 1111

0000 0000 0010 0100
0000 0000 0010 0101
0000 0000 0010 0110
0000 0000 0010 0111
0000 0000 0010 1000
0000 0000 0010 1001
0000 0000 0011 0000
0000 0000 0011 0001

0000 0000 0001 0100
0000 0000 0001 0101
0000 0000 0001 0111
0000 0000 0001 0110
0000 0000 0001 0010
0000 0000 0001 0011
0000 0000 0001 0001
0000 0000 0001 0000

32

...

63
64

...

255

0000 0000 0010 0000

...

0000 0000 0011 1111
0000 0000 0100 0000

...

0000 0000 1111 1111

0000 0000 0011 0010

...

0000 0000 0110 0011
0000 0000 0110 0100

...

0000 0010 0101 0101

0000 0000 0011 0000

...

0000 0000 0010 0000
0000 0000 0110 0000

...

0000 0000 1000 0000

Appendix Programming Information

1254

40.6 Special data registers

To access special data registers and special internal relays, use the PLC-independent system variables.You
can insert system variables directly into the POU body: Use the "Variables" dialog without entering a declaration
in the POU header.

REFERENCE

 Please refer to the FPWIN Pro online help for detailed information on using system variables.

 Appendix Programming Information

1255

40.7 Relays and memory areas

40.7.1 Relays and memory areas for FP0

Relays [bits]

Available address area Type Memory
size F/P IEC

Function

External input relays 208 X0–X12F %IX0.0–
%IX12.15

Turn on or off based on external
input.

External output relays 208 Y0–Y12F %QX0.0–
%QX12.15

Turn on or off external outputs
based on the operation result.

Internal relays 1) 1008 R0–R62F %MX0.0.0–
%MX0.62.15

Used internally by the PLC
program to store bit information.

Timer relays 1) 2) 144 T0–T99/
C100–C143

%MX1.0–
%MX1.99/
%MX2.100–
%MX2.143

Turn on when the value set with
a TM instruction for the timer with
the same number has reached 0.

Counter relays 1) 2) 144 C100–C143/
T0–T99

%MX2.100–
%MX2.143/
%MX1.0–
%MX1.99

Turn on when the value set with
a CT instruction for the counter
with the same number has
reached 0.

Special internal relays 64 R9000–R903F %MX0.900.0–
%MX0.903.15

Turn on or off based on specific
conditions. Used internally as a
flag.

Memory area [words]

Available address area Type Memory
size F/P IEC

Function

External input relays 13 WX0–WX12 %IW0–
%IW12

Code for specifying 16 external
input points as one word (16 bits)
of data.

External output relays 13 WY0–WY12 %QW0–
%QW12

Code for specifying 16 external
output points as one word (16
bits) of data.

Internal relays 1) 63 WR0–WR62 %MW0.0–
%MW0.62

Code for specifying 16 internal
relays as one word (16 bits) of
data.

C10/C14/C
16

1660 DT0–DT1659 %MW5.0–
%MW5.1659

C32/SL1 6144 DT0–DT6143 %MW5.0–
%MW5.6143

Data

registers 1)

T32C 16384 DT0–DT16383 %MW5.0–
%MW5.16383

Data memory used in a program.
Data is handled in 16-bit units
(one word).

Timer/counter set value

area 1) 2)

144 SV0–SV143 %MW3.0–
%MW3.143

Data memory for storing the set
values of timers or counters. The
values are stored by
timer/counter number.

Timer/counter elapsed

value area 1) 2)

144 EV0–EV143 %MW4.0–
%MW4.143

Data memory for storing the
elapsed values during operation
of timers or counters. The values
are stored by timer/counter
number.

Special data registers 112 DT90000–
DT90111

%MW5.90000–
%MW5.90111

Data memory for storing settings
and error codes.

Appendix Programming Information

1256

Available address area Type Memory
size F/P IEC

Function

Index registers 2 IX, IY %MW6.0–
%MW6.1

Data memory used to modify
constants and memory area
addresses.

Memory area [double words]

Available address area Type Memory
size F/P IEC

Function

External input relays 6 DWX0–DWX11 %ID0–
%ID11

Code for specifying 32 external
input points as a double word (32
bits) of data.

External output relays 6 DWY0–DWY11 %QD0–
%QD11

Code for specifying 32 external
output points as a double word
(32 bits) of data.

Internal relays 1) 31 DWR0–DWR61 %MD0.0–
%MD0.61

Code for specifying 32 internal
relay points as a double word (32
bits) of data.

C10/C14/C
16

830 DDT0–
DDT1658

%MD5.0–
%MD5.1658

C32/SL1 3072 DDT0–
DDT6142

%MD5.0–
%MD5.6142

Data
registers 1)

T32C 8192 DDT0–
DDT16382

%MD5.0–
%MD5.16382

Data memory used in a program.
Data is handled in 32-bit units
(double word).

Timer/counter set value

area 1) 2)

72 DSV0–DSV142 %MD3.0–
%MD3.142

Data memory for storing the set
values of timers or counters. The
values are stored by
timer/counter number.

Timer/counter elapsed

value area 1) 2)

72 DEV0–DEV142 %MD4.0–
%MD4.142

Data memory for storing the
elapsed values during operation
of timers or counters. The values
are stored by timer/counter
number.

Special data registers 56 DDT90000–
DDT90110

%MD5.90000–
%MD5.90110

Data memory for storing settings
and error codes.

Index registers 1 DI0 %MD6.0 Data memory used to modify
constants and memory area
addresses.

1) There are two memory types, the hold type that saves the conditions that exist just before turning the power
off or changing from RUN to PROG mode, and the non−hold type that resets them. FP0 T32C: The hold and
non−hold type memory areas can be changed by setting the system registers. All other CPU types: The hold
and non-hold type memory area is fixed and allotted the numbers as shown below.

2) The number of points for timer and counter relays can be changed using system register 5. The numbers in
the table are the default settings.

Hold and non-hold type memory areas

Memory area C10/C14/C16 C32

Timer relays Non-hold type: All points

Non-hold type From specified value to C139 From the specified value to C127 Counter
relays

Hold type 4 points (elapsed values)
(C140–C143)

16 points (elapsed values)
(C128–C143)

 Appendix Programming Information

1257

Non-hold type 976 points
(R0–R60F)

61 words
(WR0–WR60)

880 points
(R0–R54F)

55 words
(WR0–WR54)

Internal
relays

Hold type 32 points (R610–R62F)

2 words (WR61–WR62)

128 points (R550–R62F)

8 words (WR55–WR62)

Non-hold type 1652 words
(DT0–DT1651)

6112 words
(DT0–DT6111)

Data
registers

Hold type 8 words
(DT1652–DT1659)

32 words (DT6112–DT6143)

40.7.2 Relays and memory areas for FP0R

Relays [bits]

Available address area Type Memory
size FP IEC

Function

External input relays 1) 1760 X0–X109F %IX0.0–
%IX109.15

Turn on or off based on external
input.

External output relays 1) 1760 Y0–Y109F %QX0.0–
%QX109.15

Turn on or off external outputs
based on the operation result.

Internal relays 2) 4096 R0–R255F %MX0.0.0–
%MX0.255.15

Used internally by the PLC
program to store bit information.

Link relays 2) 2048 L0–L127F %MX7.0.0–
%MX7.127.15

Shared by multiple PLCs
connected using PLC link.

Timer relays 2) 3) 1024 T0–T1007/
C1008-C1023

%MX1.0–
%MX1.1007/
%MX2.1008–
%MX2.1023

Turn on when the value set with
a TM instruction for the timer with
the same number has reached 0.

Counter relays 2) 3) 1024 C1008–C1023/
T0–T1007

%MX2.1008–
%MX2.1023/
%MX1.0–
%MX1.1007

Turn on when the value set with
a CT instruction for the counter
with the same number has
reached 0.

Special internal relays 224 R9000–R913F %MX0.900.0–
%MX0.913.15

Turn on or off based on specific
conditions. Used internally as a
flag.

Memory area [words]

Available address area Type Memory
size FP IEC

Function

External input relays 1) 110 WX0–WX109 %IW0–
%IW109

Code for specifying 16 external
input points as one word (16 bits)
of data.

External output relays 1) 110 WY0–WY109 %QW0–
%QW109

Code for specifying 16 external
output points as one word (16
bits) of data.

Internal relays 2) 256 WR0–WR255 %MW0.0–
%MW0.255

Code for specifying 16 internal
relays as one word (16 bits) of
data.

Link relays 128 WL0–WL127 %MW7.0–
%MW7.127

Code for specifying 16 link relays
as one word (16 bits) of data.

C10,
C14, C16

12315 DT0–DT12312 %MW5.0–
%MW5.12312

Data

registers 2)

C32, T32,
F32

32763 DT0–DT32762 %MW5.0–
%MW5.32762

Data memory used in a program.
Data is handled in 16-bit units
(one word).

Appendix Programming Information

1258

Available address area Type Memory
size FP IEC

Function

Link registers 2) 256 LD0–LD255 %MW8.0–
%MW8.255

Data memory shared by multiple
PLCs connected using PLC link.
Data is handled in 16-bit units
(one word).

Timer/counter set value

area 2)

1024 SV0–SV1023 %MW3.0–
%MW3.1023

Data memory for storing the set
values of timers or counters. The
values are stored by
timer/counter number.

Timer/counter elapsed

value area 2)

1024 EV0–EV1023 %MW4.0–
%MW4.1023

Data memory for storing the
elapsed values during operation
of timers or counters. The values
are stored by timer/counter
number.

Special data registers 440 DT90000–
DT90439

%MW5.90000–
%MW5.90439

Data memory for storing settings
and error codes.

Memory area [double words]

Available address area Type Memory
size FP IEC

Function

External input relays 1) 55 DWX0–DWX108 %ID0–
%ID108

Code for specifying 32 external
input points as a double word (32
bits) of data.

External output relays 1) 55 DWY0–DWY108 %QD0–
%QD108

Code for specifying 32 external
output points as a double word
(32 bits) of data.

Internal relays 2) 128 DWR0–DWR254 %MD0.0–
%MD0.254

Code for specifying 32 internal
relay points as a double word (32
bits) of data.

Link relays 64 DWL0–DWL126 %MD7.0–
%MD7.126

Code for specifying 32 link relay
points as a double word (32 bits)
of data.

C10, C14,
C16

6157 DDT0–
DDT12311

%MD5.0–
%MD5.12311

Data

registers 2)

C32, T32,
F32

16382 DDT0–
DDT32761

%MD5.0–
%MD5.32761

Data memory used in a program.
Data is handled in 32-bit units
(double word).

Link registers 2) 128 DLD0–DLD126 %MD8.0–
%MD8.126

Data memory shared by multiple
PLCs connected using PLC link.
Data is handled in 32-bit units
(double word).

Timer/counter set value
area 2)

512 DSV0–DSV1022 %MD3.0–
%MD3.1022

Data memory for storing the set
values of timers or counters. The
values are stored by
timer/counter number.

Timer/counter elapsed

value area 2)

512 DEV0–DEV1022 %MD4.0–
%MD4.1022

Data memory for storing the
elapsed values during operation
of timers or counters. The values
are stored by timer/counter
number.

Special data registers 220 DDT90000–
DDT90438

%MD5.90000–
%MD5.90438

Data memory for storing settings
and error codes.

 Appendix Programming Information

1259

1) The number of points noted above is the number reserved as the calculation memory. The actual number of
points available for use is determined by the hardware configuration.

2) There are hold and non-hold type memory areas. When the power supply turns off or the mode is changed
from RUN to PROG mode, hold type areas are stored and non-hold type areas are reset.

C10/C14/C16/C32:
The hold type and non-hold type areas are fixed. For information on the size of each area, refer to the
performance specifications.

T32/F32:
The settings of the hold type areas and non-hold type areas can be changed using the system registers.

T32:
If the battery is empty and additional hold areas have been defined, the hold/non-hold operation becomes
unstable. The data value will become indefinite. It is cleared to 0 the next time the power is turned on. See.

3) The number of points for timer and counter relays can be changed using system register 5. The numbers in
the table are the default settings.

40.7.3 Relays and memory areas for FP-Sigma

Relays [bits]

Available address area Type Memory
size FP IEC

Function

External input relays 1) 1184 X0–X73F %IX0.0–
%IX73.15

Turn on or off based on external
input.

External output relays 1) 1184 Y0–Y73F %QX0.0–
%QX73.15

Turn on or off external outputs
based on the operation result.

Internal relays 2) 4096 R0–R255F %MX0.0–
%MX0.255.15

Used internally by the PLC
program to store bit information.

Link relays 2) 2048 L0–L127F %MX7.0.0–
%MX7.63.15

Shared by multiple PLCs
connected using PLC link.

Timer relays 2) 3) 1024 T0–T1007/
C1008–C1023

%MX1.0–
%MX1.1007/
%MX2.1008–
%MX2.1023

Turn on when the value set with
a TM instruction for the timer with
the same number has reached 0.

Counter relays 2) 3) 1024 C1008–C1023/
T0–T1007

%MX2.1008–
%MX2.1023/
%MX1.0–
%MX1.1007

Turn on when the value set with
a CT instruction for the counter
with the same number has
reached 0.

Special internal relays 176 R9000–R910F %MX0.900.0–
%MX0.910.15

Turn on or off based on specific
conditions. Used internally as a
flag.

Memory area [words]

Available address area Type Memory
size FP IEC

Function

External input relays 1) 74 WX0–WX73 %IW0–
%IW73

Code for specifying 16 external
input points as one word (16 bits)
of data.

External output relays 1) 74 WY0–WY73 %QW0–
%QW73

Code for specifying 16 external
output points as one word (16
bits) of data.

Internal relays 2) 256 WR0–WR255 %MW0.0–
%MW0.255

Code for specifying 16 internal
relays as one word (16 bits) of
data.

Link relays 128 WL0–WL127 %MW7.0–
%MW7.127

Code for specifying 16 link relays
as one word (16 bits) of data.

Appendix Programming Information

1260

Available address area Type Memory
size FP IEC

Function

Data registers 2) 32763 DT0–DT32762 %MW5.0–
%MW5.32762

Data memory used in a program.
Data is handled in 16-bit units
(one word).

Link registers 2) 256 LD0–LD255 %MW8.0–
%MW8.255

Data memory shared by multiple
PLCs connected using PLC link.
Data is handled in 16-bit units
(one word).

Timer/counter set value

area 2)

1024 SV0–SV1023 %MW3.0–
%MW3.1023

Data memory for storing the set
values of timers or counters. The
values are stored by
timer/counter number.

Timer/counter elapsed
value area 2)

1024 EV0–EV1023 %MW4.0–
%MW4.1023

Data memory for storing the
elapsed values during operation
of timers or counters. The values
are stored by timer/counter
number.

Special data registers 260 DT90000–
DT90259

%MW5.90000–
%MW5.90259

Data memory for storing settings
and error codes.

Memory area [double words]

Available address area Type Memory
size FP IEC

Function

External input relays 1) 37 DWX0–DWX72 %ID0–
%ID72

Code for specifying 32 external
input points as a double word (32
bits) of data.

External output relays 1) 37 DWY0–DWY72 %QD0–
%QD72

Code for specifying 32 external
output points as a double word
(32 bits) of data.

Internal relays 2) 128 DWR0–DWR254 %MD0.0–
%MD0.254

Code for specifying 32 internal
relay points as a double word (32
bits) of data.

Link relays 64 DWL0–DWL126 %MD7.0–
%MD7.126

Code for specifying 32 link relay
points as a double word (32 bits)
of data.

Data registers 2) 16382 DDT0–
DDT32763

%MD5.0–
%MD5.32763

Data memory used in a program.
Data is handled in 32-bit units
(double word).

Link registers 2) 128 DLD0–DLD254 %MD8.0–
%MD8.254

Data memory shared by multiple
PLCs connected using PLC link.
Data is handled in 32-bit units
(double word).

Timer/counter set value

area 2)

512 DSV0–DSV1022 %MD3.0–
%MD3.1022

Data memory for storing the set
values of timers or counters. The
values are stored by
timer/counter number.

Timer/counter elapsed

value area 2)

512 DEV0–DEV1022 %MD4.0–
%MD4.1022

Data memory for storing the
elapsed values during operation
of timers or counters. The values
are stored by timer/counter
number.

Special data registers 130 DDT90000–
DDT90258

%MD5.90000–
%MD5.90258

Data memory for storing settings
and error codes.

 Appendix Programming Information

1261

1) The number of points noted above is the number reserved as the calculation memory. The actual number of
points available for use is determined by the hardware configuration.

2) If no battery is used, only the fixed area is backed up.

Counter relays: 16 (C1008–C1023)
Internal relays: 128 (R900–R97F)
Data registers: DT32710–DT32764.

If the optional battery is used, the data in the hold and non-hold areas specified in the system registers will
be backed up.

If the battery is empty or no battery is present and additional hold areas have been defined, the
hold/non-hold operation becomes unstable. The data value will become indefinite. It is not cleared to 0 the
next time the power is turned on. Do not forget to monitor the battery status or to reset the hold areas to the
default values if no battery is used. See.

3) The number of points for timer and counter relays can be changed using system register 5. The numbers in
the table are the default settings.

40.7.4 Relays and memory areas for FP-X

Relays [bits]

Available address area Type Memory
size F/P IEC

Function

External input relays 1) 1760 X0–X109F %IX0.0–
%IX109.15

Turn on or off based on external
input.

External output relays 1) 1760 Y0–Y109F %QX0.0–
%QX109.15

Turn on or off external outputs
based on the operation result.

Internal relays 2) 4096 R0–R255F %MX0.0.0–
%MX0.255.15

Used internally by the PLC
program to store bit information.

Link relays 2) 2048 L0–L127F %MX7.0.0–
%MX7.127.15

Shared by multiple PLCs
connected using PLC link.

Timer relays 2) 3) 1024 T0–T1007/
C1008–C1023

%MX1.0–
%MX1.1007/
%MX2.1008–
%MX2.1023

Turn on when the value set with
a TM instruction for the timer with
the same number has reached 0.

Counter relays 2) 3) 1024 C1008–C1023/
T0–T1007

%MX2.1008–
%MX2.1023/
%MX1.0–
%MX1.1007

Turn on when the value set with
a CT instruction for the counter
with the same number has
reached 0.

Special internal relays 192 R9000–R911F %MX0.900.0–
%MX0.911.15

Turn on or off based on specific
conditions. Used internally as a
flag.

Memory area [words]

Available address area Type Memory
size F/P IEC

Function

External input relays 1) 110 WX0–WX109 %IW0–
%IW109

Code for specifying 16 external
input points as one word (16 bits)
of data.

External output relays 1) 110 WY0–WY109 %QW0–
%QW109

Code for specifying 16 external
output points as one word (16
bits) of data.

Internal relays 2) 256 WR0–WR255 %MW0.0–
%MW0.255

Code for specifying 16 internal
relays as one word (16 bits) of
data.

Link relays 128 WL0–WL127 %MW7.0–
%MW7.127

Code for specifying 16 link relays
as one word (16 bits) of data.

Data

registers 2)

C14 12285 DT0–DT12284 %MW5.0–
%MW5.12284

Data memory used in a program.
Data is handled in 16-bit units
(d)

Appendix Programming Information

1262

Available address area Type Memory
size F/P IEC

Function

C30, C60 32765 DT0–DT32764 %MW5.0–
%MW5.32764

Link registers 2) 256 LD0–LD255 %MW8.0–
%MW8.255

Data memory shared by multiple
PLCs connected using PLC link.
Data is handled in 16-bit units
(one word)..

Timer/counter set value

area 2)

1024 SV0–SV1023 %MW3.0–
%MW3.1023

Data memory for storing the set
values of timers or counters. The
values are stored by
timer/counter number.

Timer/counter elapsed
value area 2)

1024 EV0–EV1023 %MW4.0–
%MW4.1023

Data memory for storing the
elapsed values during operation
of timers or counters. The values
are stored by timer/counter
number.

Special data registers 374 DT90000–
DT90373

%MW5.90000–
%MW5.90373

Data memory for storing settings
and error codes.

Index registers 14 I0–ID %MW6.0–
%MW6.13

Data memory used to modify
constants and memory area
addresses.

Memory area [double words]

Available address area Type Memory
size F/P IEC

Function

External input relays 1) 55 DWX0–DWX108 %ID0–
%ID108

Code for specifying 32 external
input points as a double word (32
bits) of data.

External output relays 1) 55 DWY0–DWY108 %QD0–
%QD108

Code for specifying 32 external
output points as a double word
(32 bits) of data.

Internal relays 2) 128 DWR0–DWR254 %MD0.0–
%MD0.254

Code for specifying 32 internal
relay points as a double word (32
bits) of data.

Link relays 64 DWL0–DWL126 %MD7.0–
%MD7.126

Code for specifying 32 link relay
points as a double word (32 bits)
of data.

C14 6142 DDT0–
DDT12283

%MD5.0–
%MD5.12283

Data

registers 2)

C30, C60 16382 DDT0–
DDT32763

%MD5.0–
%MD5.32763

Data memory used in a program.
Data is handled in 32-bit units
(double word).

Link registers 2) 128 DLD0–DLD126 %MD8.0–
%MD8.126

Data memory shared by multiple
PLCs connected using PLC link.
Data is handled in 32-bit units
(double word).

Timer/counter set value

area 2)

512 DSV0–DSV1022 %MD3.0–
%MD3.1022

Data memory for storing the set
values of timers or counters. The
values are stored by
timer/counter number.

Timer/counter elapsed
value area 2)

512 DEV0–DEV1022 %MD4.0–
%MD4.1022

Data memory for storing the
elapsed values during operation
of timers or counters. The values
are stored by timer/counter
number.

 Appendix Programming Information

1263

Available address area Type Memory
size F/P IEC

Function

Special data registers 187 DDT90000–
DDT90438

%MD5.90000–
%MD5.90438

Data memory for storing settings
and error codes.

Index registers 7 DI0–DIC %MD6.0–
%MD6.12

Data memory used to modify
constants and memory area
addresses.

1) The number of points noted above is the number reserved as the calculation memory. The actual number of
points available for use is determined by the hardware configuration.

2) If no battery is used, only the fixed area is backed up.

If the optional battery is used, the data in the hold and non-hold areas specified in the system registers will
be backed up.

If the battery is empty or no battery is present and additional hold areas have been defined, the
hold/non-hold operation becomes unstable. The data value will become indefinite. It is not cleared to 0 the
next time the power is turned on. Do not forget to monitor the battery status or to reset the hold areas to the
default values if no battery is used. See.

3) The number of points for timer and counter relays can be changed using system register 5. The numbers in
the table are the default settings.

40.7.5 Relays and memory areas for FP-e

Relays [bits]

Available address area Type Memory
size F/P IEC

Function

External input relays 1) 208 X0–X12F %IX0.0–
%IX12.15

Turn on or off based on external
input.

External output relays 1) 208 Y0–Y12F %QX0.0–
%QX12.15

Turn on or off external outputs
based on the operation result.

Internal relays 2) 1008 R0–R62F %MX0.0.0–
%MX0.62.15

Used internally by the PLC
program to store bit information.

Timer relays 2) 3) 100 T0–T99/
C100–C143

%MX1.0–
%MX1.99/
%MX2.100–
%MX2.143

Turn on when the value set with
a TM instruction for the timer with
the same number has reached 0.

Counter relays 2) 3) 44 C100–C143/
T0–T99

%MX2.100–
%MX2.143/
%MX1.0–
%MX1.99

Turn on when the value set with
a CT instruction for the counter
with the same number has
reached 0.

Special internal relays 64 R9000–R903F %MX0.900.0–
%MX0.903.15

Turn on or off based on specific
conditions. Used internally as a
flag.

Memory area [words]

Available address area Type Memory
size F/P IEC

Function

External input relays 1) 13 WX0–WX12 %IW0–
%IW12

Code for specifying 16 external
input points as one word (16 bits)
of data.

Appendix Programming Information

1264

Available address area Type Memory
size F/P IEC

Function

External output relays 1) 13 WY0–WY12 %QW0–
%QW12

Code for specifying 16 external
output points as one word (16
bits) of data.

Internal relays 2) 63 WR0–WR62 %MW0.0–
%MW0.62

Code for specifying 16 internal
relays as one word (16 bits) of
data.

Data registers 2) 1660 DT0–DT1659 %MW5.0–
%MW5.1659

Data memory used in a program.
Data is handled in 16-bit units
(one word).

Timer/counter set value
area 2) 3)

144 SV0–SV143 %MW3.0–
%MW3.143

Data memory for storing the set
values of timers or counters. The
values are stored by
timer/counter number.

Timer/counter elapsed

value area 2) 3)

144 EV0–EV143 %MW4.0–
%MW4.143

Data memory for storing the
elapsed values during operation
of timers or counters. The values
are stored by timer/counter
number.

Special data registers 112 DT90000–
DT90111

%MW5.90000–
%MW5.90111

Data memory for storing settings
and error codes.

Index registers 2 IX, IY %MW6.0–
%MW6.1

Data memory used to modify
constants and memory area
addresses.

Memory area [double words]

Available address area Type Memory
size F/P IEC

Function

External input relays 1) 6 DWX0–DWX11 %ID0–
%ID11

Code for specifying 32 external
input points as a double word (32
bits) of data.

External output relays 1) 6 DWY0–DWY11 %QD0–
%QD11

Code for specifying 32 external
output points as a double word
(32 bits) of data.

Internal relays 2) 31 DWR0–DWR61 %MD0.0–
%MD0.61

Code for specifying 32 internal
relay points as a double word (32
bits) of data.

Data registers 2) 830 DDT0–
DDT1658

%MD5.0–
%MD5.1658

Data is handled in 32-bit units
(double word).

Timer/counter set value

area 2) 3)

72 DSV0–DSV142 %MD3.0–
%MD3.142

Data memory for storing the set
values of timers or counters. The
values are stored by
timer/counter number.

Timer/counter elapsed
value area 2) 3)

72 DEV0–DEV142 %MD4.0–
%MD4.142

Data memory for storing the
elapsed values during operation
of timers or counters. The values
are stored by timer/counter
number.

Special data registers 56 DDT90000–
DDT90110

%MD5.90000–
%MD5.90110

Data memory for storing settings
and error codes.

 Appendix Programming Information

1265

Available address area Type Memory
size F/P IEC

Function

Index registers 1 DI0 %MD6.0 Data memory used to modify
constants and memory area
addresses.

1) The number of points noted above is the number reserved as the calculation memory. The actual number of
points available for use is determined by the hardware configuration.

2) There are two memory types, the hold type that saves the conditions that exist just before turning the power
off or changing from RUN to PROG mode, and the non−hold type that resets them. Standard type CPU: The
hold and non-hold type memory area is fixed and allotted the numbers as shown below. CPU types with
clock/calendar function: The hold and non−hold type memory areas can be changed by setting the system
registers.

3) The number of points for timer and counter relays can be changed using system register 5. The numbers in
the table are the default settings.

Hold and non-hold type memory areas

Memory area Standard type CPU CPU types with clock/calendar function

Timer relays Non-hold type

Non-hold type From specified value to C139 Counter
relays

Hold type Non-hold type 4 points (elapsed values) (C140–C143) 1)

Non-hold type 976 points (R0–R60F)

61 words (WR0–WR60)

Internal
relays

Hold type 32 points (R610–R62F)

2 words (WR61–WR62)

Non-hold type 1652 words (DT0–DT1651) Data
registers

Hold type 8 words (DT1652–DT1659)

1) A battery must be installed.

40.7.6 Relays and memory areas for FP2

Relays [bits]

Available address area Type Memory
size F/P IEC

Function

External input relays 2048 X0–X127F %IX0.0–
%IX127.15

Turn on or off based on external
input.

External output relays 2048 Y0–Y127F %QX0.0–
%QX127.15

Turn on or off external outputs
based on the operation result.

Internal relays 1) 4048 R0–R252F %MX0.0–
%MX0.252.15

Used internally by the PLC
program to store bit information.

Link relays 1) 2048 L0–L127F %MX7.0.0–
%MX7.127.15

Shared by multiple PLCs
connected using PLC link.

Timer relays 1) 2) 1024 T0–T999/
C1000–C1023

%MX1.0–
%MX1.999/
%MX2.1000–
%MX2.1023

Turn on when the value set with
a TM instruction for the timer with
the same number has reached 0.

Counter relays 1) 2) 1024 C1000–C1023/
T0–T999

%MX2.1000–
%MX2.1023/
%MX1.0–
%MX1.999

Turn on when the value set with
a CT instruction for the counter
with the same number has
reached 0.

Appendix Programming Information

1266

Available address area Type Memory
size F/P IEC

Function

External input relays 2048 X0–X127F %IX0.0–
%IX127.15

Turn on or off based on external
input.

Pulse relays 1024 P0–P63F %MX11.0.0–
%MX11.63.15

Turn on for one scan only. Used
internally by the PLC program.

Special internal relays 176 R9000–R910F %MX0.900.0–
%MX0.910.15

Turn on or off based on specific
conditions. Used internally as a
flag.

Memory area [words]

Available address area Type Memory
size F/P IEC

Function

External input relays 128 WX0–WX127 %IW0–
%IW127

Code for specifying 16 external
input points as one word (16 bits)
of data.

External output relays 128 WY0–WY127 %QW0–
%QW127

Code for specifying 16 external
output points as one word (16
bits) of data.

Internal relays 253 WR0–WR252 %MW0.0–
%MW0.252

Code for specifying 16 internal
relays as one word (16 bits) of
data.

Link relays 128 WL0–WL127 %MW7.0–
%MW7.127

Code for specifying 16 link relays
as one word (16 bits) of data.

Data registers 1) 6000 DT0–DT5999 %MW5.0–
%MW5.5999

Data memory used in a program.
Data is handled in 16-bit units
(one word).

Link registers 1) 256 LD0–LD255 %MW8.0–
%MW8.255

Data memory shared by multiple
PLCs connected using PLC link.
Data is handled in 16-bit units
(one word)..

Timer/counter set value

area 1)

1024 SV0–SV1023 %MW3.0–
%MW3.1023

Data memory for storing the set
values of timers or counters. The
values are stored by
timer/counter number.

Timer/counter elapsed

value area 1)

1024 EV0–EV1023 %MW4.0–
%MW4.1023

Data memory for storing the
elapsed values during operation
of timers or counters. The values
are stored by timer/counter
number.

12k type 14333 FL0–FL14332 %MW9.0–
%MW9.14332

File

registers 1)

3) 32k type
(expanded)

30717 FL0–FL30716 %MW9.0–
%MW9.30716

Data memory used in a program.
Data is handled in 16-bit units
(one word).

Special data registers 256 DT90000–
DT90255

%MW5.90000–
%MW5.90255

Data memory for storing settings
and error codes.

Index registers 14 I0–ID %MW6.0–
%MW6.13

Data memory used to modify
constants and memory area
addresses.

Memory area [double words]

Available address area Type Memory
size F/P IEC

Function

External input relays 1) 64 DWX0–DWX72 %ID0–
%ID72

Code for specifying 32 external
input points as a double word (32
bits) of data.

External output relays 1) 64 DWY0–DWY72 %QD0–
%QD72

Code for specifying 32 external
output points as a double word
(32 bits) of data.

 Appendix Programming Information

1267

Available address area Type Memory
size F/P IEC

Function

Internal relays 2) 126 DWR0–DWR254 %MD0.0–
%MD0.254

Code for specifying 32 internal
relay points as a double word (32
bits) of data.

Link relays 64 DWL0–DWL126 %MD7.0–
%MD7.126

Code for specifying 32 link relay
points as a double word (32 bits)
of data.

Data registers 2) 3000 DDT0–
DDT32763

%MD5.0–
%MD5.32763

Data memory used in a program.
Data is handled in 32-bit units
(double word).

Link registers 2) 128 DLD0–DLD254 %MD8.0–
%MD8.254

Data memory shared by multiple
PLCs connected using PLC link.
Data is handled in 32-bit units
(double word).

Timer/counter set value

area 2)

512 DSV0–DSV1022 %MD3.0–
%MD3.1022

Data memory for storing the set
values of timers or counters. The
values are stored by
timer/counter number.

Timer/counter elapsed
value area 2)

512 DEV0–DEV1022 %MD4.0–
%MD4.1022

Data memory for storing the
elapsed values during operation
of timers or counters. The values
are stored by timer/counter
number.

12k type 7166 DFL0–DFL14331 %MD9.0–
%MD9.14331

File

registers 1)

3)

32k type
(expanded)

15358 DFL0–DFL30715 %MD9.0–
%MD9.30715

Data memory used in a program.
Data is handled in 16-bit units
(one word).

Special data registers 128 DDT90000–
DDT90254

%MD5.90000–
%MD5.90254

Data memory for storing settings
and error codes.

Index registers 7 DI0–DID %MD6.0–
%MD6.13

Data memory used to modify
constants and memory area
addresses.

1) There are two memory types, the hold type that saves the conditions that exist just before turning the power
off or changing from RUN to PROG mode, and the non−hold type that resets them. The hold and non−hold
type memory areas can be changed by setting the system registers.

2) The number of points for timer and counter relays can be changed using system register 5. The numbers in
the table are the default settings.

3) The size of the file registers varies depending on the settings of system registers 0, 1, and 2.

Appendix Programming Information

1268

40.7.7 Relays and memory areas for FP2SH

Relays [bits]

Available address area Type Memory
size F/P IEC

Function

External input relays 8192 X0–X511F %IX0.0–
%IX511.15

Turn on or off based on external
input.

External output relays 8192 Y0–Y511F %QX0.0–
%QX511.15

Turn on or off external outputs
based on the operation result.

Internal relays 1) 14192 R0–R886F %MX0.0.0–
%MX0.886.15

Used internally by the PLC
program to store bit information.

Link relays 1) 10240 L0–L639F %MX7.0.0–
%MX7.639.15

Shared by multiple PLCs
connected using PLC link.

Timer relays 1) 2) 3072 T0–T2999/
C3000–C3071

%MX1.0–
%MX1.2999/
%MX2.3000–
%MX2.3071

Turn on when the value set with
a TM instruction for the timer with
the same number has reached 0.

Counter relays 1) 2) 3072 C3000–C3071/
T0–T2999

%MX2.3000–
%MX2.3071/
%MX1.0–
%MX1.2999

Turn on when the value set with
a CT instruction for the counter
with the same number has
reached 0.

Pulse relays 2048 P0–P127F %MX11.0.0–
%MX11.127.15

Turn on for one scan only. Used
internally by the PLC program.

Error alarm relays 2048 E0–E127F %MX10.0.0–
%MX10.127.15

Turns on in the event of error.
The error history is stored in
dedicated data registers.

Special internal relays 176 R9000–R910F %MX0.900.0–
%MX0.910.15

Turn on or off based on specific
conditions. Used internally as a
flag.

Memory area [words]

Available address area Type Memory
size F/P IEC

Function

External input relays 512 WX0–WX127 %IW0–
%IW127

Code for specifying 16 external
input points as one word (16 bits)
of data.

External output relays 512 WY0–WY127 %QW0–
%QW127

Code for specifying 16 external
output points as one word (16
bits) of data.

Internal relays 887 WR0–WR252 %MW0.0–
%MW0.252

Code for specifying 16 internal
relays as one word (16 bits) of
data.

Link relays 640 WL0–WL127 %MW7.0–
%MW7.127

Code for specifying 16 link relays
as one word (16 bits) of data.

Data registers 1) 10240 DT0–DT5999 %MW5.0–
%MW5.5999

Data memory used in a program.
Data is handled in 16-bit units
(one word).

Link registers 1) 8448 LD0–LD255 %MW8.0–
%MW8.255

Data memory shared by multiple
PLCs connected using PLC link.
Data is handled in 16-bit units
(one word)..

Timer/counter set value
area 1)

3072 SV0–SV1023 %MW3.0–
%MW3.1023

Data memory for storing the set
values of timers or counters. The
values are stored by
timer/counter number.

 Appendix Programming Information

1269

Available address area Type Memory
size F/P IEC

Function

Timer/counter elapsed

value area 1)

3072 EV0–EV1023 %MW4.0–
%MW4.1023

Data memory for storing the
elapsed values during operation
of timers or counters. The values
are stored by timer/counter
number.

File registers 1) 98295

(32765  3
banks)

FL0–FL32764 %MW9.0–
%MW9.32764

Data memory used in a program.
Data is handled in 16-bit units
(one word).

Special data registers 512 DT90000–
DT90511

%MW5.90000–
%MW5.90511

Data memory for storing settings
and error codes.

Index registers 14 I0–ID %MW6.0–
%MW6.13

Data memory used to modify
constants and memory area
addresses.

Memory area [double words]

Available address area Type Memory
size F/P IEC

Function

External input relays 1) 256 DWX0–DWX510 %ID0–
%ID510

Code for specifying 32 external
input points as a double word (32
bits) of data.

External output relays 1) 256 DWY0–DWY510 %QD0–
%QD510

Code for specifying 32 external
output points as a double word
(32 bits) of data.

Internal relays 2) 443 DWR0–DWR885 %MD0.0–
%MD0.885

Code for specifying 32 internal
relay points as a double word (32
bits) of data.

Link relays 320 DWL0–DWL638 %MD7.0–
%MD7.638

Code for specifying 32 link relay
points as a double word (32 bits)
of data.

Data registers 2) 5120 DDT0–
DDT10238

%MD5.0–
%MD5.10238

Data memory used in a program.
Data is handled in 32-bit units
(double word).

Link registers 2) 4224 DLD0–DLD8446 %MD8.0–
%MD8.8446

Data memory shared by multiple
PLCs connected using PLC link.
Data is handled in 32-bit units
(double word).

Timer/counter set value

area 2)

1513 DSV0–DSV3070 %MD3.0–
%MD3.3070

Data memory for storing the set
values of timers or counters. The
values are stored by
timer/counter number.

Timer/counter elapsed
value area 2)

1513 DEV0–DEV3070 %MD4.0–
%MD4.3070

Data memory for storing the
elapsed values during operation
of timers or counters. The values
are stored by timer/counter
number.

File registers 16382 DFL0–DFL32763 %MD9.0–
%MD9.32763

Data memory used in a program.
Data is handled in 16-bit units
(one word).

Special data registers 265 DDT90000–
DDT90510

%MD5.90000–
%MD5.90510

Data memory for storing settings
and error codes.

Appendix Programming Information

1270

Available address area Type Memory
size F/P IEC

Function

Index registers 7 DI0–DID %MD6.0–
%MD6.13

Data memory used to modify
constants and memory area
addresses.

1) There are two memory types, the hold type that saves the conditions that exist just before turning the power
off or changing from RUN to PROG mode, and the non−hold type that resets them. The hold and non−hold
type memory areas can be changed by setting the system registers.

2) The number of points for timer and counter relays can be changed using system register 5. The numbers in
the table are the default settings.

40.7.8 Relays and memory areas for FP10SH

Relays [bits]

Available address area Type Memory
size F/P IEC

Function

External input relays 8192 X0–X511F %IX0.0–
%IX511.15

Turn on or off based on external
input.

External output relays 8192 Y0–Y511F %QX0.0–
%QX511.15

Turn on or off external outputs
based on the operation result.

Internal relays 1) 14192 R0–R886F %MX0.0.0–
%MX0.886.15

Used internally by the PLC
program to store bit information.

Link relays 1) 10240 L0–L639F %MX7.0.0–
%MX7.639.15

Shared by multiple PLCs
connected using PLC link.

Timer relays 1) 2) 3072 T0–T2999/
C3000–C3071

%MX1.0–
%MX1.2999/
%MX2.3000–
%MX2.3071

Turn on when the value set with
a TM instruction for the timer with
the same number has reached 0.

Counter relays 1) 2) 3072 C3000–C3071/
T0–T2999

%MX2.3000–
%MX2.3071/
%MX1.0–
%MX1.2999

Turn on when the value set with
a CT instruction for the counter
with the same number has
reached 0.

Pulse relays 2048 P0–P127F %MX11.0.0–
%MX11.127.15

Turn on for one scan only. Used
internally by the PLC program.

Error alarm relays 2048 E0–E127F %MX10.0.0–
%MX10.127.15

Turns on in the event of error.
The error history is stored in
dedicated data registers.

Special internal relays 176 R9000–R910F %MX0.900.0–
%MX0.910.15

Turn on or off based on specific
conditions. Used internally as a
flag.

Memory area [words]

Available address area Type Memory
size F/P IEC

Function

External input relays 512 WX0–WX127 %IW0–
%IW127

Code for specifying 16 external
input points as one word (16 bits)
of data.

External output relays 512 WY0–WY127 %QW0–
%QW127

Code for specifying 16 external
output points as one word (16
bits) of data.

 Appendix Programming Information

1271

Available address area Type Memory
size F/P IEC

Function

Internal relays 887 WR0–WR252 %MW0.0–
%MW0.252

Code for specifying 16 internal
relays as one word (16 bits) of
data.

Link relays 640 WL0–WL127 %MW7.0–
%MW7.127

Code for specifying 16 link relays
as one word (16 bits) of data.

Data registers 1) 10240 DT0–DT5999 %MW5.0–
%MW5.5999

Data memory used in a program.
Data is handled in 16-bit units
(one word).

Link registers 1) 8448 LD0–LD255 %MW8.0–
%MW8.255

Data memory shared by multiple
PLCs connected using PLC link.
Data is handled in 16-bit units
(one word)..

Timer/counter set value
area 1)

3072 SV0–SV1023 %MW3.0–
%MW3.1023

Data memory for storing the set
values of timers or counters. The
values are stored by
timer/counter number.

Timer/counter elapsed

value area 1)

3072 EV0–EV1023 %MW4.0–
%MW4.1023

Data memory for storing the
elapsed values during operation
of timers or counters. The values
are stored by timer/counter
number.

File registers 1) 32765 FL0–FL32764 %MW9.0–
%MW9.32764

Data is handled in 16-bit units
(one word). Data memory used
in a program.

Special data registers 512 DT90000–
DT90511

%MW5.90000–
%MW5.90511

Data memory for storing settings
and error codes.

Index registers 14 I0–ID %MW6.0–
%MW6.13

Data memory used to modify
constants and memory area
addresses.

Memory area [double words]

Available address area Type Memory
size F/P IEC

Function

External input relays 1) 256 DWX0–DWX510 %ID0–
%ID510

Code for specifying 32 external
input points as a double word (32
bits) of data.

External output relays 1) 256 DWY0–DWY510 %QD0–
%QD510

Code for specifying 32 external
output points as a double word
(32 bits) of data.

Internal relays 2) 443 DWR0–DWR885 %MD0.0–
%MD0.885

Code for specifying 32 internal
relay points as a double word (32
bits) of data.

Link relays 320 DWL0–DWL638 %MD7.0–
%MD7.638

Code for specifying 32 link relay
points as a double word (32 bits)
of data.

Data registers 2) 5120 DDT0–
DDT10238

%MD5.0–
%MD5.10238

Data memory used in a program.
Data is handled in 32-bit units
(double word).

Link registers 2) 4224 DLD0–DLD8446 %MD8.0–
%MD8.8446

Data memory shared by multiple
PLCs connected using PLC link.
Data is handled in 32-bit units
(double word).

Timer/counter set value

area 2)

1513 DSV0–DSV3070 %MD3.0–
%MD3.3070

Data memory for storing the set
values of timers or counters. The
values are stored by
timer/counter number.

Appendix Programming Information

1272

Available address area Type Memory
size F/P IEC

Function

Timer/counter elapsed

value area 2)

1513 DEV0–DEV3070 %MD4.0–
%MD4.3070

Data memory for storing the
elapsed values during operation
of timers or counters. The values
are stored by timer/counter
number.

File registers 16382 DFL0–DFL32763 %MD9.0–
%MD9.32763

Data memory used in a program.
Data is handled in 16-bit units
(one word).

Special data registers 265 DDT90000–
DDT90510

%MD5.90000–
%MD5.90510

Data memory for storing settings
and error codes.

Index registers 7 DI0–DID %MD6.0–
%MD6.13

Data memory used to modify
constants and memory area
addresses.

1) There are two memory types, the hold type that saves the conditions that exist just before turning the power off
or changing from RUN to PROG mode, and the non−hold type that resets them. The hold and non−hold type
memory areas can be changed by setting the system registers.

2) The number of points for timer and counter relays can be changed using system register 5. The numbers in the
table are the default settings.

 Appendix Programming Information

1273

40.8 System registers

System registers are memory areas reserved for setting hold and non-hold areas for timers, counters, flags and
data registers.

In the system registers you can also define parameters for PLC interfaces as to how they should react when
errors occur.

 � NOTE

The size of the memory depends on the PLC type used. The sum of all memory sizes for system
registers, user program and machine program may not be larger than the entire PLC memory.

The 2 highest data registers (4 in PLCs with a second task) are at the user’s disposal, since they are
always in the hold area and used by the compiler.

 1.
2.
3.

Procedure

1. Double-click "PLC"

2. Double-click "System Registers"

A list with all system registers will be displayed. The number indicated in parentheses is identical to
the system register number. In "Memory Size (0-3)", you define the memory sizes for machine
programs, for example. You will find a list with all system registers and the memory size of your
PLC in your hardware description.

3. Double-click desired set of system registers

4. Enter your settings

40.8.1 Types of system registers

System registers are used to set values (parameters) which determine operation ranges and functions used. Set
values based on the use and specifications of your program. There is no need to set system registers for
functions which will not be used.

Appendix Programming Information

1274

Not all system registers are available for all PLC types. Please see the system register tables for a list of system
registers for each PLC type.

Memory size

Set the size of the memory area for the user program.

Hold on/off

Use these system registers to specify the hold area start addresses for relays and registers. Hold areas are not
cleared to 0 when the PLC is switched to PROG mode or when the power is turned off.

The memory area for timer relays and counter relays is partitioned using system register no. 5. Specify the start
address for the counter relays.

Act on Error

Set the operation mode to be chosen after errors such as an operation error, a battery error, or an I/O
verification error.

Time-Out

Set the waiting time before an error is output. You can also specify a constant scan time.

MEWNET-F

Set the PLC start mode and timeout when MEWNET-F slave stations are connected.

PLC Link

These settings are for using link relays and link registers in MEWNET-W0 PLC link communication. Note that
PLC Link is not the default setting.

PROFIBUS/MEWNET-H

Set the data size to be processed during one scan.

High-Speed Counter, Pulse-Catch Input, Interrupt Input

When using the high-speed counter function, pulse catch function or interrupt function, set the operation mode
and the input number to be used for the function.

Time Constants

Set a time constant for the CPU inputs. These time constants can be useful to negate the effects of noise or
bouncing, e.g. for a switching device.

TOOL Port, COM Port

Set these registers when the TOOL port and COM ports 1 and 2 ports are to be used for MEWTOCOL-COM
Master/Slave connections, program controlled communication, PLC link, and modem communication. Note that
the default setting is MEWTOCOL-COM Master/Slave.

40.8.2 System registers for FP-X

Memory size

No. Name Default Values

0 Sequence program area size 12/16/32 kwords1) Fixed

1) Depending on PLC type (12k, 16k, or 32k type)

 Appendix Programming Information

1275

Hold on/off

No
.

Name Default Values

51) Counter start address 1008 0–1024

61) Timer/Counter hold area start address 1008 0–1024

71) Internal relay hold area start address (in word units) 248 0–256

81) Data register hold area start address 12230/

327102)

0–12283/

0–327632)

10 Link relay hold area start address for PLC Link 0 (in word units) 64 0–64

11 Link relay hold area start address for PLC Link 1 (in word units) 128 64–128

12 Link register hold area start address for PLC Link 0 128 0–128

13 Link register hold area start address for PLC Link 1 256 128–256

141

)

Step ladder hold/non-hold Non-hold Hold/Non-hold

1)  These settings are effective if the optional backup battery is installed

 If no backup battery is used, do not change the default settings. Otherwise proper functioning of
hold/non-hold values cannot be guaranteed.

2) Depending on PLC type (16k/32k type)

 Act on Error

No. Name Default Values

4 Battery error indication Disable Disable: When a battery error occurs, a self-diagnostic error
is not issued and the ERROR LED will not flash.

Enable: When a battery error occurs, a self-diagnostic error
is issued and the ERROR will LED flash.

4 DF-, P-function leading/falling
edge detection

Holds result Holds result/disregards result

20 Duplicate output Enable Fixed

23 I/O verification error Stop Stop/Continue

26 Operation error Stop Stop/Continue

Time-Out

No. Name Default Values

31 Multi-frame communication time 6500.0ms 10.0–81900.0ms

32 Timeout value for the
communication functions based on
F145, F146, F152, F153

10000.0ms 10.0–81900.0ms

34 Constant scan time 0.0ms 0.0–350.0ms

0.0: Normal scan (non-constant)

36 Expansion unit recognition time 0.0s 0.0–10.0s

PLC Link

No. Name Default Values

46 PLC Link 0 and 1 allocation setting Normal Normal/Reverse

47 PLC link 0 - Highest station number in network 16 1–16

40 PLC link 0 - Link relays - Send/receive area - Number of words
shared by all linked PLCs

0 0–64 words

Appendix Programming Information

1276

No. Name Default Values

42 PLC link 0 - Link relays - Send area - Start sending from this word
address

0 0–63

43 PLC link 0 - Link relays - Send area - Number of words to send 0 0–64 words

41 PLC link 0 - Link registers - Send/receive area - Number of words
shared by all linked PLCs

0 0–128 words

44 PLC link 0 - Link registers - Send area - Start sending from this
word address

0 0–127

45 PLC link 0 - Link registers - Send area - Number of words to send 0 0–127 words

57 PLC link 1 - Highest station number in network 16 1–16

50 PLC link 1 - Link relays - Send/receive area - Number of words
shared by all linked PLCs

0 0–64 words

52 PLC link 1 - Link relays - Send area - Start sending from this word
address

64 64–127

53 PLC link 1 - Link relays - Send area - Number of words to send 0 0–64 words

51 PLC link 1 - Link registers - Send/receive area - Number of words
shared by all linked PLCs

0 0–128 words

54 PLC link 1 - Link registers - Send area - Start sending from this
word address

128 128–255

55 PLC link 1 - Link registers - Send area - Number of words to send 0 0–127 words

High-Speed Counter, Pulse-Catch Input, Interrupt Input (Transistor types)

No. Name Default Values

400/
401

High-speed counter:
Channel 0

Unused  Incremental input (X0)

 Incremental input (X0), Reset input (X6)

 Decremental input (X0)

 Decremental input (X0), Reset input (X6)

 Two-phase input (X0, X1)

 Two-phase input (X0, X1), Reset input (X6)

 Incremental input (X0), Decremental input (X1)

 Incremental input (X0), Decremental input (X1), Reset input
(X6)

 Counter input (X0), Incremental/decremental control input (X1)

 Counter input (X0), Incremental/decremental control input
(X1), Reset input (X6)

400 High-speed counter:
Channel 1

Unused  Incremental input (X1)

 Decremental input (X1)

400/
401

High-speed counter:
Channel 2

Unused  Incremental input (X2)

 Incremental input (X2), Reset input (X7)

 Decremental input (X2)

 Decremental input (X2), Reset input (X7)

 Two-phase input (X2, X3)

 Two-phase input (X2, X3), Reset input (X7)

 Incremental input (X2), Decremental input (X3)

 Incremental input (X2), Decremental input (X3), Reset input
(X7)

 Counter input (X2), Incremental/decremental control input (X3)

 Counter input (X2), Incremental/decremental control input
(X3), Reset input (X7)

400 High-speed counter:
Channel 3

Unused  Incremental input (X3)

 Decremental input (X3)

 Appendix Programming Information

1277

No. Name Default Values

401 High-speed counter:
Channel 4

Unused  Incremental input (X4)

 Decremental input (X4)

 Two-phase input (X4, X5)

 Incremental input (X4), Decremental input (X5)

 Counter input (X4), Incremental/decremental control input (X5)

401 High-speed counter:
Channel 5

Unused  Incremental input (X5)

 Decremental input (X5)

401 High-speed counter:
Channel 6

Unused  Incremental input (X6)

 Decremental input (X6)

 Two-phase input (X6, X7)

 Incremental input (X6), Decremental input (X7)

 Counter input (X6), Incremental/decremental control input (X7)

401 High-speed counter:
Channel 7

Unused  Incremental input (X7)

 Decremental input (X7)

402/
401

Pulse output: Channel 0 Unused  Pulse output (Y0, Y1)

 Pulse output (Y0, Y1), Home input (X4)

 PWM output (Y0)

402/
401

Pulse output: Channel 1 Unused  Pulse output (Y2, Y3)

 Pulse output (Y2, Y3), Home input (X5)

 PWM output (Y2)

402/
401

Pulse output: Channel 2 Unused  Pulse output (Y4, Y5)

 Pulse output (Y4, Y5), Home input (X6)

 PWM output (Y4)

402/
401

Pulse output: Channel 3
(32k type only)

Unused  Pulse output (Y6, Y7)

 Pulse output, (Y6, Y7) Home input (X7)

 PWM output (Y6)

403 Pulse catch input: X0 Disable Disable/Enable

403 Pulse catch input: X1 Disable Disable/Enable

403 Pulse catch input: X2 Disable Disable/Enable

403 Pulse catch input: X3 Disable Disable/Enable

403 Pulse catch input: X4 Disable Disable/Enable

403 Pulse catch input: X5 Disable Disable/Enable

403 Pulse catch input: X6 Disable Disable/Enable

403 Pulse catch input: X7 Disable Disable/Enable

404/
405

Interrupt input:

X0Interrupt 0

Unused Rising edge/Falling edge

404/
405

Interrupt input:

X1Interrupt 1

Unused Rising edge/Falling edge

404/
405

Interrupt input:

X2Interrupt 2

Unused Rising edge/Falling edge

404/
405

Interrupt input:

X3Interrupt 3

Unused Rising edge/Falling edge

404/
405

Interrupt input:

X4Interrupt 4

Unused Rising edge/Falling edge

404/
405

Interrupt input:

X5Interrupt 5

Unused Rising edge/Falling edge

Appendix Programming Information

1278

No. Name Default Values

404/
405

Interrupt input:

X6Interrupt 6

Unused Rising edge/Falling edge

404/
405

Interrupt input:

X7Interrupt 7

Unused Rising edge/Falling edge

 The input modes two-phase, incremental/decremental, or
incremental/decremental control require a second channel. If channel 0, channel
2, channel 4, or channel 6 have been set to one of these modes, the settings for
channel 1, channel 3, channel 5, and channel 7, respectively, will be invalid.

Only channel 0 and channel 2 are available for the reset input of the high-speed
counter.

Input numbers X4 to X7 can be used as home input of pulse output channels 0 to
3. When using the home return function, always set the home input. In this case,
X4 to X7 cannot be used as high-speed counter inputs.

CPU outputs which have been specified as pulse output or PWM output cannot
be used as normal outputs.

If the same input has been set as high-speed counter input, pulse catch input or
interrupt input, the following order of precedence is effective: High-speed
counter  Pulse catch  Interrupt.

High-Speed Counter, Pulse-Catch Input, Interrupt Input (Relay types)

No. Name Default Values

402 High-speed counter:
Channel 0

Unused  Incremental input (X0)

 Decremental input (X0)

 Two-phase input (X0, X1)

402 High-speed counter:
Channel 1

Unused  Incremental input (X1)

 Decremental input (X1)

 Two-phase input (X0, X1)

402 High-speed counter:
Channel 2

Unused  Incremental input (X2)

 Decremental input (X2)

 Two-phase input (X2, X3)

402 High-speed counter:
Channel 3

Unused  Incremental input (X3)

 Decremental input (X3)

 Two-phase input (X2, X3)

402 High-speed counter:
Channel 4

Unused  Incremental input (X4)

 Decremental input (X4)

 Two-phase input (X4, X5)

402 High-speed counter:
Channel 5

Unused  Incremental input (X5)

 Decremental input (X5)

 Two-phase input (X4, X5)

402 High-speed counter:
Channel 6

Unused  Incremental input (X6)

 Decremental input (X6)

 Two-phase input (X6, X7)

402 High-speed counter:
Channel 7

Unused  Incremental input (X7)

 Decremental input (X7)

 Two-phase input (X6, X7)

 Appendix Programming Information

1279

No. Name Default Values

400 High-speed counter:
Channel 8 (with pulse
I/O cassette)

Unused  Two-phase input (X100, X101)

 Two-phase input (X100, X101), Reset input (X102)

 Incremental input (X100)

 Incremental input (X100), Reset input (X102)

 Decremental input (X100)

 Decremental input (X100), Reset input (X102)

 Incremental input (X100), Decremental input (X101)

 Incremental input (X100), Decremental input (X101), Reset input
(X102)

 Counter input (X100), Incremental/decremental control input
(X101)

 Counter input (X100), Incremental/decremental control input
(X101), Reset input (X102)

400 High-speed counter:
Channel 9 (with pulse
I/O cassette)

Unused  Incremental input (X101)

 Incremental input (X101), Reset input (X102)

 Decremental input (X101)

 Decremental input (X101), Reset input (X102)

401 High-speed counter:
Channel A (with pulse
I/O cassette)

Unused  Two-phase input (X200, X201)

 Two-phase input (X200, X201), Reset input (X202)

 Incremental input (X200)

 Incremental input (X200), Reset input (X202)

 Decremental input (X200)

 Decremental input (X200), Reset input (X202)

 Incremental input (X200), Decremental input (X201)

 Incremental input (X200), Decremental input (X201), Reset input
(X202)

 Counter input (X200), Incremental/decremental control input
(X201)

 Counter input (X200), Incremental/decremental control input
(X201), Reset input (X202)

401 High-speed counter:
Channel B (with pulse
I/O cassette)

Unused  Incremental input (X201)

 Incremental input (X201), Reset input (X202)

 Decremental input (X201)

 Decremental input (X201), Reset input (X202)

400 Pulse output: Channel
0 (with pulse I/O
cassette)

Unused  Pulse output (Y100, Y101), Home input (X102)

 PWM output (Y100)

401 Pulse output: Channel
1 (with pulse I/O
cassette)

Unused  Pulse output (Y200, Y201), Home input (X202)

 PWM output (Y200)

403 Pulse catch input: X0 Disable Disable/Enable

403 Pulse catch input: X1 Disable Disable/Enable

403 Pulse catch input: X2 Disable Disable/Enable

403 Pulse catch input: X3 Disable Disable/Enable

403 Pulse catch input: X4 Disable Disable/Enable

403 Pulse catch input: X5 Disable Disable/Enable

403 Pulse catch input: X6 Disable Disable/Enable

403 Pulse catch input: X7 Disable Disable/Enable

403 Pulse catch input:
X100

Disable Disable/Enable

Appendix Programming Information

1280

No. Name Default Values

403 Pulse catch input:
X101

Disable Disable/Enable

403 Pulse catch input:
X102

Disable Disable/Enable

403 Pulse catch input:
X200

Disable Disable/Enable

403 Pulse catch input:
X201

Disable Disable/Enable

403 Pulse catch input:
X202

Disable Disable/Enable

404/
405

Interrupt input:

X0Interrupt 0

Unused Rising edge/Falling edge

404/
405

Interrupt input:

X1Interrupt 1

Unused Rising edge/Falling edge

404/
405

Interrupt input:

X2Interrupt 2

Unused Rising edge/Falling edge

404/
405

Interrupt input:

X3Interrupt 3

Unused Rising edge/Falling edge

404/
405

Interrupt input:

X4Interrupt 4

Unused Rising edge/Falling edge

404/
405

Interrupt input:

X5Interrupt 5

Unused Rising edge/Falling edge

404/
405

Interrupt input:

X6Interrupt 6

Unused Rising edge/Falling edge

404/
405

Interrupt input:

X7Interrupt 7

Unused Rising edge/Falling edge

404/
406

Interrupt input

X100Interrupt 8

Unused Rising edge/Falling edge

404/
406

Interrupt input

X101Interrupt 9

Unused Rising edge/Falling edge

404/
406

Interrupt input

X102Interrupt 10

Unused Rising edge/Falling edge

404/
406

Interrupt input

X200Interrupt 11

Unused Rising edge/Falling edge

404/
406

Interrupt input

X201Interrupt 12

Unused Rising edge/Falling edge

404/
406

Interrupt input

X202Interrupt 13

Unused Rising edge/Falling edge

 If the same input has been set as high-speed counter input, pulse catch input or
interrupt input, the following order of precedence is effective: High-speed
counter  Pulse catch  Interrupt.

The two-phase input mode requires a second channel. If channels 0, 2, 4, or 6
have been set to two-phase mode, channels 1, 3, 5, or 7, respectively, must also
be set to this mode.

The settings for pulse catch inputs and interrupt inputs can only be specified in
the system registers.

 Appendix Programming Information

1281

Using the pulse I/O cassette:

 The input modes two-phase, incremental/decremental, or
incremental/decremental control require a second channel. If channel 8, or
channel A have been set to one of these modes, the settings for channel 9, and
channel B, respectively, will be invalid.

If reset input settings overlap for channel 8 and channel 9, the channel 9 setting
takes precedence. If reset input settings overlap for channel A and channel B,
the channel B setting takes precedence.

System registers 400 applies when the pulse I/O cassette is installed in cassette
mounting part 0. System register 401 applies when the pulse I/O cassette is
installed in cassette mounting part 1.

Input numbers X102 and X202 can be used as home input of pulse output
channels 0 and 1. When using the home return function, always set the home
input. In this case, X102 and X202 cannot be used as reset inputs for channels 8
to B.

System registers 404/406 apply when the pulse I/O cassette is used.

Time Constants

No. Name Default Values

430 Time constant of input X0

430 Time constant of input X1

430 Time constant of input X2

430 Time constant of input X3

431 Time constant of input X4

431 Time constant of input X5

431 Time constant of input X6

431 Time constant of input X7

432 Time constant of input X8

432 Time constant of input X9

432 Time constant of input XA

432 Time constant of input XB

433 Time constant of input XC

433 Time constant of input XD

433 Time constant of input XE

433 Time constant of input XF

434 Time constant of input X10

434 Time constant of input X11

434 Time constant of input X12

434 Time constant of input X13

435 Time constant of input X14

435 Time constant of input X15

435 Time constant of input X16

435 Time constant of input X17

436 Time constant of input X18

436 Time constant of input X19

436 Time constant of input X1A

436 Time constant of input X1B

437 Time constant of input X1C

Unused 1.0ms

2.0ms

4.0ms

8.0ms

16.0ms

32.0ms

64.0ms

128.0ms

256.0ms

Appendix Programming Information

1282

No. Name Default Values

437 Time constant of input X1D

437 Time constant of input X1E

437 Time constant of input X1F

TOOL Port

No. Name Default Values

412 TOOL port - communication mode MEWTOCOL-COM
Slave

MEWTOCOL-COM
Slave/Program
controlled

410 TOOL port - station number 1 1–99

415 TOOL port - baud rate 115200 baud 115200/57600/38400/
19200/9600/4800/240
0 baud

413 TOOL port - sending data length 8 bits 7 bits/8 bits

413 TOOL port - sending parity check With-Odd None/With-Odd/With-
Even

413 TOOL port - sending stop bit 1 bit 1 bit/2 bits

413 TOOL port - sending start code No-STX No-STX/STX

413 TOOL port - sending end code/reception done condition CR CR/CR+LF/ETX/Non
e

420 TOOL port - receive buffer starting address 4096 0–12282 (16k type)

0–32762 (32k type)

421 TOOL port - receive buffer capacity 0 words 0-2048 words

412 TOOL port - modem connection Disable Disable/Enable

COM Port

No. Name Default Values

412 COM port 1 - communication mode MEWTOCOL-COM
Master/Slave

MEWTOCOL-COM
Master/Slave/Progra
m controlled/PLC
Link/Modbus RTU
Master/Slave

410 COM port 1 - station number 1 1–99

415 COM port 1 - baud rate1) 9600 baud 115200/57600/38400/
19200/9600/4800/240
0 baud

413 COM port 1 - sending data length1) 8 bits 7 bits/8 bits

413 COM port 1 - sending parity check1) With-Odd None/With-Odd/With-
Even

413 COM port 1 - sending stop bit 1 bit 1 bit/2 bits

413 COM port 1 - sending start code1) No-STX No-STX/STX

413 COM port 1 - sending end code/reception done

condition1)

CR CR/CR+LF/ETX/Non
e

 Appendix Programming Information

1283

No. Name Default Values

416 COM port 1 - receive buffer starting address 0 0–12282 (16k type)

0–32762 (32k type)

417 COM port 1 - receive buffer capacity 0 words 0-2048 words

412 COM port 1 - modem connection Disable Disable/Enable

412 COM port 2 - port selection2) Internal USB port (32k
type only)

Internal USB
port/Communication
cassette

412 COM port 2 - communication mode MEWTOCOL-COM
Master/Slave

MEWTOCOL-COM
Master/Slave/Progra
m controlled/Modbus
RTU Master/Slave

411 COM port 2 - station number 1 1–99

415 COM port 2 - baud rate1) 9600 baud 115200/57600/38400/
19200/9600/4800/240
0 baud

414 COM port 2 - sending data length1) 8 bits 7 bits/8 bits

414 COM port 2 - sending parity check1) With-Odd None/With-Odd/With-
Even

414 COM port 2 - sending stop bit1) 1 bit 1 bit/2 bits

414 COM port 2 - sending start code1) No-STX No-STX/STX

414 COM port 2 - sending end code/reception done

condition1)

CR CR/CR+LF/ETX/Non
e

418 COM port 2 - receive buffer starting address 2048 0–12282 (16k type)

0–32762 (32k type)

419 COM port 2 - receive buffer capacity 0 words 0–2048 words

412 COM port 2 - modem connection Disable Disable/Enable

1) For PLC Link, the communication format and baud rate settings are fixed:

Data length: 8 bits
Parity: Odd
Stop bit: 1 bit
End code: CR
Start code: No STX

Other system register settings will be ignored.

2) CPU types C30 and C60 offer a USB port. To use this port, COM port 2 must be set to "Internal USB port". In this
case, COM port 2 of the communication cassette cannot be used. Vice versa, if COM port 2 has been set to
"Communication cassette", the USB port cannot be used.

For C14, COM port 2 is set to "Communication cassette". This setting is fixed.

40.8.3 System registers for FP-Sigma

Memory size

No. Name Default Values

0 Sequence program area size 12/16/32 kwords1) Fixed

1) Depending on PLC type (12k, 16k, or 32k type)

Appendix Programming Information

1284

Hold on/off

No
.

Name Default Values

51) Counter start address 1008 0–1024

61) Timer/Counter hold area start address 1008 0–1024

71) Internal relay hold area start address (in word units) 248 0–256

81) Data register hold area start address 32710 0–32763

10 Link relay hold area start address for PLC Link 0 (in word units) 64 0–64

11 Link relay hold area start address for PLC Link 1 (in word units) 128 64–128

12 Link register hold area start address for PLC Link 0 128 0–128

13 Link register hold area start address for PLC Link 1 256 128–256

141

)

Step ladder hold/non-hold Non-hold Hold/Non-hold

1)  These settings are effective if the optional backup battery is installed

 If no backup battery is used, do not change the default settings. Otherwise proper functioning of
hold/non-hold values cannot be guaranteed.

 Act on Error

No. Name Default Values

4 Battery error indication Disable Disable: When a battery error occurs, a self-diagnostic error
is not issued and the ERROR LED will not flash.

Enable: When a battery error occurs, a self-diagnostic error
is issued and the ERROR will LED flash.

4 DF-, P-function leading/falling
edge detection

Holds result Holds result/disregards result

20 Duplicate output Enable Fixed

23 I/O verification error Stop Stop/Continue

26 Operation error Stop Stop/Continue

Time-Out

No. Name Default Values

30 Watchdog timer time-out 400.0ms Fixed

31 Multi-frame communication time 6500.0ms 10.0–81900.0ms

32 Timeout value for the communication
functions based on F145, F146, F152,
F153

10000.0ms 10.0–81900.0ms

34 Constant scan time 0.0ms 0.0–350.0ms

0.0: Normal scan (non-constant)

PLC Link

No. Name Default Values

46 PLC Link 0 and 1 allocation setting Normal Normal/Reverse

47 PLC link 0 - Highest station number in network 16 1–16

40 PLC link 0 - Link relays - Send/receive area - Number of words
shared by all linked PLCs

0 0–64 words

42 PLC link 0 - Link relays - Send area - Start sending from this word
address

0 0–63

 Appendix Programming Information

1285

No. Name Default Values

43 PLC link 0 - Link relays - Send area - Number of words to send 0 0–64 words

41 PLC link 0 - Link registers - Send/receive area - Number of words
shared by all linked PLCs

0 0–128 words

44 PLC link 0 - Link registers - Send area - Start sending from this
word address

0 0–127

45 PLC link 0 - Link registers - Send area - Number of words to send 0 0–127 words

57 PLC link 1 - Highest station number in network 16 1–16

50 PLC link 1 - Link relays - Send/receive area - Number of words
shared by all linked PLCs

0 0–64 words

52 PLC link 1 - Link relays - Send area - Start sending from this word
address

64 64–127

53 PLC link 1 - Link relays - Send area - Number of words to send 0 0–64 words

51 PLC link 1 - Link registers - Send/receive area - Number of words
shared by all linked PLCs

0 0–128 words

54 PLC link 1 - Link registers - Send area - Start sending from this
word address

128 128–255

55 PLC link 1 - Link registers - Send area - Number of words to send 0 0–127 words

High-Speed Counter, Pulse Catch Input, Interrupt Input

No. Name Default Values

400 High-speed counter:
Channel 0

Unused  Two-phase input (X0, X1)

 Two-phase input (X0, X1), Reset input (X2)

 Incremental input (X0)

 Incremental input (X0), Reset input (X2)

 Decremental input (X0)

 Decremental input (X0), Reset input (X2)

 Incremental input (X0), Decremental input (X1)

 Incremental input (X0), Decremental input (X1), Reset input (X2)

 Counter input (X0), Incremental/decremental control input (X1)

 Counter input (X0), Incremental/decremental control input (X1),
Reset input (X2)

400 High-speed counter:
Channel 1

Unused  Incremental input (X1)

 Incremental input (X1), Reset input (X2)

 Decremental input (X1)

 Decremental input (X1), Reset input (X2)

401 High-speed counter:
Channel 2

Unused  Two-phase input (X3, X4)

 Two-phase input (X3, X4), Reset input (X5)

 Incremental input (X3)

 Incremental input (X3), Reset input (X5)

 Decremental input (X3)

 Decremental input (X3), Reset input

 Incremental input (X3), Decremental input (X4)

 Incremental input (X3), Decremental input (X4), Reset input

 Counter input (X0), Incremental/decremental control input (X5)

 Counter input (X3), Incremental/decremental control input (X4),
Reset input X5)

401 High-speed counter:
Channel 3

Unused  Incremental input (X4)

 Incremental input (X4), Reset input (X5)

 Decremental input (X4)

 Decremental input (X4), Reset input (X5)

Appendix Programming Information

1286

No. Name Default Values

402 Pulse catch input: X0 Disable Disable/Enable

402 Pulse catch input: X1 Disable Disable/Enable

402 Pulse catch input: X2 Disable Disable/Enable

402 Pulse catch input: X3 Disable Disable/Enable

402 Pulse catch input: X4 Disable Disable/Enable

402 Pulse catch input: X5 Disable Disable/Enable

402 Pulse catch input: X6 Disable Disable/Enable

402 Pulse catch input: X7 Disable Disable/Enable

403 Interrupt input:

X0Interrupt 0

Unused Rising edge/Falling edge

403 Interrupt input:

X1Interrupt 1

Unused Rising edge/Falling edge

403 Interrupt input:

X2Interrupt 2

Unused Rising edge/Falling edge

403 Interrupt input:

X3Interrupt 3

Unused Rising edge/Falling edge

403 Interrupt input:

X4Interrupt 4

Unused Rising edge/Falling edge

403 Interrupt input:

X5Interrupt 5

Unused Rising edge/Falling edge

403 Interrupt input:

X6Interrupt 6

Unused Rising edge/Falling edge

403 Interrupt input:

X7Interrupt 7

Unused Rising edge/Falling edge

 If the same input has been set as high-speed counter input, pulse catch
input or interrupt input, the following order of precedence is effective:
High-speed counter  Pulse catch  Interrupt.

If reset input settings overlap for channel 0 and channel 1, the channel 1
setting takes precedence. If reset input settings overlap for channel 2 and
channel 3, the channel 3 setting takes precedence.

The input modes two-phase, incremental/decremental, or
incremental/decremental control require a second channel. If channel 0 or
channel 2 have been set to one of these modes, the settings for channel 1
and channel 3, respectively, will be invalid.

The settings for pulse catch inputs and interrupt inputs can only be
specified in the system registers.

TOOL Port

No. Name Default Values

412 TOOL port - communication mode MEWTOCOL-COM
Slave

MEWTOCOL-COM
Slave/Program
controlled

410 TOOL port -station number 1 1–99

415 TOOL port - baud rate 115200 baud 115200/57600/38400/
19200/9600/4800/240
0 baud

413 TOOL port - sending data length 8 bits 7 bits/8 bits

 Appendix Programming Information

1287

No. Name Default Values

413 TOOL port -sending parity check With-Odd None/With-Odd/With-
Even

413 TOOL port - sending stop bit 1 bit 1 bit/2 bits

413 TOOL port - sending start code No-STX No-STX/STX

413 TOOL port - sending end code/reception done condition CR CR/CR+LF/ETX/Non
e

420 TOOL port- -receive buffer starting address 0 0–32762

421 TOOL port - receive buffer capacity 0 0-2048

412 TOOL port - modem connection Disable Disable/Enable

COM Port

No. Name Default Values

412 COM port 1 - communication mode MEWTOCOL-COM
Master/Slave

MEWTOCOL-COM
Master/Slave/Progra
m controlled/PLC
Link/Modbus RTU
Master/Slave

410 COM port 1 -station number 1 1–99

415 COM port 1 - baud rate1) 2) 9600 baud 115200/57600/38400/
19200/9600/4800/240
0 baud

413 COM port 1 - sending data length 8 bits 7 bits/8 bits

413 COM port 1 -sending parity check1) With-Odd None/With-Odd/With-
Even

413 COM port 1 - sending stop bit 1 bit 1 bit/2 bits

413 COM port 1 - sending start code1) No-STX No-STX/STX

413 COM port 1 - sending end code/reception done

condition1)

CR CR/CR+LF/ETX/Non
e

416 COM port 1- -receive buffer starting address 0 0–32762

417 COM port 1 - receive buffer capacity 0 0-2048

412 COM port 1 - modem connection Disable Disable/Enable

412 COM port 2 - communication mode MEWTOCOL-COM
Master/Slave

MEWTOCOL-COM
Master/Slave/Progra
m controlled/Modbus
RTU Master/Slave

411 COM port 2 - station number 1 1–99

415 COM port 2 - baud rate 9600 baud 115200/57600/38400/
19200/9600/4800/240
0

414 COM port 2 - sending data length 8 bits 7 bits/8 bits

414 COM port 2 - sending parity check With-Odd None/With-Odd/With-
Even

414 COM port 2 -sending stop bit 1 bit 1 bit/2 bits

414 COM port 2 - sending start code No-STX No-STX/STX

Appendix Programming Information

1288

No. Name Default Values

414 COM port 2 - sending end code/reception done condition CR CR/CR+LF/ETX/Non
e

418 COM port 2 - receive buffer starting address 2048 0–32762

419 COM port 2 - receive buffer capacity 0 0–2048

412 COM port 2 - modem connection Disable Disable/Enable

1) For PLC Link, the communication format and baud rate settings are fixed:
Data length: 8 bits
Parity: Odd
Stop bit: 1 bit
End code: CR
Start code: No STX
Other system register settings will be ignored.

2) FPG-COM4: For RS485 connections (COM port 1), the baud rate must be set in the system registers and with
the DIP switch.

40.8.4 System registers for FP0R

Memory size

No. Name Default Values

0 Sequence program area size 12/16/32 kwords1) Fixed

1) Depending on PLC type (12k, 16k, or 32k type)

Hold on/off 1)

No
.

Name Default Values

5 Counter start address 1008 0–1024

6 Timer/Counter hold area start address 1008 Fixed/0–10243)

7 Internal relay hold area start address (in word units) 248 Fixed/0–2563)

8 Data register hold area start address 12000/

324502)
Fixed/0–327633)

10 Link relay hold area start address for PLC Link 0 (in word units) 64 Fixed/0–643)

11 Link relay hold area start address for PLC Link 1 (in word units) 128 Fixed/64–1283)

12 Link register hold area start address for PLC Link 0 128 Fixed/0–1283)

13 Link register hold area start address for PLC Link 1 256 Fixed/128–2563)

14 Step ladder hold/non-hold Non-hold Fixed or

Hold/Non-hold3)

1) FP0R-T32: If the battery is empty and additional hold areas have been defined, the hold/non-hold operation
becomes unstable. The data value will become indefinite. It is cleared to 0 the next time the power is turned on.

2) Depending on PLC type (16k/32k type)

3) Depending on PLC type (Fixed for C10, C14, C16, C32, variable for T32, F32)

 Appendix Programming Information

1289

Act on Error

No. Name Default Values

4 DF-, P-function leading/falling edge detection Holds result Holds result/disregards result

20 Duplicate output Enable Fixed

23 I/O verification error Stop Stop/Continue

26 Operation error Stop Stop/Continue

Time-Out

No. Name Default Values

30 Watchdog timer time-out 699.1ms Fixed

31 Multi-frame communication time 6500.0ms 10.0–81900.0ms

32 Timeout value for the communication
functions based on F145, F146, F152,
F153

10000.0ms 10.0–81900.0ms

34 Constant scan time 0.0ms 0.0–600.0ms

0.0: Normal scan (non-constant)

PLC Link

No. Name Default Values

46 PLC Link 0 and 1 allocation setting Normal Normal/Reverse

47 PLC link 0 - Highest station number in network 16 1–16

40 PLC link 0 - Link relays - Send/receive area - Number of words
shared by all linked PLCs

0 0–64 words

42 PLC link 0 - Link relays - Send area - Start sending from this word
address

0 0–63

43 PLC link 0 - Link relays - Send area - Number of words to send 0 0–64 words

41 PLC link 0 - Link registers - Send/receive area - Number of words
shared by all linked PLCs

0 0–128 words

44 PLC link 0 - Link registers - Send area - Start sending from this
word address

0 0–127

45 PLC link 0 - Link registers - Send area - Number of words to send 0 0–127 words

57 PLC link 1 - Highest station number in network 16 1–16

50 PLC link 1 - Link relays - Send/receive area - Number of words
shared by all linked PLCs

0 0–64 words

52 PLC link 1 - Link relays - Send area - Start sending from this word
address

64 64–127

53 PLC link 1 - Link relays - Send area - Number of words to send 0 0–64 words

51 PLC link 1 - Link registers - Send/receive area - Number of words
shared by all linked PLCs

0 0–128 words

54 PLC link 1 - Link registers - Send area - Start sending from this
word address

128 128–255

55 PLC link 1 - Link registers - Send area - Number of words to send 0 0–127 words

High-Speed Counter, Pulse-Catch Input, Interrupt Input

Appendix Programming Information

1290

No. Name Default Values

400 High-speed counter:
Channel 0

Unused  Two-phase input (X0, X1)

 Two-phase input (X0, X1), Reset input (X2)

 Incremental input (X0)

 Incremental input (X0), Reset input (X2)

 Decremental input (X0)

 Decremental input (X0), Reset input (X2)

 Incremental input (X0), Decremental input (X1)

 Incremental input (X0), Decremental input (X1), Reset input (X2)

 Counter input (X0), Incremental/decremental control input (X1)

 Counter input (X0), Incremental/decremental control input (X1),
Reset input (X2)

400 High-speed counter:
Channel 1

Unused  Incremental input (X1)

 Incremental input (X1), Reset input (X2)

 Decremental input (X1)

 Decremental input (X1), Reset input (X2)

400 High-speed counter:
Channel 2

Unused  Two-phase input (X3, X4)

 Two-phase input (X3, X4), Reset input (X5)

 Incremental input (X3)

 Incremental input (X3), Reset input (X5)

 Decremental input (X3)

 Decremental input (X3), Reset input (X5)

 Incremental input (X3), Decremental input (X4)

 Incremental input (X3), Decremental input (X4), Reset input (X5)

 Counter input (X3), Incremental/decremental control input (X4)

 Counter input (X3), Incremental/decremental control input (X4),
Reset input X5)

400 High-speed counter:
Channel 3

Unused  Incremental input (X4)

 Incremental input (X4), Reset input (X5)

 Decremental input (X4)

 Decremental input (X4), Reset input (X5)

401 High-speed counter:
Channel 4

Unused  Two-phase input (X6, X7)

 Incremental input (X6)

 Decremental input (X6)

 Incremental input (X6), Decremental input (X7)

 Counter input (X6), Incremental/decremental control input (X7)

401 High-speed counter:
Channel 5

Unused  Incremental input (X7)

 Decremental input (X7)

402 Pulse output:
Channel 0 (transistor
types only)

Unused  Pulse output (Y0, Y1)

 Pulse output (Y0, Y1), Home input (X4)

 Pulse output (Y0, Y1), Home input (X4), Position control trigger
input (X0)

 PWM output (Y0)

402 Pulse output:
Channel 1 (transistor
types only)

Unused  Pulse output (Y2, Y3)

 Pulse output (Y2, Y3), Home input (X5)

 Pulse output (Y2, Y3), Home input (X5), Position control trigger
input (X1)

 PWM output (Y2)

 Appendix Programming Information

1291

No. Name Default Values

402 Pulse output:
Channel 2 (transistor
types only)

Unused  Pulse output (Y4, Y5)

 Pulse output (Y4, Y5), Home input (X6)

 Pulse output (Y4, Y5), Home input (X6), Position control trigger
input (X2)

 PWM output (Y4)

402 Pulse output:
Channel 3 (transistor
types only)

Unused  Pulse output (Y6, Y7)

 Pulse output (Y6, Y7), Home input (X7)

 Pulse output (Y6, Y7), Home input (X7), Position control trigger
input (X3)

 PWM output (Y6)

403 Pulse catch input: X0 Disable Disable/Enable

403 Pulse catch input: X1 Disable Disable/Enable

403 Pulse catch input: X2 Disable Disable/Enable

403 Pulse catch input: X3 Disable Disable/Enable

403 Pulse catch input: X4 Disable Disable/Enable

403 Pulse catch input: X5 Disable Disable/Enable

403 Pulse catch input: X6 Disable Disable/Enable

403 Pulse catch input: X7 Disable Disable/Enable

404/
405

Interrupt input:

X0Interrupt 0

Unused Rising edge/Falling edge/Rising and falling edge

404/
405

Interrupt input:

X1Interrupt 1

Unused Rising edge/Falling edge/Rising and falling edge

404/
405

Interrupt input:

X2Interrupt 2

Unused Rising edge/Falling edge/Rising and falling edge

404/
405

Interrupt input:

X3Interrupt 3

Unused Rising edge/Falling edge/Rising and falling edge

404/
405

Interrupt input:

X4Interrupt 4

Unused Rising edge/Falling edge/Rising and falling edge

404/
405

Interrupt input:

X5Interrupt 5

Unused Rising edge/Falling edge/Rising and falling edge

404/
405

Interrupt input:

X6Interrupt 6

Unused Rising edge/Falling edge/Rising and falling edge

404/
405

Interrupt input:

X7Interrupt 7

Unused Rising edge/Falling edge/Rising and falling edge

 If the same input has been set as high-speed counter input, pulse catch
input or interrupt input, the following order of precedence is effective:
High-speed counter  Pulse catch  Interrupt.

If reset input settings overlap for channel 0 and channel 1, the channel 1
setting takes precedence. If reset input settings overlap for channel 2 and
channel 3, the channel 3 setting takes precedence.

The input modes two-phase, incremental/decremental, or
incremental/decremental control require a second channel. If channel 0, 2,
or channel 4 has been set to one of these modes, the settings for channel 1,
3, and 5, respectively, will be invalid.

The settings for pulse catch inputs and interrupt inputs can only be
specified in the system registers.

Appendix Programming Information

1292

Transistor types (C16 and higher)

 CPU outputs which have been specified as pulse output or PWM output
cannot be used as normal outputs.

Input numbers X4 to X7 can be used as home input of pulse output
channels 0 to 3. When using the home return function, always set the home
input. In this case, X4 to X7 cannot be used as high-speed counter inputs.

The output numbers for the deviation counter clear signal, which can be
used with the home return function, are fixed for each channel.
For C16: Channel 0 = Y6, channel 1 = Y7
For C32/T32/F32: Channel 0 = Y8, channel 1 = Y9, channel 2 = YA, channel 3
= YB
If used for the deviation counter clear signal, these outputs are not available
as pulse outputs.

Time Constants

No. Name Default Values

430 Time constant of input X0

430 Time constant of input X1

430 Time constant of input X2

430 Time constant of input X3

431 Time constant of input X4

431 Time constant of input X5

431 Time constant of input X6

431 Time constant of input X7

4321) Time constant of input X8

4321) Time constant of input X9

4321) Time constant of input XA

4321) Time constant of input XB

4331) Time constant of input XC

4331) Time constant of input XD

4331) Time constant of input XE

4331) Time constant of input XF

1.0ms 0.1ms

0.5ms

1.0ms

2.0ms

4.0ms

8.0ms

16.0ms

32.0ms

64.0ms

1) 32k types only

TOOL Port

No. Name Default Values

412 TOOL port - communication mode MEWTOCOL-COM
Slave

MEWTOCOL-COM
Slave/Program
controlled

410 TOOL port -station number 1 1–99

415 TOOL port - baud rate 115200 baud 115200/57600/38400/
19200/9600/4800/240
0 baud

413 TOOL port - sending data length 8 bits 7 bits/8 bits

 Appendix Programming Information

1293

No. Name Default Values

413 TOOL port -sending parity check With-Odd None/With-Odd/With-
Even

413 TOOL port - sending stop bit 1 bit 1 bit/2 bits

413 TOOL port - sending start code No-STX No-STX/STX

413 TOOL port - sending end code/reception done condition CR CR/CR+LF/ETX/Non
e

420 TOOL port- -receive buffer starting address 0 0–12312 (16k type)

0–32762 (32k type)

421 TOOL port - receive buffer capacity 0 0-2048

412 TOOL port - modem connection Disable Disable/Enable

COM Port

No. Name Default Values

412 COM port 1 - communication mode MEWTOCOL-COM
Master/Slave

MEWTOCOL-COM
Master/Slave/Progra
m controlled/PLC
Link/Modbus RTU
Master/Slave

410 COM port 1 -station number 1 1–99

415 COM port 1 - baud rate1) 9600 baud 115200/57600/38400/
19200/9600/4800/240
0 baud

413 COM port 1 - sending data length 8 bits 7 bits/8 bits

413 COM port 1 -sending parity check1) With-Odd None/With-Odd/With-
Even

413 COM port 1 - sending stop bit 1 bit 1 bit/2 bits

413 COM port 1 - sending start code1) No-STX No-STX/STX

413 COM port 1 - sending end code/reception done

condition1)

CR CR/CR+LF/ETX/Non
e

416 COM port 1- -receive buffer starting address 0 0–12312 (16k type)

0–32762 (32k type)

417 COM port 1 - receive buffer capacity 0 0-2048

412 COM port 1 - modem connection Disable Disable/Enable

1) For PLC Link, the communication format and baud rate settings are fixed:
Data length: 8 bits
Parity: Odd
Stop bit: 1 bit
End code: CR
Start code: No STX
Other system register settings will be ignored.

Appendix Programming Information

1294

40.8.5 System registers for FP0

Memory size

No. Name Default Values

0 Sequence program area size 3/5/10 kwords1) Fixed

1) Depending on PLC type (2.7k, 5k, or 10k type)

Hold on/off

No
.

Name Default Values

5 Counter start address 100 0–144

6 Timer/Counter hold area start address 140/128/1001) Fixed/0–1442)

7 Internal relay hold area start address (in word units) 61/55/481) Fixed/0–632)

8 Data register hold area start address 1652/6112/122891) Fixed/0–163822)

14 Step ladder hold/non-hold Non-hold Fixed/Hold/Non-hold2)

 These settings are effective if the optional backup battery is installed

 If no backup battery is used, do not change the default settings. Otherwise proper functioning of hold/non-hold
values cannot be guaranteed.

1) Depending on PLC type (2,7k type/5k type/10k type)

2) Depending on PLC type (Fixed value: 2,7k, 5k types, variable values: 10k type)

Act on Error

No. Name Default Values

20 Duplicate output Enable Fixed

23 I/O verification error Stop Stop/Continue

24 Watchdog timer time-out by
operation jam

Stop Fixed

26 Operation error Stop Stop/Continue

27 Remote I/O slave link error Stop Stop/Continue

Time-Out

No. Name Default Values

30 Watchdog timer time-out 210.0ms Fixed

31 Multi-frame communication time 6500.0ms 10.0–81900.0ms

34 Constant scan time 0.0ms 0.0–160.0ms

0.0: Normal scan (non-constant)

 Appendix Programming Information

1295

High-Speed Counter, Pulse-Catch Input, Interrupt Input

No. Name Default Values

400 High-speed counter:
Channel 0

Unused  Two-phase input (X0, X1)

 Two-phase input (X0, X1), Reset input (X2)

 Incremental input (X0)

 Incremental input (X0), Reset input (X2)

 Decremental input (X0)

 Decremental input (X0), Reset input (X2)

 Incremental input (X0), Decremental input (X1)

 Incremental input (X0), Decremental input (X1), Reset input (X2)

 Counter input (X0), Incremental/decremental control input (X1)

 Counter input (X0), Incremental/decremental control input (X1),
Reset input (X2)

400 High-speed counter:
Channel 1

Unused  Incremental input (X1)

 Incremental input (X1), Reset input (X2)

 Decremental input (X1)

 Decremental input (X1), Reset input (X2)

401 High-speed counter:
Channel 2

Unused  Two-phase input (X3, X4)

 Two-phase input (X3, X4), Reset input (X5)

 Incremental input (X3)

 Incremental input (X3), Reset input (X5)

 Decremental input (X3)

 Decremental input (X3), Reset input (X5)

 Incremental input (X3), Decremental input (X4)

 Incremental input (X3), Decremental input (X4), Reset input (X5)

 Counter input (X3), Incremental/decremental control input (X4)

 Counter input (X3), Incremental/decremental control input (X4),
Reset input (X5)

401 High-speed counter:
Channel 3

Unused  Incremental input (X4)

 Incremental input (X4), Reset input (X5)

 Decremental input (X4)

 Decremental input (X4), Reset input (X5)

402 Pulse catch input: X0 Disable Disable/Enable

402 Pulse catch input: X1 Disable Disable/Enable

402 Pulse catch input: X2 Disable Disable/Enable

402 Pulse catch input: X3 Disable Disable/Enable

402 Pulse catch input: X4 Disable Disable/Enable

402 Pulse catch input: X5 Disable Disable/Enable

403 Interrupt input:

X0Interrupt 0

Unused Rising edge/Falling edge

403 Interrupt input:

X1Interrupt 1

Unused Rising edge/Falling edge

403 Interrupt input:

X2Interrupt 2

Unused Rising edge/Falling edge

403 Interrupt input:

X3Interrupt 3

Unused Rising edge/Falling edge

403 Interrupt input:

X4Interrupt 4

Unused Rising edge/Falling edge

403 Interrupt input:

X5Interrupt 5

Unused Rising edge/Falling edge

Appendix Programming Information

1296

 If the same input has been set as high-speed counter input, pulse catch
input or interrupt input, the following order of precedence is effective:
High-speed counter  Pulse catch  Interrupt.

If reset input settings overlap for channel 0 and channel 1, the channel 1
setting takes precedence. If reset input settings overlap for channel 2 and
channel 3, the channel 3 setting takes precedence.

The input modes two-phase, incremental/decremental, or
incremental/decremental control require a second channel. If channel 0 or
channel 2 have been set to one of these modes, the settings for channel 1
and channel 3, respectively, will be invalid.

The settings for pulse catch inputs and interrupt inputs can only be
specified in the system registers.

TOOL Port

No
.

Name Default Values

410 TOOL port - station number 1 1–32

411 TOOL port - modem connection Disable Disable/Enable

411 TOOL port - sending data
length

8 bits 7 bits/8 bits

414 TOOL port - baud rate 19200 baud 19200/9600 baud

COM Port

No. Name Default Values

412 COM port 1 - communication mode MEWTOCOL-CO
M Slave

MEWTOCOL-COM
Slave/Program controlled

415 COM port 1 -station number 1 1–32

414 COM port 1 - baud rate 9600 baud 19200/9600/4800/2400/12
00/600/300 baud

413 COM port 1 - sending data length 8 bits 7 bits/8 bits

413 COM port 1 -sending parity check With-Odd None/With-Odd/With-Even

413 COM port 1 - sending stop bit 1 bit 1 bit/2 bits

413 COM port 1 - sending start code No-STX No-STX/STX

413 COM port 1 - sending end code/reception done condition CR CR/CR+LF/ETX/None

417 COM port 1- -receive buffer starting address 0 0–1657/6141/163811)

418 COM port 1 - receive buffer capacity 0 0–1658/6142/61441)

416 COM port 1 - modem connection Disable Disable/Enable

1) Depending on PLC type (2.7k/5k/10k type)

 Appendix Programming Information

1297

40.8.6 System registers for FP-e

Memory size

No. Name Default Values

0 Sequence program area size 3/5/10 kwords1) Fixed

1) Depending on PLC type (2.7k, 5k, or 10k type)

Hold on/off

No
.

Name Default Values

5 Counter start address 100 0–144

6 Timer/Counter hold area start address 140 0–144

7 Internal relay hold area start address (in word units) 61 0–63

8 Data register hold area start address 1652 0–1658

14 Step ladder hold/non-hold Non-hold Hold/Non-hold

 These settings are effective if the optional backup battery is installed

 If no backup battery is used, do not change the default settings. Otherwise proper functioning of hold/non-hold
values cannot be guaranteed.

Act on Error

No. Name Default Values

4 Battery error indication Disable Disable: When a battery error occurs, a self-diagnostic error
is not issued and the ERROR LED will not flash.

Enable: When a battery error occurs, a self-diagnostic error
is issued and the ERROR will LED flash.

20 Duplicate output Enable Fixed

24 Watchdog timer time-out by
operation jam

Stop Fixed

26 Operation error Stop Stop/Continue

Time-Out

No. Name Default Values

30 Watchdog timer time-out 210.0ms Fixed

31 Multi-frame communication time 6500.0ms 10.0–81900.0ms

34 Constant scan time 0.0ms 0.0–160.0ms

0.0: Normal scan (non-constant)

Appendix Programming Information

1298

High-Speed Counter, Pulse-Catch Input, Interrupt Input

No. Name Default Values

400 High-speed counter:
Channel 0

Unused  Two-phase input (X0, X1)

 Two-phase input (X0, X1), Reset input (X2)

 Incremental input (X0)

 Incremental input (X0), Reset input (X2)

 Decremental input (X0)

 Decremental input (X0), Reset input (X2)

 Incremental input (X0), Decremental input (X1)

 Incremental input (X0), Decremental input (X1), Reset input (X2)

 Counter input (X0), Incremental/decremental control input (X1)

 Counter input (X0), Incremental/decremental control input (X1),
Reset input (X2)

400 High-speed counter:
Channel 1

Unused  Incremental input (X1)

 Incremental input (X1), Reset input (X2)

 Decremental input (X1)

 Decremental input (X1), Reset input (X2)

401 High-speed counter:
Channel 2

Unused  Two-phase input (X3, X4)

 Two-phase input (X3, X4), Reset input (X5)

 Incremental input (X3)

 Incremental input (X3), Reset input (X5)

 Decremental input (X3)

 Decremental input (X3), Reset input (X5)

 Incremental input (X3), Decremental input (X4)

 Incremental input (X3), Decremental input (X4), Reset input (X5)

 Counter input (X3), Incremental/decremental control input (X4)

 Counter input (X3), Incremental/decremental control input (X4),
Reset input X5)

401 High-speed counter:
Channel 3

Unused  Incremental input (X4)

 Incremental input (X4), Reset input (X5)

 Decremental input (X4)

 Decremental input (X4), Reset input (X5)

402 Pulse catch input: X0 Disable Disable/Enable

402 Pulse catch input: X1 Disable Disable/Enable

402 Pulse catch input: X2 Disable Disable/Enable

402 Pulse catch input: X3 Disable Disable/Enable

402 Pulse catch input: X4 Disable Disable/Enable

402 Pulse catch input: X5 Disable Disable/Enable

403 Interrupt input:

X0Interrupt 0

Unused Rising edge/Falling edge

403 Interrupt input:

X1Interrupt 1

Unused Rising edge/Falling edge

403 Interrupt input:

X2Interrupt 2

Unused Rising edge/Falling edge

403 Interrupt input:

X3Interrupt 3

Unused Rising edge/Falling edge

403 Interrupt input:

X4Interrupt 4

Unused Rising edge/Falling edge

403 Interrupt input:

X5Interrupt 5

Unused Rising edge/Falling edge

 Appendix Programming Information

1299

No. Name Default Values

409 Number of
temperature input
values for averaging
process

0 0–50

 If the same input has been set as high-speed counter input, pulse catch
input or interrupt input, the following order of precedence is effective:
High-speed counter  Pulse catch  Interrupt.

If reset input settings overlap for channel 0 and channel 1, the channel 1
setting takes precedence. If reset input settings overlap for channel 2 and
channel 3, the channel 3 setting takes precedence.

The input modes two-phase, incremental/decremental, or
incremental/decremental control require a second channel. If channel 0 or
channel 2 have been set to one of these modes, the settings for channel 1
and channel 3, respectively, will be invalid.

The settings for pulse catch inputs and interrupt inputs can only be
specified in the system registers.

TOOL Port

No
.

Name Default Values

410 TOOL port - station number 1 1–32

411 TOOL port - modem connection Disable Disable/Enable

411 TOOL port - sending data
length

8 bits 7 bits/8 bits

414 TOOL port - baud rate 19200 baud 19200/9600 baud

COM Port

No. Name Default Values

412 COM port 1 - communication mode MEWTOCOL-CO
M Slave

MEWTOCOL-COM
Slave/Program
controlled/Modbus RTU
Slave

415 COM port 1 -station number 1 1–99

414 COM port 1 - baud rate 9600 baud 19200/9600/4800/2400/12
00/600/300 baud

413 COM port 1 - sending data length 8 bits 7 bits/8 bits

413 COM port 1 -sending parity check With-Odd None/With-Odd/With-Even

413 COM port 1 - sending stop bit 1 bit 1 bit/2 bits

413 COM port 1 - sending start code No-STX No-STX/STX

413 COM port 1 - sending end code/reception done condition CR CR/CR+LF/ETX/None

417 COM port 1- -receive buffer starting address 0 0–1657

418 COM port 1 - receive buffer capacity 0 0-1658

416 COM port 1 - modem connection Disable Disable/Enable

Appendix Programming Information

1300

40.8.7 System registers for FP2/FP2SH/FP10SH

Memory size (FP2 only)

No. Name Default Values

0 Sequence program area size 12 kwords 2–16/2–32 1)

1 Machine language program area size 0 kwords 0–14/0–30 1)

2 Configuration area size 0 kwords 0–14/0–30 1)

3 File Register 4/20 kwords1) 0–14/0–30 1)

1) Depending on PLC type (16k/32k type)

Hold On/Off

FP2

No
.

Name Default Values

51) Counter start address 1000 0–1024

61) Timer/Counter hold area start address 1000 0–1024

71) Internal relay hold area start address (in word units) 200 0–253

81) Data register hold area start address 4500 0–5998

9 File register hold area start address 3072/15360 2) 0–4093/0–20477 2)

10 Link relay hold area start address for PLC Link 0 (in word units) 64 0–64

11 Link relay hold area start address for PLC Link 1 (in word units) 128 64–128

12 Link register hold area start address for PLC Link 0 128 0–128

13 Link register hold area start address for PLC Link 1 256 128–256

141

)

Step ladder hold/non-hold Non-hold Hold/Non-hold

1)  These settings are effective if the optional backup battery is installed

 If no backup battery is used, do not change the default settings. Otherwise proper functioning of
hold/non-hold values cannot be guaranteed.

2) Depending on PLC type (16k/32k type)

FP2SH/FP10SH

No
.

Name Default Values

5 Counter start address 3000 0–3072

6 Timer/Counter hold area start address 3000 0–3072

7 Internal relay hold area start address (in word units) 500 0–887

8 Data register hold area start address 7680 30/60k: 0–10238

120k: 0–10236

9 File register hold area start address 24573 0–32765

10 Link relay hold area start address for PLC Link 0 (in word units) 64 0–64

11 Link relay hold area start address for PLC Link 1 (in word units) 128 64–128

16 Link relay hold area start address for MEWNET-H 640 128–640

12 Link register hold area start address for PLC Link 0 128 0–128

13 Link register hold area start address for PLC Link 1 256 128–256

17 Link register hold area start address for MEWNET-H 256 256–8448

 Appendix Programming Information

1301

No
.

Name Default Values

18 Index register hold area start address 0 0–14

14 Step ladder hold/non-hold Non-hold Hold/Non-hold

151

)

File register bank 1 hold area start address 0 0–32765

191

)

File register bank 2 hold area start address 0 0–32765

1) For FP2SH only

Act on Error

No. Name Default Values

4 Battery error indication Enable Disable: When a battery error occurs, a self-diagnostic error
is not issued and the ERROR LED will not flash.

Enable: When a battery error occurs, a self-diagnostic error
is issued and the ERROR will LED flash.

4 Internal relay (R)

4 Link relay (L)

4 Timer/counter (T, C, SV, EV)

4 Data register (DT)

4 Link register (LD)

4 File register (FL)

4 Index register (I)

41) Error alarm relay (E)

Clear Clear/Don't clear

4 DF-, P-function leading/falling
edge detection

Holds result Holds result/disregards result

41) Timer instruction operation Synchronou
s

Synchronous/Asynchronous

4 Index modifier check On On/Off

20 Duplicate output Enable Fixed

21 Output unit fuse blow

22 Intelligent unit error

23 I/O verification error

241) Watchdog timer time-out by
operation jam

26 Operation error

27 Remote I/O slave link error

28 I/O error in the remote I/O slave
station

Stop Stop/Continue

1) FP2SH/FP10SH only

Time-Out

No. Name Default Values

291) Operation time for the
peripheral tasks

240.0s 0.0–52428.0s

Appendix Programming Information

1302

No. Name Default Values

30 Watchdog timer time-out FP2: 627.5ms

FP2SH/FP10SH: 100.0ms

FP2: Fixed

FP2SH/FP10SH: 0.4–640.0ms

31 Multi-frame
communication time

FP2/FP2SH: 10000ms

FP10SH: 6500.0ms

FP2: 10.0–81900.0ms

FP2SH/FP10SH: 10.0–81917.5ms

32 Timeout value for the
communication functions
based on F145, F146,
F152, F153

10000.0ms FP2: 10.0–81900.0ms

FP2SH/FP10SH: 10.0–81917.5ms

33 Effective time setting for
monitoring

FP2: 10000.0s

FP2SH/FP10SH: 163837.5s

FP2: 2000–52428.0s

FP2SH/FP10SH: 2500.0–163837.5s

34 Constant scan time 0.0ms FP2: 0.0–620.0ms

FP2SH/FP10SH: 0.0–640.0ms

0.0: Normal scan (non-constant)

1) FP2SH/FP10SH only

MEWNET-F

No. Name Default Values

25 PLC start mode when MEWNET-F slave stations
connection timeout occurs

Stop Stop/Continue

35 Wait mode for checking connection Wait Wait/Don't wait

35 MEWNET-F slave stations connection timeout 0s 0–255s

36 Remote I/O update method Synchronous Synchronous/Asynchronous

PLC Link

No. Name Default Values

46 PLC Link 0 and 1 allocation setting Normal Normal/Reverse

471) PLC link 0 - Highest station number in network 16 1–16

40 PLC link 0 - Link relays - Send/receive area - Number of words
shared by all linked PLCs

0 0–64 words

42 PLC link 0 - Link relays - Send area - Start sending from this word
address

0 0–63

43 PLC link 0 - Link relays - Send area - Number of words to send 0 0–64 words

41 PLC link 0 - Link registers - Send/receive area - Number of words
shared by all linked PLCs

0 0–128 words

44 PLC link 0 - Link registers - Send area - Start sending from this
word address

0 0–127

45 PLC link 0 - Link registers - Send area - Number of words to send 0 0–127 words

571) PLC link 1 - Highest station number in network 16 1–16

50 PLC link 1 - Link relays - Send/receive area - Number of words
shared by all linked PLCs

0 0–64 words

52 PLC link 1 - Link relays - Send area - Start sending from this word
address

64 64–127

53 PLC link 1 - Link relays - Send area - Number of words to send 0 0–64 words

51 PLC link 1 - Link registers - Send/receive area - Number of words
shared by all linked PLCs

0 0–128 words

54 PLC link 1 - Link registers - Send area - Start sending from this
word address

128 128–255

 Appendix Programming Information

1303

No. Name Default Values

55 PLC link 1 - Link registers - Send area - Number of words to send 0 0–127 words

1) Not for FP10SH

PROFIBUS/MEWNET-H

No. Name Default Values

49 PROFIBUS, MEWNET-H link access method/scan 0 0–65535 (256 bytes)

TOOL Port

FP2/FP2SH

No
.

Name Default Values

410 TOOL port - station number 1 1–32

411 TOOL port - modem connection Disable Disable/Enable

411 TOOL port - sending data
length

8 bits 7 bits/8 bits

414 TOOL port - baud rate 115200 baud 115200/57600/38400/19200/9600/4800/2400/1200 baud

FP10SH

No
.

Name Default Values

414 TOOL port - baud rate 115200 baud 115200/57600/38400/19200/9600/4800/2400/1200 baud

COM Port

FP2/FP2SH

No. Name Default Values

412 COM port 1 - communication mode MEWTOCOL-COM
Slave

MEWTOCOL-COM Slave/Program
controlled

415 COM port 1 -station number 1 1–32

414 COM port 1 - baud rate FP2: 19200 baud

FP2SH: 9600 baud

115200/57600/38400/19200/9600/4800
/2400/1200 baud

413 COM port 1 - sending data length 8 bits 7 bits/8 bits

413 COM port 1 -sending parity check With-Odd None/With-Odd/With-Even

413 COM port 1 - sending stop bit 1 bit 1 bit/2 bits

413 COM port 1 - sending start code No-STX No-STX/STX

413 COM port 1 - sending end
code/reception done condition

CR CR/CR+LF/ETX/None

417 COM port 1- -receive buffer starting
address

0 FP2: 0–5997

FP2SH, 60k: 0–10237

FP2SH, 120k: 0–10235

418 COM port 1 - receive buffer capacity 0 FP2: 0–2048

FP2SH: 0–1024

Appendix Programming Information

1304

No. Name Default Values

416 COM port 1 - modem connection Disable Disable/Enable

FP10SH

No. Name Default Values

412 COM port 1 - communication mode MEWTOCOL-COM Slave MEWTOCOL-COM
Slave/Program controlled

417 COM port 1- -receive buffer starting
address

0 30/60k: 0–10237

120k: 0–10235

418 COM port 1 - receive buffer capacity 0 0-1024

Multi-CPU Setting (FP10SH only)

No. Name Default Values

420 I/O divided data 0 16#0 16#0–16#FFFF

421 I/O divided data 1 16#0 16#0–16#FFFF

422 I/O shared data 0 16#0 16#0–16#FFFF

423 I/O shared data 1 16#0 16#0–16#FFFF

424 WR CPU1 sending capacity 0 0–98 words

425 WR CPU1 send starting No. 0 0–97

426 WR CPU2 sending capacity 0 0–98 words

427 WR CPU2 send starting No. 0 0–97

428 WL CPU1 sending capacity 0 0–128 words

429 WL CPU1 send starting No. 0 0–127

430 WL CPU2 sending capacity 0 0–128 words

431 WL CPU2 send starting No. 0 0–127

432 DT CPU1 sending capacity 0 0–1024 words

433 DT CPU1 send starting No. 0 0–2047

434 DT CPU2 sending capacity 0 0–1024 words

435 DT CPU2 send starting No. 0 0–2047

436 LD CPU1 sending capacity 0 0–256 words

437 LD CPU1 send starting No. 0 0–255

438 LD CPU2 sending capacity 0 0–256 words

439 LD CPU2 send starting No. 0 0–255

440 FL CPU1 sending capacity 0 0–1024 words

441 FL CPU1 send starting No. 0 0–8818

442 FL CPU2 sending capacity 0 0–1024 words

443 FL CPU2 send starting No. 0 0–8818

I/O Access Control (FP2SH/FP10SH only)

No
.

Name Default Values

444 I/O access control Standard Standard/Long/Selectable

445 Register value for slots 0 and 1 16#1010 16#0–16#FFFF

446 Register value for slots 2 and 3 16#1010 16#0–16#FFFF

447 Register value for slots 4 and 5 16#1010 16#0–16#FFFF

448 Register value for slots 6 and 7 16#1010 16#0–16#FFFF

449 Register value for expanded slots 16#0210 16#0–16#FFFF

 Appendix Programming Information

1305

Appendix Programming Information

1306

40.9 Error codes

40.9.1 Table of syntax check error

In FPWIN Pro, syntax errors are detected by the compiler and are therefore not critical.

Error
code

Name Operation
status

Description and steps to take

E1 Syntax error Stops A program with a syntax error has been written.

Change to PROG. mode and correct the error.

E2
(* Note)

Duplicated output
error

Stops Two or more OT(Out) instructions and KP(Keep) instructions
are programmed using the same relay.

Change to PROG. mode and correct the program so that one
relay is not used for two or more OT instructions and KP
instructions. Or, set the duplicated output to “enable (K1)” in
system register 20.

E3 Not paired error Stops For instructions which must be used in a pair such as jump (JP
and LBL), one instruction is either missing or in an incorrect
position.

Change to PROG. mode and enter the two instructions which
must be used in a pair in the correct positions.

E4 Parameter
mismatch error

Stops An instruction has been written which does not agree with
system register settings. For example, the number setting in a
program does not agree with the timer/counter range setting.

Change to PROG. mode, check the system register settings,
and change so that the settings and the instruction agree.

E5
(* Note)

Program area error Stops An instruction which must be written to a specific area (main
program area or subprogram area) has been written to a
different area (for example, a subroutine SUB to RET is placed
before an ED instruction).

Change to PROG. mode and enter the instruction into the
correct area.

E6 Compile memory
full error
(Available PLC:
FP/FP-X/
FP2SH/FP10SH)

Stops The program stored in the PLC is too large to compile in the
program memory.

Change to PROG. mode and reduce the total number of steps
for the program.

E7 High-level
instruction type
error

(Available PLC:
FP/FP-X/
FP2/FP2SH/FP3/
FP10SH)

Stops In the program, high-level instructions, which execute in every
scan and at the rising edge of the trigger, are programmed to
be triggered by one contact [e.g., F0 (MV) and P0 (PMV) are
programmed using the same trigger continuously].

Correct the program so that the high-level instructions
executed in every scan and only at the rising edge are
triggered separately.

E8 High-level
instruction operand
error

Stops There is an incorrect operand in an instruction which requires a
specific combination operands (for example, the operands
must all be of a certain type).

Enter the correct combination of operands.

E9 No program error
(Available PLC:
FP2SH/FP10SH)

Stops Program may be damaged.

Try to send the program again.

E10 Rewrite during
RUN syntax error

Continues When inputting with the programming tool software, a deletion,
addition or change of order of an instruction (ED, LBL, SUB,
RET, INT, IRET, SSTP, and STPE) that cannot perform a
rewrite during RUN is being attempted. Nothing is written to the
CPU.

 Appendix Programming Information

1307

 � NOTE

This error is also detected if you attempt to execute a rewrite containing a syntax error during
RUN. In this case, nothing will be written to the CPU and operation will continue.

40.9.2 Table of self-Diagnostic errors

Not all errors apply to all PLCs.

E20 - E39

Error
code

Name Operation
status

Description and steps to take

E20 CPU error Stops Probably a hardware abnormality.

Please contact your dealer.

E21
E22
E23
E24
E25

RAM error Stops Probably an abnormality in the internal RAM.

Please contact your dealer.

FP2, FP2SH, FP3, FP10SH:

ROM is not installed.
There may be a problem with the installed ROM.

 ROM contents are damaged

 Program size stored on the ROM is larger than the
capacity of the ROM

Check the contents of the ROM

FP-X:

If the master memory cassette is mounted, the master memor
cassette may be damaged. Remove the master memory, and
check whether the ERROR turns off.

If the ERROR turned off, rewrite the master memory as its
contents are damaged, and use it again.

If the ERROR does not turn off, please contact your dealer.

FP0, FP-e, FP, FP1 C14, C16:

Probably an abnormality in the built-in ROM.

Please contact your dealer.

E26 User’s ROM error Stops

All FP-Ms and FP1 C24, C40, C56, and C72:

Probably an abnormality in the memory unit or master memory
unit.

Program the memory unit or master memory unit again and try
to operate. If the same error is detected, try to operate with
another memory unit or master memory unit.

E27 Intelligent unit
installation error

Stops Intelligent units installed exceed the limitations (i.e. 4 or more
link units).

Turn off the power and re-configure intelligent units referring to
the hardware manual.

E28 System register
error

Stops Probably an abnormality in the system register.

Check the system register setting or initialize the system
registers.

E29 Configuration
parameter error

Stops A parameter error was detected in the MEWNET-W2
configuration area. Set a correct parameter.

E30 Interrupt error 0 Stops Probably a hardware abnormality.

Please contact your dealer.

Appendix Programming Information

1308

Error
code

Name Operation
status

Description and steps to take

E31 Interrupt error 1 Stops An interrupt occurred without an interrupt request.
A hardware problem or error due to noise is possible.

Turn off the power and check the noise conditions.

An interrupt occurred without an interrupt request.
A hardware problem or error due to noise is possible.

Turn off the power and check the noise conditions.

E32 Interrupt error 2 Stops

There is no interrupt program for an interrupt which occurred.

Check the number of the interrupt program and change it to
agree with the interrupt request.

E33 Multi-CPU data
unmatch error

CPU2 stops This error occurs when a FP3/FP10SH is used as CPU2 for a
multi-CPU system.

Please contact your dealer.

E34 I/O status error Stops An abnormal unit is installed.

Check the contents of special data register DT9036/DT90036
and locate the abnormal unit. Then turn off the power and
replace the unit with a new one.

E35 MEWNET-F
(remote I/O) slave
illegal unit error

Stops A unit, which cannot be installed on the slave station of the
MEWNET-F link system, is installed on the slave station.

Remove the illegal unit from the slave station.

E36 MEWNET-F
limitation error

Stops The number of slots or I/O points used for MEWNET-F exceeds
the limitation.

Re-configure the system so that the number of slots and I/O
points is within the specified range.

E37 MEWNET-F I/O
mapping error

Stops I/O overlap or I/O setting that is over the range is detected in
the allocated I/O and MEWNET-F I/O map.

Re-configure the I/O map correctly.

E38 MEWNET-F slave
I/O mapping error

Stops I/O mapping for remote I/O terminal boards, remote I/O terminal
units and I/O link unit is not correct.

Re-configure the I/O map for slave stations according to the I/O
points of the slave stations.

E39 IC memory card
read error

Stops When reading in the program from the IC memory card (due to
automatic reading because of the dip switch 3 setting or
program switching due to F14 (PGRD) instruction):

 IC memory card is not installed.

 There is no program file or it is damaged.

 Writing is disabled.

 There is an abnormality in the AUTOEXEC.SPG file.

 Program size stored on the card is larger than the
capacity of the CPU.

Install an IC memory card that has the program properly
recorded and execute the read once again.

 Appendix Programming Information

1309

E40 and above

Error
code

Name Operation
status

Description and steps to take

E40 I/O error Selectable With FP3/FP10SH, communication error in the MEWNET-TR
system has occurred.

For all other PLCs an abnormality in an I/O unit has been
detected.

Check the contents of special data registers DT9002 and
DT9003/DT90002 and DT90003 and the erroneous
MEWNET-TR master unit or abnormal I/O unit (also expansion
unit or application cassette). Then check the unit.

Selection of operation status using system register 21:

 to continue operation, set K1 (CONT)

 to stop operation, set K0 (STOP)

E41 Intelligent unit error Selectable An abnormality in an intelligent unit.

Check the contents of special data registers DT9006 and
DT9007/DT90006 and DT90007 and locate the abnormal
intelligent unit. Then check the unit referring to its manual.

Selection of operation status using system register 22:

 to continue operation, set K1 (CONT)

 to stop operation, set K0 (STOP)

E42 I/O unit verify error Selectable I/O unit wiring condition has changed compared to that at time
of power-up.

Check the contents of special data registers DT9010 and
DT9011/DT90010 and DT90011 and locate the erroneous unit.

Then check the unit and correct the wiring.

Selection of operation status using system register 23:

 to continue operation, set K1 (CONT)

 to stop operation, set K0 (STOP)

E43 System watching
dog timer error

Selectable Scan time required for program execution exceeds the setting
of the system watchdog timer.

Check the program and modify it so that FP2SH/FP10SH can
execute a scan within the specified time.

Selection of operation status using system register 24:

 to continue operation, set K1 (CONT)

 to stop operation, set K0 (STOP)

E44 Slave station
connecting time
error for
MEWNET-F
system

Selectable The time required for slave station connection exceeds the
setting of the system register 35.

Selection of operation status using system register 25:

 to continue operation, set K1 (CONT)

 to stop operation, set K0 (STOP)

E45 Operation error Selectable Operation became impossible when a high-level instruction was
executed.

Check the contents of special data registers DT9017 and
DT9018/DT90017 and DT90018 to find the program address
where the operation error occurred. Then correct the program.

Refer to the explanation of operation error and the instruction.

Selection of operation status using system register 26:

 to continue operation, set K1 (CONT)

 to stop operation, set K0 (STOP)

Appendix Programming Information

1310

Error
code

Name Operation
status

Description and steps to take

E46 Remote I/O
communication
error

Selectable MEWNET-F communication error:

A communication abnormally was caused by a transmission
cable or during the power-down of a slave station.

Check the contents of special data registers DT9131 to
DT9137/DT90131 to DT90137 and locate the abnormal slave
station and recover the slave condition.

Selection of operation status using system register 27:

 to continue operation, set K1 (CONT)

 to stop operation, set K0 (STOP)

S-Link communication error (with FP0-SL1 unit only):

When one of the S-LINK errors (ERR1, 3 or 4) has been
deteced,error code E46 (remote I/O (S-LINK) communication
error) is stored.

Selection of operation status using system register 27:

 to continue operation, set K1 (CONT)

 to stop operation, set K0 (STOP)

E47 MEWNET-F
attribute error

Selectable MEWNET-F communication error

A communication abnormally was caused by a transmission
cable or during the power-down of a slave station.

Check the contents of special data registers DT9131 to
DT9137/DT90131 to DT90137 and locate the abnormal slave
station and recover the communication condition.

Selection of operation status using system register27:

 to continue operation,set K1

 to stop operation, set K0

E50 Backup battery
error

Continues The voltage of the backup battery lowered or the backup battery
of CPU is not installed.

Check the installation of the backup battery and then replace
battery if necessary.

By setting the system register 4 in K0 (NO), you can disregard
this error. However, the BATT. LED turns on.

E51 MEWNET-F
terminal station
error

Continues Terminal station settings were not properly performed.Check
stations at both ends of the communication path, and set them
in the terminal station using the dip switches.

E52 MEWNET-F I/O
update
synchronous error

Continues Set the INITIALIZE/TEST selector to the INITIALIZE position
while keeping the mode selector in the RUN position. If the
same error occurs after this, please contact your dealer.

E53 Multi-CPU
registration error

Continues Abnormality was detected when the multi-CPU system was
used. Please contact your dealer.

E54 IC memory card
backup battery
error

Continues The voltage of the backup battery for the IC memory card is
getting low. The BATT. LED does not turn on.

Charge or replace the backup battery of IC memory card. (The
contents of the IC memory card cannot be guaranteed.)

E55 IC memory card
backup battery
error

Continues The voltage of the backup battery for IC memory card is getting
low. The BATT. LED does not turn on.

Charge or replace the backup battery of IC memory card. (The
contents of the IC memory card cannot be guaranteed.)

E56 Incompatible IC
memory card error

Continues The IC memory card installed is not compatible with
FP2SH/FP10SH. Replace the IC memory card compatible with
FP2SH/FP10SH.

E57 No unit for the
configuration

Continues MEWNET-W2

The MEWNET-W2 link unit is not installed in the slot specified
using the configuration data.

Either install a unit in the specified slot or change the
parameter.

 Appendix Programming Information

1311

Error
code

Name Operation
status

Description and steps to take

E100
to
E199

Stops

E200
to
E299

Self- diagnostic
error set by
F148 (ERR)/
P148 (PERR)
instruction

Continues

The self-diagnostic error specified by the F148 (ERR)/P148
(PERR) instruction is occurred.

Take steps to clear the error condition according to the
specification you chose.

40.9.3 Table of communication check error

Error
code

Name Operation
status

Description and steps to take

E63 PLC error mode
(Available PLC:
FP2/FP2SH/FP3/
FP10SH)

Stops Transfer was attempted in the RUN mode.

Switch the mode and execute once again.

E64 No ROM/RAM error
(Available PLC:
FP2/FP2SH/FP3/
FP10SH)

Stops An abnormality occurred when loading RAM to ROM/IC
memory card. There may be a problem with the ROM or IC
memory card.

- When loading, the specified contents exceeded the

capacity (256 KB).

- Write error occurs.

- ROM or IC memory card is not installed.

- ROM or IC memory card does not conform to

specifications.

Check the contents of the ROM or IC memory card.

E65 Protect error Stops Transfer was attempted during ROM operation or IC memory
card operation.

Switch the mode and execute once again.

E66 PLC write error
address error
(Available PLC:
FP2/FP2SH/FP3/
FP10SH)

Continues In the programming tool software, program editing is being
attempted by online access, but the program is not in
agreement. (The program disagreement lies in another
block.)Check the program.

E68 Rewrite during RUN
error
(Available PLC:
FP2/FP2SH/FP3/
FP10SH)

Continues When inputting with the programming tool software, editing of
an instruction (ED, SUB, RET, INT, IRET, SSTP, and STPE)
that cannot perform a rewrite during RUN is being attempted.
Nothing is written to the CPU.

Appendix Programming Information

1312

40.10 Error codes

40.10.1 Error Codes E1 to E8

Error
code

Name of
error

Operation
status of
PLC

Description and steps to take

E1
(see note)

Syntax error Stops A program with a syntax error has been written.

Change to PROG mode and correct the error.

E2
(see note)

Duplicated
output error

Stops Two or more operation results are output to the same relay. (This
error also occurs if the same timer/counter number is being
used.)

Change to PROG mode and correct the error.

This error is also detected during online editing. No changes will
be downloaded and operation will continue.

E3 Not paired
error

Stops For instructions which must be used in a pair such as jump (JP
and LBL), one instruction is either missing or in an incorrect
position.

Change to PROG mode and correct the error.

E4
(see note)

Parameter
mismatch error

Stops An instruction has been written which does not agree with system
register settings. For example, the timer/counter number setting
in a program does not agree with the timer/counter range setting.

Change to PROG mode and correct the error.

E5
(see note)

Program area
error

Stops An instruction was written to the wrong program area (main
program area or subprogram area)

Change to PROG mode and correct the error.

This error is also detected during online editing. No changes will
be downloaded and operation will continue.

E6
(see note)

Compile
memory full
error

Stops The program stored in the PLC is too large to compile in the
program memory.

Change to PROG mode and correct the error.

E7
(see note)

High-level
instruction type
error

Stops In the program, high-level F and P instructions are triggered by
the same operation result. (While the execution condition is
TRUE, F instructions are executed in every scan. P instructions
are executed only once, at the leading edge of the execution
condition.)

Correct the program so that the high-level instructions executed
in every scan and at the leading edge are triggered separately.

E8 High-level
instruction
operand
combination
error

Stops There is an incorrect operand in an instruction which requires a
specific combination of operands (for example, the operands
must all be of a certain type).

Change to PROG mode and correct the error.

 � NOTE

In FPWIN Pro, these errors are detected by the compiler. Therefore, they are not critical.

40.10.2 Self-Diagnostic Error Codes

Error
code

Name of error Operation
status of
PLC

Description and steps to take

E26 User's ROM error Stops Probably a hardware problem. Please contact your dealer.

 Appendix Programming Information

1313

Error
code

Name of error Operation
status of
PLC

Description and steps to take

E27 Unit installation error Stops The number of installed units exceeds the limit. Turn off the
power supply and check the restrictions on unit combinations.

E28 System register error Stops Probably an error in the system registers. Check the system
register settings.

E30 Interrupt error 0 Stops Probably a hardware problem. Please contact your dealer.

E31 Interrupt error 1 Stops An interrupt occurred without an interrupt request. A hardware
problem or error due to noise is possible. Turn off the power
and check the noise conditions.

An interrupt occurred without an interrupt request. A hardware
problem or error due to noise is possible. Turn off the power
and check the noise conditions.

E32 Interrupt error 2 Stops

There is no interrupt program for an interrupt which occurred.
Check the number of the interrupt program and change it to
agree with the interrupt request.

E34 I/O status error Stops A faulty unit is installed. Replace the unit with a new one.

E42 I/O unit verify error Selectable The connection condition of an I/O unit has changed compared
to that at the time of power-up. Check the error using
sys_wVerifyErrorUnit_0_15 and locate the faulty I/O unit. Set
the operation status using system register 23 to continue
operation.

E45 Operation error Selectable Operation became impossible when a high-level instruction was
executed. The causes of calculation errors vary depending on
the instruction. Set the operation status using system register
23 to continue operation.

E100–
E199

Stops E100–E
299

Self-diagnosti
c error set by
F148_ERR

E200–
E299

Continues

The self-diagnostic error specified by the F148_ERR (see page
1000) instruction occurred. Take steps to clear the error
condition according to the specification you chose.

40.10.3 MEWTOCOL-COM Error Codes

Error
code

Name Description

!21 NACK error

!22 WACK error

!23 Unit no. overlap

!24 Transmission format
error

!25 Link unit hardware error

!26 Unit no. setting error

!27 No support error

!28 No response error

!29 Buffer closed error

!30 Time-out error

!32 Transmission
impossible error

!33 Communication stop

!36 No destination error

!38 Other communication
error

Link system error

!40 BCC error A transfer error occurred in the data received.

!41 Format error A formatting error in the command received was detected.

Appendix Programming Information

1314

Error
code

Name Description

!42 No support error A non-supported command was received.

!43 Multiple frames
procedure error

A different command was received when processing multiple frames.

!50 Link setting error A non-existing route number was specified. Verify the route number by
designating the transmission station.

!51 Transmission time-out
error

Transmission to another device is not possible because the transmission buffer
is full.

!52 Transmit disable error Transmission processing to another device is not possible (link unit runaway,
etc.).

!53 Busy error Processing of command received is not possible because of multiple frame
processing or because command being processed is congested.

!60 Parameter error Content of specified parameter does not exist or cannot be used.

!61 Data error There was a mistake in the contact, data area, data number designation, size
designation, range, or format designation.

!62 Registration over error Operation was done when number of registrations was exceeded or when there
was no registration.

!63 PC mode error PC command that cannot be processed was executed during RUN mode.

!64 External memory error An abnormality occurred when loading RAM to ROM/IC memory card. There
may be a problem with the ROM or IC memory card. When loading, the
specified contents exceeded the capacity. Write error occurs.

 ROM or IC memory card is not installed.

 ROM or IC memory card does not conform to specifications

!65 Protect error A program or system register write operation was executed when the protect
mode (password setting or DIP switch, etc.) or ROM operation mode was being
used.

!66 Address error There was an error in the code format of the address data. Also, when
exceeded or insufficient address data, there was a mistake in the range
designation.

!67 No program error and
no data error

Cannot be read because there is no program in the program area or the
memory contains an error. Or, reading of non-registered data was attempted.

!68 Rewrite during RUN
error

When inputting with programming tool software, editing of an instruction (ED,
SUB, RET, INT, IRET, SSTP, and STPE) that cannot perform a rewrite during
RUN is being attempted. Nothing is written to the CPU.

!70 SIM over error Program area was exceeded during a program write process.

!71 Exclusive access
control error

A command that cannot be processed was executed at the same time as a
command being processed.

 Appendix Programming Information

1315

40.11 MEWTOCOL-COM Communication Commands

Command name Code Description

Read contact area RC
(RCS)
(RCP)
(RCC)

Reads the on and off status of contacts.
- Specifies only one point.
- Specifies multiple contacts.
- Specifies a range in word units.

Write contact area WC
(WCS)
(WCP)
(WCC)

Turns contacts on and off.
- Specifies only one point.
- Specifies multiple contacts.
- Specifies a range in word units.

Read data area RD Reads the contents of a data area.

Write data area WD Writes data to a data area.

Read timer/counter set value area RS Reads the value set for a timer/counter.

Write timer/counter set value area WS Writes a timer/counter setting value.

Read timer/counter elapsed value area RK Reads the timer/counter elapsed value.

Write timer/counter elapsed value area WK Writes the timer/counter elapsed value.

Register or Reset contacts monitored MC Registers the contact to be monitored.

Register or Reset data monitored MD Registers the data to be monitored.

Monitoring start MG Monitors a registered contact or data using MD and MC.

Preset contact area (fill command) SC Embeds the area of a specified range in a 16-point on and
off pattern.

Preset data area (fill command) SD Writes the same contents to the data area of a specified
range.

Read system register RR Reads the contents of a system register.

Write system register WR Specifies the contents of a system register.

Read the status of PLC RT Reads the specifications of the PLC and error codes if an
error occurs.

Remote control RM Switches the operation mode of the PLC.

Abort AB Aborts communication.

Appendix Programming Information

1316

40.12 Hexadecimal/Binary/BCD

Decimal Hexadecimal Binary data BCD data
(Binary Coded Decimal)

0
1
2
3
4
5
6
7

0000
0001
0002
0003
0004
0005
0006
0007

0000 0000 0000 0000
0000 0000 0000 0001
0000 0000 0000 0010
0000 0000 0000 0011
0000 0000 0000 0100
0000 0000 0000 0101
0000 0000 0000 0110
0000 0000 0000 0111

0000 0000 0000 0000
0000 0000 0000 0001
0000 0000 0000 0010
0000 0000 0000 0011
0000 0000 0000 0100
0000 0000 0000 0101
0000 0000 0000 0110
0000 0000 0000 0111

8
9
10
11
12
13
14
15

0008
0009
000A
000B
000C
000D
000E
000F

0000 0000 0000 1000
0000 0000 0000 1001
0000 0000 0000 1010
0000 0000 0000 1011
0000 0000 0000 1100
0000 0000 0000 1101
0000 0000 0000 1110
0000 0000 0000 1111

0000 0000 0000 1000
0000 0000 0000 1001
0000 0000 0001 0000
0000 0000 0001 0001
0000 0000 0001 0010
0000 0000 0001 0011
0000 0000 0001 0100
0000 0000 0001 0101

16
17
18
19
20
21
22
23

0010
0011
0012
0013
0014
0015
0016
0017

0000 0000 0001 0000
0000 0000 0001 0001
0000 0000 0001 0010
0000 0000 0001 0011
0000 0000 0001 0100
0000 0000 0001 0101
0000 0000 0001 0110
0000 0000 0001 0111

0000 0000 0001 0110
0000 0000 0001 0111
0000 0000 0001 1000
0000 0000 0001 1001
0000 0000 0010 0000
0000 0000 0010 0001
0000 0000 0010 0010
0000 0000 0010 0011

24
25
26
27
28
29
30
31

0018
0019
001A
001B
001C
001D
001E
001F

0000 0000 0001 1000
0000 0000 0001 1001
0000 0000 0001 1010
0000 0000 0001 1011
0000 0000 0001 1100
0000 0000 0001 1101
0000 0000 0001 1110
0000 0000 0001 1111

0000 0000 0010 0100
0000 0000 0010 0101
0000 0000 0010 0110
0000 0000 0010 0111
0000 0000 0010 1000
0000 0000 0010 1001
0000 0000 0011 0000
0000 0000 0011 0001

·
·
·
63
·
·
·
255
·
·
·
9999

·
·
·
003F
·
·
·
00FF
·
·
·
270F

 ·
 ·
 ·
0000 0000 0011 1111
 ·
 ·
 ·
0000 0000 1111 1111
 ·
 ·
 ·
0010 0111 0000 1111

 ·
 ·
 ·
0000 0000 0110 0011
 ·
 ·
 ·
0000 0010 0101 0101
 ·
 ·
 ·
1001 1001 1001 1001

 Appendix Programming Information

1317

40.13 ASCII Codes

HT

BS

BEL

ACK

ENQ

EOT

ETX

STX

SOH

DELNUL0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

b3 b2 b1 b0b6 b5 b4

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

b4

b5

b6

SP AC E

?

DEL

LF

VT

FF

CR

SO

SI

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

~

}

{

!

”

#

$

%

&

’

(

)

*

+

,

–

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

b7

b7

Most significant digit

L
e

a
s
t

s
ig

n
if
ic

a
n

t
d

ig
it

ASCII
HEX code

Appendix Programming Information

1318

40.14 Availability of all instructions on all PLC types

Instruction

 available

 partially available

F
P

0
 2

,7
k
 /
 5

k

F
P

0
 1

0
k
 T

3
2

F
P

0
R

 C
,F

F
P

0
R

 3
2

k
 T

3
2

F
P
Σ

1
2

k
,
1

6
k

F
P
Σ

3
2

k

F
P

-X

C

T
,
C

P
,
C

3
8

A

F
P

-X

L
,
C

4
0
R

T
0

A

F
P

-X
0

 2
,5

k

F
P

-X
0

 8
k

F
P

-e
 2

,7
k

F
P

3
,
F

P
-C

 F
P

2
 1

6
k

F
P

2
 3

2
k

 F
P

2
S

H
 3

2
k

F
P

2
S

H
 6

0
k
,
1

2
0

k

F
P

1
0

S
H

page

ABS                  67
ACOS                 73
ActivateStepsOfStoppedSfc                  1246
ADD_DT_TIME                 282
ADD_TIME                  330
ADD_TOD_TIME                 283
Adr_Of_Var                  1331
Adr_Of_VarOffs                  1331
AdrDT_Of_Offs                  1331
AdrFL_Of_Offs                  1331
AdrLast_Of_Var                  1331
AllSfcsStopped                  1246
ALT              888
AreaOffs_ToVar                  1246
ASIN                 71
ATAN                 76
ATAN2_YX                 77
BOOL_TO_DINT                  168
BOOL_TO_DWORD                  132
BOOL_TO_INT                  145
BOOL_TO_STRING                  210
BOOL_TO_UDINT                  180
BOOL_TO_UINT                  157
BOOL_TO_WORD                  120
BOOL16_TO_WORD                  121
BOOL32_TO_DWORD                  133
BOOLS_TO_DWORD                  134
BOOLS_TO_WORD                  122
BRK       1016
ClearReceiveBuffer                  754
CONCAT                  270
CONCAT_DATE_INT                  284
CONCAT_DATE_TOD                  285
CONCAT_DT_INT                  286
CONCAT_TIME_INT                 331
CONCAT_TOD_INT                  288
ControlSfc                  1246
ControlSfcAndData                  1246
COS                 72
CRC16                  84

 Appendix Programming Information

1319

Instruction

 available

 partially available

F
P

0
 2

,7
k
 /
 5

k

F
P

0
 1

0
k
 T

3
2

F
P

0
R

 C
,F

F
P

0
R

 3
2

k
 T

3
2

F
P
Σ

1
2

k
,
1

6
k

F
P
Σ

3
2

k

F
P

-X

C

T
,
C

P
,
C

3
8

A

F
P

-X

L
,
C

4
0
R

T
0

A

F
P

-X
0

 2
,5

k

F
P

-X
0

 8
k

F
P

-e
 2

,7
k

F
P

3
,
F

P
-C

 F
P

2
 1

6
k

F
P

2
 3

2
k

 F
P

2
S

H
 3

2
k

F
P

2
S

H
 6

0
k
,
1

2
0

k

F
P

1
0

S
H

page

CSTP_CLEAR_STEP                  1331
CT                  705
CT_FB                  702
CTD                  318
CTU                  316
CTUD                  320
DATE_TO_STRING                  216
DATE_TO_UDINT                  190
DAY_OF_WEEK1                  289
DELETE                  272
DF                  884
DFI             886
DFN                  885
DINT_TO_BCD_DWORD                  245
DINT_TO_BOOL                  117
DINT_TO_DWORD                  138
DINT_TO_INT                  149
DINT_TO_REAL                 195
DINT_TO_STRING                  221
DINT_TO_STRING_LEADING_ZEROS                  225
DINT_TO_TIME                  203
DINT_TO_UDINT                  186
DINT_TO_UINT                  162
DINT_TO_WORD                  126
DIV_TIME_DINT                  333
DIV_TIME_INT                  332
DIV_TIME_REAL                 334
DT_TO_DATE                  206
DT_TO_STRING                  217
DT_TO_TOD                  208
DT_TO_UDINT                  191
DWORD_BCD_TO_DINT                  170
DWORD_BCD_TO_UDINT                  183
DWORD_TO_BOOL                  115
DWORD_TO_BOOL32                  239
DWORD_TO_BOOLS                  242
DWORD_TO_DINT                  171
DWORD_TO_INT                  148
DWORD_TO_REAL                 193
DWORD_TO_STRING                  214
DWORD_TO_TIME                  201
DWORD_TO_UDINT                  182
DWORD_TO_UINT                  160
DWORD_TO_WORD                  124

Appendix Programming Information

1320

Instruction

 available

 partially available

F
P

0
 2

,7
k
 /
 5

k

F
P

0
 1

0
k
 T

3
2

F
P

0
R

 C
,F

F
P

0
R

 3
2

k
 T

3
2

F
P
Σ

1
2

k
,
1

6
k

F
P
Σ

3
2

k

F
P

-X

C

T
,
C

P
,
C

3
8

A

F
P

-X

L
,
C

4
0
R

T
0

A

F
P

-X
0

 2
,5

k

F
P

-X
0

 8
k

F
P

-e
 2

,7
k

F
P

3
,
F

P
-C

 F
P

2
 1

6
k

F
P

2
 3

2
k

 F
P

2
S

H
 3

2
k

F
P

2
S

H
 6

0
k
,
1

2
0

k

F
P

1
0
S

H

page

Elem_OfArray1D                  1246
Elem_OfArray2D                  1246
Elem_OfArray3D                  1246
ETLANADDR_TO_STRING                  235
ETLANADDR_TO_STRING_NO_LEADIN
G_ZEROS                  236
EXP                 81
ExpansionUnitNumberToIOWordOffset_FP
0       1129
ExpansionUnitNumberToIOWordOffset_FP
X_FP0     1130
EXPT                 82
F_TRIG                  313
F0_MV                  806
F1_DMV                  808
F10_BKMV                  820
F10_BKMV_NUMBER                  822
F10_BKMV_NUMBER_OFFSET                  824
F10_BKMV_OFFSET                  823
F100_SHR                  558
F101_SHL                  560
F102_DSHR              562
F103_DSHL              564
F105_BSR                  566
F106_BSL                  568
F108_BITR              570
F109_BITL              572
F11_COPY                  825
F110_WSHR                  574
F111_WSHL                  576
F112_WBSR                  578
F113_WBSL                  580
F115_FIFT               484
F116_FIFR               488
F117_FIFW               492
F118_UDC                  708
F119_LRSR                  582
F12_EPRD              827
F12_ICRD    829
F120_ROR                  586
F121_ROL                  588
F122_RCR                  590
F123_RCL                  592
F125_DROR              594

 Appendix Programming Information

1321

Instruction

 available

 partially available

F
P

0
 2

,7
k
 /
 5

k

F
P

0
 1

0
k
 T

3
2

F
P

0
R

 C
,F

F
P

0
R

 3
2

k
 T

3
2

F
P
Σ

1
2

k
,
1

6
k

F
P
Σ

3
2

k

F
P

-X

C

T
,
C

P
,
C

3
8

A

F
P

-X

L
,
C

4
0
R

T
0

A

F
P

-X
0

 2
,5

k

F
P

-X
0

 8
k

F
P

-e
 2

,7
k

F
P

3
,
F

P
-C

 F
P

2
 1

6
k

F
P

2
 3

2
k

 F
P

2
S

H
 3

2
k

F
P

2
S

H
 6

0
k
,
1

2
0

k

F
P

1
0

S
H

page

F126_DROL              596
F127_DRCR              598
F128_DRCL              600
F13_ICWT    831
F130_BTS                  538
F131_BTR                  539
F132_BTI                  540
F133_BTT                  541
F135_BCU                  543
F136_DBCU                  544
F137_STMR                  934
F138_TIMEBCD_TO_SECBCD                 866
F139_SECBCD_TO_TIMEBCD                 867
F14_PGRD    833
F140_STC                  998
F141_CLC                  999
F142_WDT    1000
F143_IORF                  843
F145_SEND            787
F145_WRITE_DATA      767
F145_WRITE_DATA_TYPE_OFFS      770
F145F146_MODBUS_COMMAND      778
F145F146_MODBUS_MASTER      780
F146_READ_DATA      773
F146_READ_DATA_TYPE_OFFS      775
F146_RECV            789
F147_PR                  845
F148_ERR                  1001
F149_MSG                  1003
F15_XCH                  836
F150_READ             848
F151_WRT             851
F152_RMRD       792
F153_RMWT       795
F155_SMPL           1004
F156_STRG           1005
F157_ADD_DTBCD_TIMEBCD                 868
F158_SUB_DTBCD_TIMEBCD                 870
F159_MTRN                  742
F159_MWRT_PARA     719
F16_DXCH                  837
F160_DSQR               415
F161_MRCV                  756
F161_MRD_PARA     728

Appendix Programming Information

1322

Instruction

 available

 partially available

F
P

0
 2

,7
k
 /
 5

k

F
P

0
 1

0
k
 T

3
2

F
P

0
R

 C
,F

F
P

0
R

 3
2

k
 T

3
2

F
P
Σ

1
2

k
,
1

6
k

F
P
Σ

3
2

k

F
P

-X

C

T
,
C

P
,
C

3
8

A

F
P

-X

L
,
C

4
0
R

T
0

A

F
P

-X
0

 2
,5

k

F
P

-X
0

 8
k

F
P

-e
 2

,7
k

F
P

3
,
F

P
-C

 F
P

2
 1

6
k

F
P

2
 3

2
k

 F
P

2
S

H
 3

2
k

F
P

2
S

H
 6

0
k
,
1

2
0

k

F
P

1
0
S

H

page

F161_MRD_STATUS     730
F165_HighSpeedCounter_Cam   895
F166_HighSpeedCounter_Set            901
F166_PulseOutput_Set   1027
F167_HighSpeedCounter_Reset            905
F167_PulseOutput_Reset   1030
F168_PulseOutput_Home    1036
F168_PulseOutput_Trapezoidal    1033
F169_PulseOutput_Jog    1040
F17_SWAP                  839
F170_PulseOutput_PWM    1043
F171_PulseOutput_Home    1052
F171_PulseOutput_Jog_Positioning   1056

F171_PulseOutput_Trapezoidal
Except FP-X 16k L14|FP-X 32k L30,L60         1046

F172_PulseOutput_Jog
Except FP-X 16k L14|FP-X 32k L30,L60         1061

F173_PulseOutput_PWM
Except FP-X 16k L14|FP-X 32k L30,L60         1067

F174_PulseOutput_DataTable
Except FP-X 16k L14|FP-X 32k L30,L60         1070
F175_PulseOutput_Linear       1073
F176_PulseOutput_Center   1078
F176_PulseOutput_Pass   1082

F177_PulseOutput_Home
Except FP-X 16k L14|FP-X 32k L30,L60      1086
F178_HighSpeedCounter_Measure    909
F18_BXCH              841
F180_SCR_DUT  971
F181_DSP  975
F182_FILTER         551
F183_DSTM                 935
F19_SJP       1011
F190_MV3              854
F191_DMV3              856
F2_MVN                  810
F20_ADD                  342

 Appendix Programming Information

1323

Instruction

 available

 partially available

F
P

0
 2

,7
k
 /
 5

k

F
P

0
 1

0
k
 T

3
2

F
P

0
R

 C
,F

F
P

0
R

 3
2

k
 T

3
2

F
P
Σ

1
2

k
,
1

6
k

F
P
Σ

3
2

k

F
P

-X

C

T
,
C

P
,
C

3
8

A

F
P

-X

L
,
C

4
0
R

T
0

A

F
P

-X
0

 2
,5

k

F
P

-X
0

 8
k

F
P

-e
 2

,7
k

F
P

3
,
F

P
-C

 F
P

2
 1

6
k

F
P

2
 3

2
k

 F
P

2
S

H
 3

2
k

F
P

2
S

H
 6

0
k
,
1

2
0

k

F
P

1
0

S
H

page

F21_DADD                  344
F215_DAND              528
F216_DOR              530
F217_DXOR              532
F218_DXNR              534
F219_DUNI              536
F22_ADD2                  346
F23_DADD2                  348
F230_DTBCD_TO_SEC            872
F231_SEC_TO_DTBCD            873
F235_GRY              665
F236_DGRY              666
F237_GBIN              667
F238_DGBIN              668
F240_COLM              669
F241_LINE              671
F25_SUB                  366
F250_BTOA        673
F251_ATOB        677
F252_ACHK        682
F26_DSUB                  368
F27_SUB2                  370
F270_MAX               451
F271_DMAX               453
F272_MIN               457
F273_DMIN               459
F275_MEAN               463
F276_DMEAN               465
F277_SORT               501
F278_DSORT               503
F28_DSUB2                  372
F282_SCAL               469
F283_DSCAL               472
F284_RAMP        475
F285_LIMT              878
F286_DLIMT              880
F287_BAND               433
F288_DBAND               435
F289_ZONE               440
F290_DZONE               442
F3_DMVN                  812
F30_MUL                  390
F300_BSIN      417
F301_BCOS      419

Appendix Programming Information

1324

Instruction

 available

 partially available

F
P

0
 2

,7
k
 /
 5

k

F
P

0
 1

0
k
 T

3
2

F
P

0
R

 C
,F

F
P

0
R

 3
2

k
 T

3
2

F
P
Σ

1
2

k
,
1

6
k

F
P
Σ

3
2

k

F
P

-X

C

T
,
C

P
,
C

3
8

A

F
P

-X

L
,
C

4
0
R

T
0

A

F
P

-X
0

 2
,5

k

F
P

-X
0

 8
k

F
P

-e
 2

,7
k

F
P

3
,
F

P
-C

 F
P

2
 1

6
k

F
P

2
 3

2
k

 F
P

2
S

H
 3

2
k

F
P

2
S

H
 6

0
k
,
1

2
0

k

F
P

1
0
S

H

page

F302_BTAN      421
F303_BASIN      423
F304_BACOS      425
F305_BATAN      427
F309_FMV                 858
F31_DMUL                  392
F310_FADD                 1246
F311_FSUB                 1246
F312_FMUL                 1246
F313_FDIV                 410
F314_SIN                 1246
F315_COS                 1246
F316_TAN                 1246
F317_ASIN                 1246
F318_ACOS                 1246
F319_ATAN                 1246
F32_DIV                  402
F320_LN                 1246
F321_EXP                 1246
F322_LOG                 1246
F323_PWR                 1246
F324_FSQR                 1246
F325_FLT                 684
F326_DFLT                 685
F327_INT                 687
F328_DINT                 689
F329_FIX                 1246
F33_DDIV                  404
F330_DFIX                 1246
F331_ROFF                 1246
F332_DROFF                 1246
F333_FINT                 691
F334_FRINT                 693
F335_FSIGN                 695
F336_FABS                 1246
F337_RAD                 697
F338_DEG                 699
F34_MULW              394
F345_FCMP              1246
F346_FWIN              614
F347_FLIMT              1246
F348_FBAND              437
F349_FZONE              444

 Appendix Programming Information

1325

Instruction

 available

 partially available

F
P

0
 2

,7
k
 /
 5

k

F
P

0
 1

0
k
 T

3
2

F
P

0
R

 C
,F

F
P

0
R

 3
2

k
 T

3
2

F
P
Σ

1
2

k
,
1

6
k

F
P
Σ

3
2

k

F
P

-X

C

T
,
C

P
,
C

3
8

A

F
P

-X

L
,
C

4
0
R

T
0
A

F
P

-X
0

 2
,5

k

F
P

-X
0

 8
k

F
P

-e
 2

,7
k

F
P

3
,
F

P
-C

 F
P

2
 1

6
k

F
P

2
 3

2
k

 F
P

2
S

H
 3

2
k

F
P

2
S

H
 6

0
k
,
1

2
0

k

F
P

1
0

S
H

page

F35_INC                  358
F350_FMAX      455
F351_FMIN      461
F352_FMEAN      467
F353_FSORT      505
F354_FSCAL             478
F355_PID_DUT                 942

F356_PID_PWM
Except FP-X 16k L14|FP-X 32k L30,L60        945
F36_DINC                  360
F37_DEC                  382
F373_DTR              616
F374_DDTR              618
F38_DDEC                  384
F39_DMULD              396
F4_GETS     814
F40_BADD                  350
F41_DBADD                  352
F410_SET_INDEXREG_BANK   
F411_CHANGE_INDEXREG_BANK   
F412_RESTORE_INDEXREG_BANK   
F414_SET_FILEREG_BANK 
F415_CHANGE_FILEREG_BANK 
F416_RESTORE_FILEREG_BANK 
F42_BADD2                  354
F43_DBADD2                  356
F45_BSUB                  374
F46_DBSUB                  376
F47_BSUB2                  378
F48_DBSUB2                  380
F5_BTM                  512
F50_BMUL                  398
F51_DBMUL                  400
F52_BDIV                  406
F53_DBDIV                  408
F55_BINC                  362
F56_DBINC                  364
F57_BDEC                  386
F58_DBDEC                  388
F6_DGT                  514
F60_CMP                  604
F61_DCMP                  606
F62_WIN                  608

Appendix Programming Information

1326

Instruction

 available

 partially available

F
P

0
 2

,7
k
 /
 5

k

F
P

0
 1

0
k
 T

3
2

F
P

0
R

 C
,F

F
P

0
R

 3
2

k
 T

3
2

F
P
Σ

1
2

k
,
1

6
k

F
P
Σ

3
2

k

F
P

-X

C

T
,
C

P
,
C

3
8

A

F
P

-X

L
,
C

4
0
R

T
0

A

F
P

-X
0

 2
,5

k

F
P

-X
0

 8
k

F
P

-e
 2

,7
k

F
P

3
,
F

P
-C

 F
P

2
 1

6
k

F
P

2
 3

2
k

 F
P

2
S

H
 3

2
k

F
P

2
S

H
 6

0
k
,
1

2
0

k

F
P

1
0
S

H

page

F63_DWIN                  610
F64_BCMP                  612
F65_WAN                  518
F66_WOR                  520
F67_XOR                  522
F68_XNR                  524
F69_WUNI              526
F7_MV2              816
F70_BCC                  412
F71_HEX2A                  622
F72_A2HEX                  625
F73_BCD2A                  628
F74_A2BCD                  631
F75_BIN2A                  635
F76_A2BIN                  638
F77_DBIN2A                  641
F78_DA2BIN                  644
F8_DMV2              818
F80_BCD                  647
F81_BIN                  649
F82_DBCD                  651
F83_DBIN                  653
F84_INV                  545
F85_NEG                  447
F86_DNEG                  449
F87_ABS                  429
F88_DABS                  431
F89_EXT                  655
F90_DECO                  657
F91_SEGT                  659
F92_ENCO                  660
F93_UNIT                  547
F94_DIST                  549
F95_ASC                  662
F96_SRC                  479
F97_DSRC              481
F98_CMPR               496
F99_CMPW               499
FIND                  274
FNS_InitConfigDataTable       799
FNS_InitConfigNameTable       802
GET_RTC_DT              290
GET_RTC_DTBCD              874

 Appendix Programming Information

1327

Instruction

 available

 partially available

F
P

0
 2

,7
k
 /
 5

k

F
P

0
 1

0
k
 T

3
2

F
P

0
R

 C
,F

F
P

0
R

 3
2

k
 T

3
2

F
P
Σ

1
2

k
,
1

6
k

F
P
Σ

3
2

k

F
P

-X

C

T
,
C

P
,
C

3
8

A

F
P

-X

L
,
C

4
0
R

T
0

A

F
P

-X
0

 2
,5

k

F
P

-X
0

 8
k

F
P

-e
 2

,7
k

F
P

3
,
F

P
-C

 F
P

2
 1

6
k

F
P

2
 3

2
k

 F
P

2
S

H
 3

2
k

F
P

2
S

H
 6

0
k
,
1

2
0

k

F
P

1
0

S
H

page

GET_RTC_INT              1246
GetPointer                  1246
GT_ActivateScreen                  1134
GT_ChangeBacklightBrightness                  1136
Hsc_TargetValueMatch_Reset            1167
Hsc_TargetValueMatch_Set            1169
HscControl_CountingDisable            1140
HscControl_CountingEnable            1142
HscControl_ElapsedValueContinue            1144
HscControl_ElapsedValueReset            1146
HscControl_HscInstructionClear            1148
HscControl_ResetInputDisable            1150
HscControl_ResetInputEnable            1151
HscControl_SetDefaults            1152
HscControl_WriteElapsedValue            1153
HscInfo_GetControlCode            1156
HscInfo_GetCurrentSpeed            1157
HscInfo_IsActive            1158
HscInfo_IsChannelEnabled            1159
HscInfo_IsCountingDisabled            1160
HscInfo_IsElapsedValueReset            1161
HscInfo_IsResetInputDisabled            1162
HscInfo_ReadElapsedValue            1164
HscInfo_ReadTargetValue            1165
ICTL                  1017
INSERT                  276
INT_TO_BCD_WORD                  244
INT_TO_BOOL                  116
INT_TO_DINT                  172
INT_TO_DWORD                  137
INT_TO_REAL                 194
INT_TO_STRING                  218
INT_TO_STRING_LEADING_ZEROS                  220
INT_TO_TIME                  202
INT_TO_UDINT                  184
INT_TO_UINT                  161
INT_TO_WORD                  125
IPADDR_TO_STRING                  233
IPADDR_TO_STRING_NO_LEADING_ZE
ROS                  234
Is_AreaDT                  1246
Is_AreaFL                  1246
IS_VALID_DATE_INT                  291
IS_VALID_DT_INT                  292

Appendix Programming Information

1328

Instruction

 available

 partially available

F
P

0
 2

,7
k
 /
 5

k

F
P

0
 1

0
k
 T

3
2

F
P

0
R

 C
,F

F
P

0
R

 3
2

k
 T

3
2

F
P
Σ

1
2

k
,
1

6
k

F
P
Σ

3
2

k

F
P

-X

C

T
,
C

P
,
C

3
8

A

F
P

-X

L
,
C

4
0
R

T
0

A

F
P

-X
0

 2
,5

k

F
P

-X
0

 8
k

F
P

-e
 2

,7
k

F
P

3
,
F

P
-C

 F
P

2
 1

6
k

F
P

2
 3

2
k

 F
P

2
S

H
 3

2
k

F
P

2
S

H
 6

0
k
,
1

2
0

k

F
P

1
0
S

H

page

IS_VALID_TOD_INT                  294
IsAnyHscChannelEnabled                  1331
IsAnyPulseChannelEnabled                  1331
IsClockCalendarSupported                  1331
IsCommunicationError                  765
IsDataUnitTypeSupported                  1331
IsF145F146Error            783
IsF145F146NotActive            782
IsFileRegisterAreaSupported                  1331
IsHscChannelEnabled                  1331
IsInstructionSupported                  1331
IsPlcLink                  725
IsProgramControlled                  726
IsPulseChannelEnabled                  1331
IsReceptionDone                  761
IsReceptionDoneByTimeOut                  762
IsSystemVariableSupported                  1331
IsTransmissionDone                  764
JP                  1010
KEEP                  508
LBL                  1014
LEFT                  264
LEN                  262
LIMIT                  86
LN                 79
LOG                 80
LOOP                  1013
LSR                  556
MAX                  254
MC                  1008
MCE                  1009
MID                  268
MIN                  255
MOD                  68
MOVE                  60
MUL_TIME_DINT                  336
MUL_TIME_INT                  335
MUL_TIME_REAL                 337
MUX                  256
NOT                  1246
NSTL_NEXT_STEP                  1331
NSTP_NEXT_STEP_PULSE                  1331
OutputCompilerError                  1331

 Appendix Programming Information

1329

Instruction

 available

 partially available

F
P

0
 2

,7
k
 /
 5

k

F
P

0
 1

0
k
 T

3
2

F
P

0
R

 C
,F

F
P

0
R

 3
2

k
 T

3
2

F
P
Σ

1
2

k
,
1

6
k

F
P
Σ

3
2

k

F
P

-X

C

T
,
C

P
,
C

3
8

A

F
P

-X

L
,
C

4
0
R

T
0

A

F
P

-X
0

 2
,5

k

F
P

-X
0

 8
k

F
P

-e
 2

,7
k

F
P

3
,
F

P
-C

 F
P

2
 1

6
k

F
P

2
 3

2
k

 F
P

2
S

H
 3

2
k

F
P

2
S

H
 6

0
k
,
1

2
0

k

F
P

1
0

S
H

page

OutputCompilerWarning                  1331
P13_EPWT              834
P13_ICWT    1331
PID_FB                 952
PID_FB_DUT                 954
Pulse_TargetValueMatch_Reset   1238
Pulse_TargetValueMatch_Set   1241
PulseControl_CountingDisable            1331
PulseControl_CountingEnable            1201
PulseControl_DeceleratedStop   1203
PulseControl_ElapsedValueContinue            1205
PulseControl_ElapsedValueReset            1207
PulseControl_JogPositionControl   1209
PulseControl_NearHome            1210
PulseControl_PulseOutputContinue            1212
PulseControl_PulseOutputStop            1214
PulseControl_SetDefaults            1216
PulseControl_TargetValueMatchClear   1331
PulseControl_WriteElapsedValue            1217
PulseInfo_GetControlCode            1221
PulseInfo_GetCurrentSpeed            1222
PulseInfo_IsActive            1224
PulseInfo_IsChannelEnabled            1225
PulseInfo_IsCountingDisabled            1226
PulseInfo_IsElapsedValueReset            1227
PulseInfo_IsHomeInputTrue            1228
PulseInfo_IsPulseOutputStopped            1229
PulseInfo_IsTargetValueMatchActive   1230
PulseInfo_ReadAccelerationForbiddenAre
aStartingPosition   1231
PulseInfo_ReadCorrectedFinalSpeed     1232
PulseInfo_ReadCorrectedInitialSpeed     1233
PulseInfo_ReadElapsedValue            1234
PulseInfo_ReadTargetValue            1235
PulseInfo_ReadTargetValueMatchValue   1236
PulseOutput_Center_FB   1174
PulseOutput_Home_FB            1177
PulseOutput_Jog_FB            1180
PulseOutput_Jog_Positioning0_FB   1182
PulseOutput_Jog_Positioning1_FB   1185

PulseOutput_Jog_TargetValue_FB
Except FP-X 16k L14|FP-X 32k L30,L60         1187

Appendix Programming Information

1330

Instruction

 available

 partially available

F
P

0
 2

,7
k
 /
 5

k

F
P

0
 1

0
k
 T

3
2

F
P

0
R

 C
,F

F
P

0
R

 3
2

k
 T

3
2

F
P
Σ

1
2

k
,
1

6
k

F
P
Σ

3
2

k

F
P

-X

C

T
,
C

P
,
C

3
8

A

F
P

-X

L
,
C

4
0
R

T
0

A

F
P

-X
0

 2
,5

k

F
P

-X
0

 8
k

F
P

-e
 2

,7
k

F
P

3
,
F

P
-C

 F
P

2
 1

6
k

F
P

2
 3

2
k

 F
P

2
S

H
 3

2
k

F
P

2
S

H
 6

0
k
,
1

2
0

k

F
P

1
0
S

H

page

PulseOutput_Linear_FB       1189
PulseOutput_Pass_FB   1192
PulseOutput_Trapezoidal_FB            1195
R_TRIG                  312
ReadDataFromFileRegisterBank  861
REAL_TO_DINT                 175
REAL_TO_DWORD                 141
REAL_TO_INT                 152
REAL_TO_STRING                 229
REAL_TO_TIME                 204
REAL_TO_UDINT                 187
REAL_TO_UINT                 164
ReceiveCharacters                  753
ReceiveData                  751
REPLACE                  278
RIGHT                  266
ROL                  100
ROR                  98
RS                  308
RST                  509
SCALE_INT                  956
SCALE_INT_UINT                  958
SCALE_REAL                  960
SCALE_UINT                  962
SCALE_UINT_INT                  964
SCLR_CLEAR_MULTIPLE_STEPS              1331
SEL                  258
SendCharacters                  738
SendCharactersAndClearString                  740
SET                  509
SET_RTC_DT              295
SET_RTC_DTBCD              875
SET_RTC_INT              1246
SetCommunicationMode                  718
SfcOutputsReset                  1246
SfcRunning                  1246
SfcStopped                  1246
SfcTransitionsInhibited                  1246
SHL                  96
SHR                  94
SIN                 70
Size_Of_Var                  1246
SmoothSignal_INT                  966

 Appendix Programming Information

1331

Instruction

 available

 partially available

F
P

0
 2

,7
k
 /
 5

k

F
P

0
 1

0
k
 T

3
2

F
P

0
R

 C
,F

F
P

0
R

 3
2

k
 T

3
2

F
P
Σ

1
2

k
,
1

6
k

F
P
Σ

3
2

k

F
P

-X

C

T
,
C

P
,
C

3
8

A

F
P

-X

L
,
C

4
0
R

T
0
A

F
P

-X
0

 2
,5

k

F
P

-X
0

 8
k

F
P

-e
 2

,7
k

F
P

3
,
F

P
-C

 F
P

2
 1

6
k

F
P

2
 3

2
k

 F
P

2
S

H
 3

2
k

F
P

2
S

H
 6

0
k
,
1

2
0

k

F
P

1
0

S
H

page

SmoothSignal_REAL                  967
SmoothSignal_UINT                  968
SPLIT_DATE_INT                  296
SPLIT_DT_INT                  297
SPLIT_TIME_INT                 338
SPLIT_TOD_INT                  299
SQRT                 69
SR                  306
SSTP_STEP_START                  1331
StartStopAllSfcs                  1246
StartStopAllSfcsAndInitData                  1246
StartStopSfc                  1246
StartStopSfcAndInitData                  1246
STPE_STEP_LADDER_END                 
STRING_TO_DINT                  178
STRING_TO_DINT_STEPSAVER                  179
STRING_TO_DWORD                  143
STRING_TO_DWORD_STEPSAVER                  144
STRING_TO_ETLANADDR                  250
STRING_TO_ETLANADDR_STEPSAVER                  251
STRING_TO_INT                  155
STRING_TO_INT_STEPSAVER                  156
STRING_TO_IPADDR                  248
STRING_TO_IPADDR_STEPSAVER                  249
STRING_TO_REAL                  199
STRING_TO_UDINT                  189
STRING_TO_UINT                  166
STRING_TO_UINT_STEPSAVER                  167
STRING_TO_WORD                  130
STRING_TO_WORD_STEPSAVER                  131
SUB_DATE_DATE                 300
SUB_DT_DT                 301
SUB_DT_TIME                 302
SUB_TIME                  339
SUB_TOD_TIME                 303
SUB_TOD_TOD                 304
SYS1         991
SYS2       994
TAN                 75
TIME_TO_DINT                  177
TIME_TO_DWORD                  142
TIME_TO_INT                  154
TIME_TO_REAL                 198
TIME_TO_STRING                231

Appendix Programming Information

1332

Instruction

 available

 partially available

F
P

0
 2

,7
k
 /
 5

k

F
P

0
 1

0
k
 T

3
2

F
P

0
R

 C
,F

F
P

0
R

 3
2

k
 T

3
2

F
P
Σ

1
2

k
,
1

6
k

F
P
Σ

3
2

k

F
P

-X

C

T
,
C

P
,
C

3
8

A

F
P

-X

L
,
C

4
0
R

T
0

A

F
P

-X
0

 2
,5

k

F
P

-X
0

 8
k

F
P

-e
 2

,7
k

F
P

3
,
F

P
-C

 F
P

2
 1

6
k

F
P

2
 3

2
k

 F
P

2
S

H
 3

2
k

F
P

2
S

H
 6

0
k
,
1

2
0

k

F
P

1
0
S

H

page

TIME_TO_WORD                  129
TM_100ms                  930
TM_100ms_FB                  920
TM_10ms                  928
TM_10ms_FB                  917
TM_1ms                 926
TM_1ms_FB                 914
TM_1s                  932
TM_1s_FB                  923
TOD_TO_STRING                  237
TOD_TO_UDINT                  192
TOF                  324
TON                  326
TP                  328
TRUNC_TO_DINT                 176
TRUNC_TO_INT                 153
TRUNC_TO_UDINT                 188
TRUNC_TO_UINT                 165
UDINT_TO_BCD_DWORD                  247
UDINT_TO_BOOL                  119
UDINT_TO_DATE                  207
UDINT_TO_DINT                  174
UDINT_TO_DT                  205
UDINT_TO_DWORD                  140
UDINT_TO_INT                  151
UDINT_TO_REAL                  197
UDINT_TO_STRING                  223
UDINT_TO_STRING_LEADING_ZEROS                  226
UDINT_TO_TOD                  209
UDINT_TO_UINT                  163
UDINT_TO_WORD                  128
UINT_TO_BCD_WORD                  246
UINT_TO_BOOL                  118
UINT_TO_DINT                  173
UINT_TO_DWORD                  139
UINT_TO_INT                  150
UINT_TO_REAL                  196
UINT_TO_STRING                  227
UINT_TO_STRING_LEADING_ZEROS                  228
UINT_TO_UDINT                  185
UINT_TO_WORD                  127
Unit_AnalogInOut_FP0_A21           1092
Unit_AnalogInOut_FPG_A44   1119

 Appendix Programming Information

1333

Instruction

 available

 partially available

F
P

0
 2

,7
k
 /
 5

k

F
P

0
 1

0
k
 T

3
2

F
P

0
R

 C
,F

F
P

0
R

 3
2

k
 T

3
2

F
P
Σ

1
2

k
,
1

6
k

F
P
Σ

3
2

k

F
P

-X

C

T
,
C

P
,
C

3
8

A

F
P

-X

L
,
C

4
0
R

T
0

A

F
P

-X
0

 2
,5

k

F
P

-X
0

 8
k

F
P

-e
 2

,7
k

F
P

3
,
F

P
-C

 F
P

2
 1

6
k

F
P

2
 3

2
k

 F
P

2
S

H
 3

2
k

F
P

2
S

H
 6

0
k
,
1

2
0

k

F
P

1
0

S
H

page

Unit_AnalogInput_FP0_A80           1097
Unit_AnalogInput_FP0_RTD_INT           1102
Unit_AnalogInput_FP0_RTD_REAL           1108
Unit_AnalogInput_FP0_TC4_TC8           1114
Unit_AnalogOutput_FP0_A04I           1123
Unit_AnalogOutput_FP0_A04V           1126
Var_ToAreaOffs                  1246
WITHIN_LIMITS                  112
WORD_BCD_TO_INT                  147
WORD_BCD_TO_UINT                  159
WORD_TO_BOOL                  114
WORD_TO_BOOL16                  238
WORD_TO_BOOLS                  240
WORD_TO_DINT                  169
WORD_TO_DWORD                  136
WORD_TO_INT                  146
WORD_TO_STRING                  212
WORD_TO_TIME                  200
WORD_TO_UDINT                  181
WORD_TO_UINT                  158
WriteDataToFileRegisterBank  863

Record of Changes

Manual No. Date Description of Changes

ACGM0313V2EN July 2012 Complete update in accordance with software version 6.4.
For details on the new information, see the section new in
this version 6.4 in the online help.

ACGM0313V1EN FEB. 2011 First edition

1335

Index
A

ABS.. 67
ACOS... 73
ADD ... 62
ADD_DT_TIME.. 282
ADD_TIME... 330
ADD_TOD_TIME... 283
Addresses.. 30
ALT .. 888
Analog unit instructions.................................... 1091
AND ... 88
ANY_IN_UNITS_OF_WORDS............................ 57
ANY_SIMPLE_NOT_BOOL 58
Appendix Programming Information 1245
Arithmetic instructions.................................. 61, 341
Array .. 53
ARRAY .. 53
ASCII Codes .. 1317
ASIN... 71
ATAN ... 76
ATAN2_YX .. 77
Availability of all instructions on all PLC types 1318

B

Basics .. 26
BCD Constants .. 39
BCD Type Constant... 1251
BCD_DWORD ... 56
BCD_WORD.. 56
BEFORE BEGINNING... 1
Bistable instructions................................... 305, 507
Bit-shift instructions...................................... 93, 555
Bitwise Boolean instructions........................ 87, 511
BOOL... 40
BOOL_TO_DINT ... 168
BOOL_TO_DWORD.. 132
BOOL_TO_INT .. 145
BOOL_TO_STRING .. 210
BOOL_TO_UDINT... 180
BOOL_TO_UINT ... 157
BOOL_TO_WORD .. 120
BOOL16... 55
BOOL16_TO_WORD .. 121
BOOL32... 55
BOOL32_TO_DWORD...................................... 133
BOOLS_TO_DWORD 134
BOOLS_TO_WORD.. 122
BRK.. 1016

C

Changing the communication mode in RUN mode
... 717

Checking for MEWTOCOL-COM master / slave
mode .. 726

Checking for PLC link mode 724
Checking for program controlled mode 725
ClearReceiveBuffer.. 754

Communication Modes.......................................712
Comparison instructions.............................103, 603
CONCAT ..270
CONCAT_DATE_INT...284
CONCAT_DATE_TOD.......................................285
CONCAT_DT_INT..286
CONCAT_TIME_INT..331
CONCAT_TOD_INT...288
Constants ...39
Conversion instructions..............................113, 621
COS..72
Counter instructions315, 701
CRC16..84
Creating DUTs..51
CT...705
CT_FB ..702
CTD ..318
CTU ..316
CTUD ...320

D

Data exchange with flexible network..................798
Data Registers (DT) ...28
Data transfer in master/slave mode

(MEWTOCOL/Modbus RTU)..........................766
Data transfer in program controlled mode733
Data transfer instructions59
Data transfer to and from special data registers 859
Data transfer via communication ports...............711
Data transfer via MEWNET link786
Data transfer via network785
Data transfer via shared memory of a

MEWNET-F-Slave station791
Data transfer within the PLC805
Data Type STRING ..45
Data types ..40
DATE..44
Date and time instructions..........................281, 865
DATE_AND_TIME..43
DATE_TO_STRING ...216
DATE_TO_UDINT..190
DAY_OF_WEEK1 ..289
Decimal Constants ...39
Decimal to binary/BCD/gray code table1253
DELETE ...272
Description of the communication modes712
DF...884
DFI..886
DFN ..885
DINT ...41
DINT_TO_BCD_DWORD245
DINT_TO_BOOL..117
DINT_TO_DWORD..138
DINT_TO_INT ..149
DINT_TO_REAL...195
DINT_TO_STRING ..221
DINT_TO_STRING_LEADING_ZEROS............225
DINT_TO_TIME ...203
DINT_TO_UDINT...186
DINT_TO_UINT..162
DINT_TO_WORD...126

Index

1336

DIV ... 65
DIV_TIME_DINT.. 333
DIV_TIME_INT... 332
DIV_TIME_REAL... 334
DT_TO_DATE.. 206
DT_TO_STRING.. 217
DT_TO_TOD.. 208
DT_TO_UDINT .. 191
DUT.. 51
DUTs with non-overlapping elements.................. 52
DUTs with overlapping elements 53
DWORD ... 42
DWORD_BCD ... 56
DWORD_BCD_TO_DINT.................................. 170
DWORD_BCD_TO_UDINT 183
DWORD_TO_BOOL.. 115
DWORD_TO_BOOL32...................................... 239
DWORD_TO_BOOLS 242
DWORD_TO_DINT.. 171
DWORD_TO_INT .. 148
DWORD_TO_REAL... 193
DWORD_TO_STRING 214
DWORD_TO_TIME ... 201
DWORD_TO_UDINT... 182
DWORD_TO_UINT.. 160
DWORD_TO_WORD... 124

E

Edge detection instructions........................311, 883
Elementary data types ... 40
Elementary Data Types 40
EQ.. 108
Error alarm relays .. 34
Error codes ..1306, 1312
Error Codes E1 to E8....................................... 1312
ETLANADDR ... 57
ETLANADDR_TO_STRING 235
ETLANADDR_TO_STRING_NO_LEADING_ZERO

S ... 236
Evaluation of IsF145146NotActive flag.............. 781
EXP.. 81
ExpansionUnitNumberToIOWordOffset_FP0..1129
ExpansionUnitNumberToIOWordOffset_FPX_FP0

... 1130
Explanation of the operation of the PID instuctions

... 938
EXPT.. 82
External input (X) and output relays (Y) 37

F

F_TRIG .. 313
F0_MV ... 806
F1_DMV... 808
F10_BKMV... 820
F10_BKMV_NUMBER....................................... 822
F10_BKMV_NUMBER_OFFSET....................... 824
F10_BKMV_OFFSET .. 823
F100_SHR ... 558
F101_SHL.. 560

F102_DSHR .. 562
F103_DSHL... 564
F105_BSR... 566
F106_BSL.. 568
F108_BITR .. 570
F109_BITL... 572
F11_COPY .. 825
F110_WSHR ... 574
F111_WSHL.. 576
F112_WBSR.. 578
F113_WBSL .. 580
F115_FIFT... 484
F116_FIFR .. 488
F117_FIFW.. 492
F118_UDC... 708
F119_LRSR... 582
F12_EPRD .. 827
F12_ICRD.. 829
F120_ROR .. 586
F121_ROL... 588
F122_RCR... 590
F123_RCL ... 592
F125_DROR.. 594
F126_DROL .. 596
F127_DRCR.. 598
F128_DRCL... 600
F13_ICWT ... 831
F130_BTS ... 538
F131_BTR ... 539
F132_BTI... 540
F133_BTT.. 541
F135_BCU... 543
F136_DBCU .. 544
F137_STMR .. 934
F138_TIMEBCD_TO_SECBCD........................ 866
F139_SECBCD_TO_TIMEBCD........................ 867
F14_PGRD.. 833
F140_STC ... 998
F141_CLC ... 751, 999
F142_WDT .. 1000
F143_IORF.. 843
F145_SEND .. 787
F145_WRITE_DATA ... 767
F145_WRITE_DATA_TYPE_OFFS.................. 770
F145F146_MODBUS_COMMAND 778
F145F146_MODBUS_MASTER 780
F146_READ_DATA... 773
F146_READ_DATA_TYPE_OFFS.................... 775
F146_RECV .. 789
F147_PR ... 845
F148_ERR... 1001
F149_MSG .. 1003
F15_XCH... 836
F150_READ .. 848
F151_WRT .. 851
F152_RMRD.. 792
F153_RMWT ... 795
F155_SMPL... 1004
F156_STRG .. 1005

 Index

1337

F157_ADD_DTBCD_TIMEBCD 868
F158_SUB_DTBCD_TIMEBCD 870
F159_MTRN .. 742
F159_MWRT_PARA.. 719
F16_DXCH .. 837
F160_DSQR .. 415
F161_MRCV.. 756
F161_MRD_PARA... 728
F161_MRD_STATUS .. 730
F165_HighSpeedCounter_Cam 895
F166_HighSpeedCounter_Set 901
F166_PulseOutput_Set 1027
F167_HighSpeedCounter_Reset 905
F167_PulseOutput_Reset 1030
F168_PulseOutput_Home 1036
F168_PulseOutput_Trapezoidal...................... 1033
F169_PulseOutput_Jog................................... 1040
F17_SWAP .. 839
F170_PulseOutput_PWM................................ 1043
F171_PulseOutput_Home 1052
F171_PulseOutput_Jog_Positioning 1056
F171_PulseOutput_Trapezoidal...................... 1046
F172_PulseOutput_Jog................................... 1061
F173_PulseOutput_PWM................................ 1067
F174_PulseOutput_DataTable 1070
F175_PulseOutput_Linear............................... 1073
F176_PulseOutput_Center.............................. 1078
F176_PulseOutput_Pass................................. 1082
F177_PulseOutput_Home 1086
F178_HighSpeedCounter_Measure.................. 909
F18_BXCH... 841
F180_SCR ... 970
F180_SCR_DUT.. 971
F181_DSP ... 975
F182_FILTER .. 551
F183_DSTM .. 935
F19_SJP .. 1011
F190_MV3 ... 854
F191_DMV3... 856
F2_MVN... 810
F20_ADD ... 342
F21_DADD .. 344
F215_DAND .. 528
F216_DOR... 530
F217_DXOR .. 532
F218_DXNR .. 534
F219_DUNI.. 536
F22_ADD2 ... 346
F23_DADD2 .. 348
F230_DTBCD_TO_SEC.................................... 872
F231_SEC_TO_DTBCD.................................... 873
F235_GRY... 665
F236_DGRY .. 666
F237_GBIN.. 667
F238_DGBIN ... 668
F240_COLM .. 669
F241_LINE... 671
F25_SUB ... 366
F250_BTOA... 673
F251_ATOB... 677

F252_ACHK ...682
F26_DSUB ...368
F27_SUB2..370
F270_MAX ...451
F271_DMAX...453
F272_MIN...457
F273_DMIN ..459
F275_MEAN...463
F276_DMEAN ..465
F277_SORT ...501
F278_DSORT...503
F28_DSUB2 ...372
F282_SCAL..469
F283_DSCAL ...472
F284_RAMP...474
F285_LIMT ...878
F286_DLIMT ..880
F287_BAND ...433
F288_DBAND...435
F289_ZONE ...440
F290_DZONE...442
F3_DMVN...812
F30_MUL..390
F300_BSIN...417
F301_BCOS...419
F302_BTAN..421
F303_BASIN ..423
F304_BACOS...425
F305_BATAN ...427
F309_FMV..858, 1248
F31_DMUL ...392
F310_FADD ...1248
F311_FSUB..1248
F312_FMUL ...1248
F313_FDIV ...410, 1248
F317_ASIN...1248
F318_ACOS...1248
F319_ATAN..1248
F32_DIV ...402
F320_LN...1248
F321_EXP..1248
F322_LOG..1248
F323_PWR...1248
F324_FSQR ...1248
F325_FLT...684, 1248
F326_DFLT ..685, 1248
F327_INT ...687
F328_DINT...689
F329_FIX..1248
F33_DDIV...404
F330_DFIX ...1248
F331_ROFF ...1248
F332_DROFF...1248
F333_FINT ...691
F334_FRINT...693
F335_FSIGN ..695
F336_FABS..1248
F337_RAD..697
F338_DEG ...699
F34_MULW ..394

Index

1338

F345_FCMP... 1248
F346_FWIN.. 614
F347_FLIMT .. 1248
F348_FBAND... 437
F349_FZONE... 444
F35_INC... 358
F350_FMAX... 455
F351_FMIN.. 461
F352_FMEAN .. 467
F353_FSORT... 505
F354_FSCAL ... 478
F355_PID_DUT ... 942
F356_Control_DUT.. 948
F356_Parameters_Hold_DUT 949
F356_Parameters_NonHold_DUT..................... 949
F356_PID_PWM.. 945
F36_DINC.. 360
F37_DEC ... 382
F373_DTR ... 616
F374_DDTR... 618
F38_DDEC... 384
F39_DMULD.. 396
F4_GETS... 814
F40_BADD... 350
F41_DBADD .. 352
F42_BADD2...354
F43_DBADD2 .. 356
F45_BSUB... 374
F46_DBSUB .. 376
F47_BSUB2... 378
F48_DBSUB2 .. 380
F5_BTM ... 512
F50_BMUL... 398
F51_DBMUL .. 400
F52_BDIV .. 406
F53_DBDIV.. 408
F55_BINC .. 362
F56_DBINC.. 364
F57_BDEC... 386
F58_DBDEC .. 388
F6_DGT ... 514
F60_CMP... 604
F61_DCMP .. 606
F62_WIN.. 608
F63_DWIN ... 610
F64_BCMP .. 612
F65_WAN .. 518
F66_WOR.. 520
F67_XOR... 522
F68_XNR ... 524
F69_WUNI ... 526
F7_MV2 ... 816
F70_BCC ... 412
F71_HEX2A... 622
F72_A2HEX... 625
F73_BCD2A... 628
F74_A2BCD...631
F75_BIN2A .. 635
F76_A2BIN .. 638

F77_DBIN2A ... 641
F78_DA2BIN ... 644
F8_DMV2 .. 818
F80_BCD... 647
F81_BIN .. 649
F82_DBCD .. 651
F83_DBIN.. 653
F84_INV .. 545
F85_NEG... 447
F86_DNEG.. 449
F87_ABS ... 429
F88_DABS... 431
F89_EXT ... 655
F90_DECO.. 657
F91_SEGT... 659
F92_ENCO.. 660
F93_UNIT .. 547
F94_DIST .. 549
F95_ASC... 662
F96_SRC... 479
F97_DSRC .. 481
F98_CMPR.. 496
F99_CMPW... 499
File Registers (FL)... 29
Find.. 274
Flag operation in program controlled

communication... 757
Floating Point Constant (f)............................... 1251
Floating Point Instructions 1248
FNS_InitConfigDataTable 799
Format of send and receive data....................... 745
FP Addresses .. 30
FP TOOL Library ... 1246
FP-e display instructions 969
Further comparison instructions 620

G

GE ... 106
Generic data types .. 50
GET_RTC_DT... 290
GET_RTC_DTBCD ... 874
Getting the communication mode...................... 724
Getting the communication modes and statuses via

the input (X) flags from the MCU's COM ports in
RUN mode ... 732

Getting the MCU's Communication Parameters 727
GT.. 104
GT panel instructions 1133
GT_ActivateScreen ... 1134
GT_ChangeBacklightBrightness 1136

H

Hexadecimal Constants 39
Hexadecimal/Binary/BCD................................ 1316
High-speed counter

writing and reading the elapsed value 894
High-speed counter control instructions.......... 1139
High-speed counter information instructions... 1155
High-speed counter instructions.............. 889, 1137

 Index

1339

High-speed counter target value match control1166
Hsc_TargetValueMatch_Reset........................ 1167
Hsc_TargetValueMatch_Set............................ 1169
HscInfo_GetControlCode 1156
HscInfo_GetCurrentSpeed 1157
HscInfo_IsActive .. 1158
HscInfo_IsChannelEnabled 1159
HscInfo_IsCountingDisabled 1160
HscInfo_IsElapsedValueReset 1161
HscInfo_IsResetInputDisabled 1162
HscInfo_ReadElapsedValue............................ 1164
HscInfo_ReadTargetValue 1165

I

ICTL ... 1017
IEC Addresses... 31
Important symbols ... 2
Index Registers.. 1250
Inputs/Outputs ... 27
INSERT.. 276
INT ... 41
INT_TO_BCD_WORD....................................... 244
INT_TO_BOOL.. 116
INT_TO_DINT.. 172
INT_TO_DWORD.. 137
INT_TO_REAL... 194
INT_TO_STRING .. 218
INT_TO_STRING_LEADING_ZEROS.............. 220
INT_TO_TIME ... 202
INT_TO_UDINT... 184
INT_TO_UINT.. 161
INT_TO_WORD... 125
Internal Relays... 27
Introduction into the FIFO buffer........................ 483
IPADDR ... 56
IPADDR_TO_STRING....................................... 233
IPADDR_TO_STRING_NO_LEADING_ZEROS234
IS_VALID_DATE_INT.. 291
IS_VALID_DT_INT .. 292
IS_VALID_TOD_INT.. 294
IsCommunicationError 765
IsF145F146Error.. 783
IsF145F146NotActive .. 782
IsPlcLink .. 725
IsProgramControlled.. 726
IsReceptionDone ... 761
IsReceptionDone for a special COM port via the

corresponding System Variable 782
IsReceptionDoneByTimeOut 762
IsTransmissionDone.. 764

J

JP... 1010

K

KEEP ... 508

L

LBL... 1014
LE... 109

LEFT...264
LEN...262
LIMIT ..86
Link Relays and Registers (L/LD)29
LN...79
LOG..80
LOOP ...1013
LSR...556
LT ...110

M

MAX..254
MC..1008
MCE..1009
MCU_PARA_DUT..728
MCU_STATUS_DUT..730
MEWTOCOL-COM...712
MEWTOCOL-COM Communication Commands

..1315
MEWTOCOL-COM Error Codes1313
MID...268
MIN...255
MOD ...68
Modbus RTU ..712
Modbus RTU Master/Slave712
MOVE...60
MUL..64
MUL_TIME_DINT...336
MUL_TIME_INT ...335
MUL_TIME_REAL..337
MUX..256

N

NE...111
NOT..91

O

Operands..27
OR ..89
Overflow and Underflow...................................1252
Overlapping Elements of DUTs............................53

P

P0_MV..806
P1_DMV ...808
P10_BKMV...820
P100_SHR ...558
P101_SHL ..560
P102_DSHR...562
P103_DSHL ...564
P105_BSR..566
P106_BSL ..568
P108_BITR...570
P109_BITL ...572
P11_COPY...825
P110_WSHR..574
P111_WSHL...576
P112_WBSR ..578
P113_WBSL...580
P115_FIFT ...484

Index

1340

P116_FIFR... 488
P117_FIFW.. 492
P12_ICRD.. 829
P120_ROR... 586
P121_ROL ... 588
P122_RCR... 590
P123_RCL ... 592
P125_DROR.. 594
P126_DROL... 596
P127_DRCR .. 598
P13_EPWT .. 834
P130_BTS.. 538
P131_BTR ... 539
P132_BTI ... 540
P133_BTT.. 541
P135_BCU... 543
P136_DBCU .. 544
P138_TIMEBCD_TO_SECBCD 866
P139_SECBCD_TO_TIMEBCD 867
P14_GRD... 833
P140_STC ... 998
P141_CLC ... 999
P142_WDT .. 1000
P143_IORF.. 843
P146_RECV...789
P148_ERR... 1001
P149_MSG .. 1003
P15_XCH... 836
P151_WRT .. 851
P152_RMRD..792
P153_RMWT ...795
P155_SMPL... 1004
P156_STRG... 1005
P157_ADD_DTBCD_TIMEBCD 868
P158_SUB_DTBCD_TIMEBCD 870
P159_MWRT_PARA ... 719
P16_DXCH .. 837
P160_DSQR .. 415
P161_MRCV.. 756
P161_MRD_PARA... 728
P161_MRD_STATUS .. 730
P190_MV3 ... 854
P191_DMV3... 856
P2_MVN... 810
P20_ADD... 342
P21_DADD .. 344
P215_DAND .. 528
P216_DOR... 530
P217_DXOR .. 532
P218_DXNR .. 534
P219_DUNI..536
P230_DTBCD_TO_SEC.................................... 872
P231_SEC_TO_DTBCD.................................... 873
P235_GRY... 665
P236_DGRY ..666
P237_GBIN.. 667
P238_DGBIN ... 668
P240_COLM .. 669
P241_LINE... 671

P25_SUB... 366
P26_DSUB .. 368
P270_MAX .. 451
P271_DMAX.. 453
P272_MIN.. 457
P273_DMIN... 459
P275_MEAN.. 463
P276_DMEAN ... 465
P277_SORT .. 501
P278_DSORT.. 503
P282_SCAL... 469
P283_DSCAL .. 472
P285_LIMT.. 878
P286_DLIMT ... 880
P287_BAND .. 433
P289_ZONE .. 440
P3_DMVN.. 812
P300_BSIN.. 417
P301_BCOS.. 419
P302_BTAN... 421
P303_BASIN ... 423
P305_BATAN .. 427
P309_FMV... 858
P325_FLT.. 684
P335_FSIGN ... 695
P34_MULW ... 394
P346_FWIN... 614
P35_INC.. 358
P350_FMAX .. 455
P351_FMIN ... 461
P352_FMEAN.. 467
P353_FSORT.. 505
P354_FSCAL... 478
P36_DINC ... 360
P37_DEC... 382
P373_DTR... 616
P374_DDTR .. 618
P38_DDEC.. 384
P39_DMULD ... 396
P4_GETS .. 814
P41_DBADD.. 352
P45_BSUB .. 374
P46_DBSUB.. 376
P5_BTM... 512
P55_BINC.. 362
P56_DBINC... 364
P57_BDEC .. 386
P58_DBDEC.. 388
P6_DGT... 514
P60_CMP .. 604
P61_DCMP.. 606
P62_WIN ... 608
P63_DWIN... 610
P64_BCMP.. 612
P65_WAN.. 518
P66_WOR ... 520
P67_XOR .. 522
P68_XNR... 524
P69_WUNI... 526

 Index

1341

P7_MV2 ... 816
P71_HEX2A... 622
P72_A2HEX... 625
P73_BCD2A .. 628
P78_DA2BIN ... 644
P8_DMV2 .. 818
P82_DBCD .. 651
P87_ABS ... 429
P88_DABS... 431
P89_EXT ... 655
P91_SEGT... 659
P92_ENCO.. 660
P93_UNIT .. 547
P94_DIST .. 549
P95_ASC ... 662
P96_SRC... 479
P97_DSRC .. 481
P98_CMPR.. 496
P99_CMPW ... 499
PID_FB .. 952
PID_FB_DUT... 954
PLC link mode ... 713
Process control instructions............................... 937
Program controlled mode 712
Program execution control instructions 1007
Pulse control instructions................................. 1198
Pulse information instructions.......................... 1220
Pulse output

writing and reading the elapsed value 1026
Pulse output function blocks............................ 1173
Pulse output instructions 1019, 1171
Pulse output target value match control 1237
Pulse relays (P) ... 36
Pulse_TargetValueMatch_Reset..................... 1238
Pulse_TargetValueMatch_Set......................... 1241
Pulse_TargetValueMatchClear........................ 1219
PulseControl_CountingDisable........................ 1199
PulseControl_CountingEnable 1201
PulseControl_DeceleratedStop 1203
PulseControl_ElapsedValueContinue 1205
PulseControl_ElapsedValueReset 1207
PulseControl_JogPositionControl.................... 1209
PulseControl_NearHome................................. 1210
PulseControl_PulseOutputContinue................ 1212
PulseControl_PulseOutputStop....................... 1214
PulseControl_SetDefaults 1216
PulseControl_WriteElapsedValue 1217
PulseInfo_GetControlCode.............................. 1221
PulseInfo_GetCurrentSpeed 1222
PulseInfo_IsActive ... 1224
PulseInfo_IsChannelEnabled 1225
PulseInfo_IsCountingDisabled 1226
PulseInfo_IsElapsedValueReset 1227
PulseInfo_IsHomeInputTrue............................ 1228
PulseInfo_IsPulseOutputStopped.................... 1229
PulseInfo_IsTargetValueMatchActive.............. 1230
PulseInfo_ReadAccelerationForbiddenAreaStarting

Position .. 1231
PulseInfo_ReadCorrectedFinalSpeed............. 1232
PulseInfo_ReadCorrectedInitialSpeed 1233

PulseInfo_ReadElapsedValue1234
PulseInfo_ReadTargetValue1235
PulseInfo_ReadTargetValueMatchValue.........1236
PulseOutput_Center_FB1174
PulseOutput_Home_FB1177
PulseOutput_Jog_FB1180
PulseOutput_Jog_Positioning0_FB1182
PulseOutput_Jog_Positioning1_FB1185
PulseOutput_Jog_TargetValue_FB1187
PulseOutput_Linear_FB...................................1189
PulseOutput_Pass_FB.....................................1192
PulseOutput_Trapezoidal_FB1195

R

R_TRIG ..312
ReadDataFromFileRegisterBank861
REAL ..41
Real Numbers ..1251
REAL_TO_DINT...175
REAL_TO_DWORD...141
REAL_TO_INT ...152
REAL_TO_STRING ...229
REAL_TO_TIME ..204
REAL_TO_UDINT..187
REAL_TO_UINT...164
ReceiveCharacters...753
Receiving data from external devices747
Record of Changes ..1334
Relays and memory areas1255
Relays and memory areas for FP01255
Relays and memory areas for FP0R................1257
Relays and memory areas for FP10SH1270
Relays and memory areas for FP21265
Relays and memory areas for FP2SH1268
Relays and memory areas for FP-e1263
Relays and memory areas for FP-Sigma.........1259
Relays and memory areas for FP-X.................1261
Replace ..278
Restrictions of error alarm relays36
Restrictions of pulse relay (P)37
RIGHT ..266
ROL ..100
ROR..98
RS...308
RST ..509

S

SCALE_INT..956
SCALE_INT_UINT ...958
SCALE_REAL ..960
SCALE_UINT ...962
SCALE_UINT_INT ...964
SEL...258
Selection instructions ...253
Selection Instructions ...877
Self-Diagnostic Error Codes.............................1312
SendCharacters ...738
SendCharactersAndClearString.........................740
Sending data to external devices733
SET...509

Index

1342

SET_RTC_DT.. 295
SET_RTC_DTBCD .. 875
SetCommunicationMode 718
Setting in RUN Mode with SYS instructions

(FP-Sigma, FP-X)... 717
Setting the communication parameters 714
Setting the CPU's COM Ports in PROG Mode via

DIP Switches (FP10SH)................................. 715
Setting the CPU's COM Ports in PROG Mode via

System Registers ... 714
Setting the CPU's Communication Parameters.714
Setting the MCU's COM Ports in PROG Mode via

DIP Switches (FP2/2SH)................................ 718
Setting the MCU's COM Ports in PROG Mode via

the MCU Dialog.. 719
SHL .. 96
SHR ... 94
SIN ... 70
SmoothSignal_INT... 966
SmoothSignal_REAL ... 967
SmoothSignal_UINT .. 968
Special data registers 1254
Special Data Registers (DT) 29
Special data types only available in conversion

functions ... 55
Special instructions.. 997
Special Internal Relays .. 27
Specifying Relay Addresses 33
SPLIT_DATE_INT.. 296
SPLIT_DT_INT .. 297
SPLIT_TIME_INT... 338
SPLIT_TOD_INT.. 299
SQRT ... 69
SR .. 306
STRING ... 45
String instructions .. 261
STRING with EN/ENO ... 46
STRING_TO_DINT.. 178
STRING_TO_DINT_STEPSAVER 179
STRING_TO_DWORD 143
STRING_TO_DWORD_STEPSAVER............... 144
STRING_TO_ETLANADDR 250
STRING_TO_ETLANADDR_STEPSAVER....... 251
STRING_TO_INT... 155
STRING_TO_INT_STEPSAVER....................... 156
STRING_TO_IPADDR....................................... 248
STRING_TO_IPADDR_STEPSAVER............... 249
STRING_TO_REAL... 199
STRING_TO_UDINT ... 189
STRING_TO_UINT.. 166
STRING_TO_UINT_STEPSAVER 167
STRING_TO_WORD... 130
STRING_TO_WORD_STEPSAVER 131
Strings general... 45
SUB.. 63
SUB_DATE_DATE .. 300
SUB_DT_DT.. 301
SUB_DT_TIME .. 302
SUB_TIME... 339

SUB_TOD_TIME... 303
SUB_TOD_TOD.. 304
SYS1 ... 980
SYS2 ... 994
System register instructions 979
System registers.. 1273
System registers for FP0................................. 1294
System registers for FP0R 1288
System registers for FP2/FP2SH/FP10SH 1300
System registers for FP-e................................ 1297
System registers for FP-Sigma 1283
System registers for FP-X 1274
System Variables for Special Relays or Special

Data Registers ... 859

T

Table of communication check error 1311
Table of self-Diagnostic errors 1307
Table of syntax check error 1306
TAN ... 75
TIME .. 42
TIME_OF_DAY.. 44
TIME_TO_DINT... 177
TIME_TO_DWORD... 142
TIME_TO_INT ... 154
TIME_TO_REAL.. 198
TIME_TO_STRING ... 231
TIME_TO_WORD.. 129
Timer Contacts (T) and Counter Contacts (C) 34
Timer instructions 323, 913
Timers and Counters... 28
TM_100ms... 930
TM_100ms_FB.. 920
TM_10ms... 928
TM_10ms_FB.. 917
TM_1ms... 926
TM_1ms_FB.. 914
TM_1s.. 932
TM_1s_FB... 923
TOD_TO_STRING .. 237
TOD_TO_UDINT... 192
TOF ... 324
TON ... 326
TP .. 328
Transferring data to and from file register banks 1

or 2... 860
TRUNC_TO_DINT... 176
TRUNC_TO_INT ... 153
TRUNC_TO_UDINT.. 188
TRUNC_TO_UINT... 165
Types of system registers 1273

U

UDINT.. 41
UDINT_TO_BCD_DWORD............................... 247
UDINT_TO_BOOL... 119
UDINT_TO_DATE... 207
UDINT_TO_DINT .. 174
UDINT_TO_DT.. 205

 Index

1343

UDINT_TO_DWORD... 140
UDINT_TO_INT ... 151
UDINT_TO_REAL ... 197
UDINT_TO_STRING ... 223
UDINT_TO_STRING_LEADING_ZEROS......... 226
UDINT_TO_TOD ... 209
UDINT_TO_UINT .. 163
UDINT_TO_WORD ... 128
UINT... 41
UINT_TO_BCD_WORD 246
UINT_TO_BOOL ... 118
UINT_TO_DINT... 173
UINT_TO_DWORD ... 139
UINT_TO_INT.. 150
UINT_TO_REAL.. 196
UINT_TO_STRING.. 227
UINT_TO_STRING_LEADING_ZEROS 228
UINT_TO_UDINT .. 185
UINT_TO_WORD.. 127
Unit_AnalogInOut_FP0_A21 1092
Unit_AnalogInOut_FPG_A44 1119
Unit_AnalogInput_FP0_A80 1097
Unit_AnalogInput_FP0_RTD_INT 1102
Unit_AnalogInput_FP0_RTD_REAL................ 1102
Unit_AnalogInput_FP0_TC4_TC8................... 1114
Unit_AnalogOutput_FP0_A04I 1123
Unit_AnalogOutput_FP0_A04V....................... 1126
Using DUTs in a POU header 52
Using DUTs in the global variable list.................. 51

V

Values When Overflow/Underflow Occurs 1252

W

WITHIN_LIMITS .. 112
WORD ... 42
Word representation of relays (WX, WY, WR, and

WL)... 37
WORD_BCD.. 56
WORD_BCD_TO_INT....................................... 147
WORD_BCD_TO_UINT 159
WORD_TO_BOOL .. 114
WORD_TO_BOOL16 .. 238
WORD_TO_BOOLS.. 240
WORD_TO_DINT.. 169
WORD_TO_DWORD .. 136
WORD_TO_INT... 146
WORD_TO_STRING... 212
WORD_TO_TIME.. 200
WORD_TO_UDINT ... 181
WORD_TO_UINT.. 158
WriteDataToFileRegisterBank 863
Writing the high-speed counter control code..... 891
Writing the pulse output control code 1021

X

XOR ... 90

 Index

1343

UDINT_TO_DWORD... 132
UDINT_TO_INT ... 143
UDINT_TO_REAL ... 190
UDINT_TO_STRING ... 216
UDINT_TO_STRING_LEADING_ZEROS......... 219
UDINT_TO_TOD ... 202
UDINT_TO_UINT .. 156
UDINT_TO_WORD ... 120
UINT... 27
UINT_TO_BCD_WORD 239
UINT_TO_BOOL ... 110
UINT_TO_DINT... 166
UINT_TO_DWORD ... 131
UINT_TO_INT.. 142
UINT_TO_REAL.. 189
UINT_TO_STRING.. 220
UINT_TO_STRING_LEADING_ZEROS 221
UINT_TO_UDINT .. 178
UINT_TO_WORD.. 119
Unit_AnalogInOut_FP0_A21 1098
Unit_AnalogInOut_FPG_A44 1124
Unit_AnalogInput_FP0_A80 1102
Unit_AnalogInput_FP0_RTD_INT 1107
Unit_AnalogInput_FP0_RTD_REAL................ 1107
Unit_AnalogInput_FP0_TC4_TC8................... 1119
Unit_AnalogOutput_FP0_A04I 1128
Unit_AnalogOutput_FP0_A04V....................... 1131
Using DUTs in a POU header 37
Using DUTs in the global variable list.................. 36

V

Values When Overflow/Underflow Occurs 1260

W

WITHIN_LIMITS .. 103
WORD ... 28
Word representation of relays (WX, WY, WR, and

WL)... 24
WORD_BCD.. 41
WORD_BCD_TO_INT....................................... 139
WORD_BCD_TO_UINT 152
WORD_TO_BOOL .. 106
WORD_TO_BOOL16 .. 231
WORD_TO_BOOLS.. 233
WORD_TO_DINT.. 162
WORD_TO_DWORD .. 128
WORD_TO_INT... 138
WORD_TO_STRING... 205
WORD_TO_TIME.. 193
WORD_TO_UDINT ... 174
WORD_TO_UINT.. 151
WriteDataToFileRegisterBank 871
Writing the high-speed counter control code..... 898
Writing the pulse output control code 1028

X

XOR ... 78

	Cover
	BEFORE BEGINNING
	LIMITED WARRANTY
	Important symbols
	Table of Contents
	Part I Basics
	Operands
	Inputs/Outputs
	Internal Relays
	Special Internal Relays
	Timers and Counters
	Data Registers (DT)
	Special Data Registers (DT)
	File Registers (FL)
	Link Relays and Registers (L/LD)

	Addresses
	FP Addresses
	IEC Addresses
	Specifying Relay Addresses
	Timer Contacts (T) and Counter Contacts (C)
	Error alarm relays
	Restrictions of error alarm relays

	Pulse relays (P)
	Restrictions of pulse relay (P)

	External input (X) and output relays (Y)
	Word representation of relays (WX, WY, WR, and WL)

	Constants
	Decimal Constants
	Hexadecimal Constants
	BCD Constants

	Data types
	Elementary data types
	BOOL
	INT
	UINT
	DINT
	UDINT
	REAL
	WORD
	DWORD
	TIME
	DATE_AND_TIME
	DATE
	TIME_OF_DAY
	STRING

	Generic data types
	DUT
	Creating DUTs
	Using DUTs in the global variable list
	Using DUTs in a POU header
	DUTs with non-overlapping elements
	DUTs with overlapping elements

	Array
	Special data types only available in conversion functions
	BOOL16
	BOOL32
	BCD_WORD
	WORD_BCD
	BCD_DWORD
	DWORD_BCD
	IPADDR
	ETLANADDR
	ANY_IN_UNITS_OF_WORDS
	ANY_SIMPLE_NOT_BOOL

	Part II IEC Instructions
	Data transfer instructions
	MOVE

	Arithmetic instructions
	ADD
	SUB
	MUL
	DIV
	MOD
	SQRT
	SIN
	ASIN
	COS
	ACOS
	TAN
	ATAN
	ATAN2_YX
	LN
	LOG
	EXP
	EXPT
	CRC16
	LIMIT

	Bitwise Boolean instructions
	AND
	OR
	XOR
	NOT

	Bit-shift instructions
	SHR
	SHL
	ROR
	ROL

	Comparison instructions
	GT
	GE
	EQ
	LE
	LT
	NE
	WITHIN_LIMITS

	Conversion instructions
	WORD_TO_BOOL
	DWORD_TO_BOOL
	INT_TO_BOOL
	DINT_TO_BOOL
	UINT_TO_BOOL
	UDINT_TO_BOOL
	BOOL_TO_WORD
	BOOL16_TO_WORD
	BOOLS_TO_WORD
	DWORD_TO_WORD
	INT_TO_WORD
	DINT_TO_WORD
	UINT_TO_WORD
	UDINT_TO_WORD
	TIME_TO_WORD
	STRING_TO_WORD
	STRING_TO_WORD_STEPSAVER
	BOOL_TO_DWORD
	BOOL32_TO_DWORD
	BOOLS_TO_DWORD
	WORD_TO_DWORD
	INT_TO_DWORD
	DINT_TO_DWORD
	UINT_TO_DWORD
	UDINT_TO_DWORD
	REAL_TO_DWORD
	TIME_TO_DWORD
	STRING_TO_DWORD
	STRING_TO_DWORD_STEPSAVER
	BOOL_TO_INT
	WORD_TO_INT
	WORD_BCD_TO_INT
	DWORD_TO_INT
	DINT_TO_INT
	UINT_TO_INT
	UDINT_TO_INT
	REAL_TO_INT
	TRUNC_TO_INT
	TIME_TO_INT
	STRING_TO_INT
	STRING_TO_INT_STEPSAVER
	BOOL_TO_UINT
	WORD_TO_UINT
	WORD_BCD_TO_UINT
	DWORD_TO_UINT
	INT_TO_UINT
	DINT_TO_UINT
	UDINT_TO_UINT
	REAL_TO_UINT
	TRUNC_TO_UINT
	STRING_TO_UINT
	STRING_TO_UINT_STEPSAVER
	BOOL_TO_DINT
	WORD_TO_DINT
	DWORD_BCD_TO_DINT
	DWORD_TO_DINT
	INT_TO_DINT
	UINT_TO_DINT
	UDINT_TO_DINT
	REAL_TO_DINT
	TRUNC_TO_DINT
	TIME_TO_DINT
	STRING_TO_DINT
	STRING_TO_DINT_STEPSAVER
	BOOL_TO_UDINT
	WORD_TO_UDINT
	DWORD_TO_UDINT
	DWORD_BCD_TO_UDINT
	INT_TO_UDINT
	UINT_TO_UDINT
	DINT_TO_UDINT
	REAL_TO_UDINT
	TRUNC_TO_UDINT
	STRING_TO_UDINT
	DATE_TO_UDINT
	DT_TO_UDINT
	TOD_TO_UDINT
	DWORD_TO_REAL
	INT_TO_REAL
	DINT_TO_REAL
	UINT_TO_REAL
	UDINT_TO_REAL
	TIME_TO_REAL
	STRING_TO_REAL
	WORD_TO_TIME
	DWORD_TO_TIME
	INT_TO_TIME
	DINT_TO_TIME
	REAL_TO_TIME
	UDINT_TO_DT
	DT_TO_DATE
	UDINT_TO_DATE
	DT_TO_TOD
	UDINT_TO_TOD
	BOOL_TO_STRING
	WORD_TO_STRING
	DWORD_TO_STRING
	DATE_TO_STRING
	DT_TO_STRING
	INT_TO_STRING
	INT_TO_STRING_LEADING_ZEROS
	DINT_TO_STRING
	UDINT_TO_STRING
	DINT_TO_STRING_LEADING_ZEROS
	UDINT_TO_STRING_LEADING_ZEROS
	UINT_TO_STRING
	UINT_TO_STRING_LEADING_ZEROS
	REAL_TO_STRING
	TIME_TO_STRING
	IPADDR_TO_STRING
	IPADDR_TO_STRING_NO_LEADING_ZEROS
	ETLANADDR_TO_STRING
	ETLANADDR_TO_STRING_NO_LEADING_ZEROS
	TOD_TO_STRING
	WORD_TO_BOOL16
	DWORD_TO_BOOL32
	WORD_TO_BOOLS
	DWORD_TO_BOOLS
	INT_TO_BCD_WORD
	DINT_TO_BCD_DWORD
	UINT_TO_BCD_WORD
	UDINT_TO_BCD_DWORD
	STRING_TO_IPADDR
	STRING_TO_IPADDR_STEPSAVER
	STRING_TO_ETLANADDR
	STRING_TO_ETLANADDR_STEPSAVER

	Selection instructions
	MAX
	MIN
	MUX
	SEL

	String instructions
	LEN
	LEFT
	RIGHT
	MID
	CONCAT
	DELETE
	FIND
	INSERT
	REPLACE

	Date and time instructions
	ADD_DT_TIME
	ADD_TOD_TIME
	CONCAT_DATE_INT
	CONCAT_DATE_TOD
	CONCAT_DT_INT
	CONCAT_TOD_INT
	DAY_OF_WEEK1
	GET_RTC_DT
	IS_VALID_DATE_INT
	IS_VALID_DT_INT
	IS_VALID_TOD_INT
	SET_RTC_DT
	SPLIT_DATE_INT
	SPLIT_DT_INT
	SPLIT_TOD_INT
	SUB_DATE_DATE
	SUB_DT_DT
	SUB_DT_TIME
	SUB_TOD_TIME
	SUB_TOD_TOD

	Bistable instructions
	SR
	RS

	Edge detection instructions
	R_TRIG
	F_TRIG

	Counter instructions
	CTU
	CTD
	CTUD

	Timer instructions
	TOF
	TON
	TP
	ADD_TIME
	CONCAT_TIME_INT
	DIV_TIME_INT
	DIV_TIME_DINT
	DIV_TIME_REAL
	MUL_TIME_INT
	MUL_TIME_DINT
	MUL_TIME_REAL
	SPLIT_TIME_INT
	SUB_TIME

	Part III FP Instructions
	Arithmetic instructions
	F20_ADD
	F21_DADD
	F22_ADD2
	F23_DADD2
	F40_BADD
	F41_DBADD
	F42_BADD2
	F43_DBADD2
	F35_INC
	F36_DINC
	F55_BINC
	F56_DBINC
	F25_SUB
	F26_DSUB
	F27_SUB2
	F28_DSUB2
	F45_BSUB
	F46_DBSUB
	F47_BSUB2
	F48_DBSUB2
	F37_DEC
	F38_DDEC
	F57_BDEC
	F58_DBDEC
	F30_MUL
	F31_DMUL
	F34_MULW
	F39_DMULD
	F50_BMUL
	F51_DBMUL
	F32_DIV
	F33_DDIV
	F52_BDIV
	F53_DBDIV
	F313_FDIV
	F70_BCC
	F160_DSQR
	F300_BSIN
	F301_BCOS
	F302_BTAN
	F303_BASIN
	F304_BACOS
	F305_BATAN
	F87_ABS
	F88_DABS
	F287_BAND
	F288_DBAND
	F348_FBAND
	F289_ZONE
	F290_DZONE
	F349_FZONE
	F85_NEG
	F86_DNEG
	F270_MAX
	F271_DMAX
	F350_FMAX
	F272_MIN
	F273_DMIN
	F351_FMIN
	F275_MEAN
	F276_DMEAN
	F352_FMEAN
	F282_SCAL
	F283_DSCAL
	F284_RAMP
	F354_FSCAL
	F96_SRC
	F97_DSRC
	Introduction into the FIFO buffer
	F115_FIFT
	F116_FIFR
	F117_FIFW
	F98_CMPR
	F99_CMPW
	F277_SORT
	F278_DSORT
	F353_FSORT

	Bistable instructions
	KEEP
	SET

	Bitwise Boolean instructions
	F5_BTM
	F6_DGT
	F65_WAN
	F66_WOR
	F67_XOR
	F68_XNR
	F69_WUNI
	F215_DAND
	F216_DOR
	F217_DXOR
	F218_DXNR
	F219_DUNI
	F130_BTS
	F131_BTR
	F132_BTI
	F133_BTT
	F135_BCU
	F136_DBCU
	F84_INV
	F93_UNIT
	F94_DIST
	F182_FILTER

	Bit-shift instructions
	LSR
	F100_SHR
	F101_SHL
	F102_DSHR
	F103_DSHL
	F105_BSR
	F106_BSL
	F108_BITR
	F109_BITL
	F110_WSHR
	F111_WSHL
	F112_WBSR
	F113_WBSL
	F119_LRSR
	F120_ROR
	F121_ROL
	F122_RCR
	F123_RCL
	F125_DROR
	F126_DROL
	F127_DRCR
	F128_DRCL

	Comparison instructions
	F60_CMP
	F61_DCMP
	F62_WIN
	F63_DWIN
	F64_BCMP
	F346_FWIN
	F373_DTR
	F374_DDTR
	Further comparison instructions

	Conversion instructions
	F71_HEX2A
	F72_A2HEX
	F73_BCD2A
	F74_A2BCD
	F75_BIN2A
	F76_A2BIN
	F77_DBIN2A
	F78_DA2BIN
	F80_BCD
	F81_BIN
	F82_DBCD
	F83_DBIN
	F89_EXT
	F90_DECO
	F91_SEGT
	F92_ENCO
	F95_ASC
	F235_GRY
	F236_DGRY
	F237_GBIN
	F238_DGBIN
	F240_COLM
	F241_LINE
	F250_BTOA
	F251_ATOB
	F252_ACHK
	F325_FLT
	F326_DFLT
	F327_INT
	F328_DINT
	F333_FINT
	F334_FRINT
	F335_FSIGN
	F337_RAD
	F338_DEG

	Counter instructions
	CT_FB
	CT
	F118_UDC

	Data transfer via communication ports
	Description of the communication modes
	Setting the communication parameters
	Setting the CPU's COM Ports in PROG Mode via System Registers
	Setting the CPU's COM Ports in PROG Mode via DIP Switches (FP10SH)
	Setting in RUN Mode with SYS instructions (FP-Sigma, FP-X)
	Changing the communication mode in RUN mode
	SetCommunicationMode

	Getting the communication mode
	Checking for PLC link mode
	IsPlcLink
	Checking for program controlled mode

	IsProgramControlled
	Checking for MEWTOCOL-COM master / slave mode

	F161_MRD_PARA
	F161_MRD_STATUS
	Getting the communication modes and statuses via the input (X) flags from the MCU's COM ports in RUN mode

	Data transfer in program controlled mode
	Sending data to external devices
	SendCharactersAndClearString
	F159_MTRN
	Format of send and receive data
	Receiving data from external devices

	ClearReceiveBuffer
	F161_MRCV
	Flag operation in program controlled communication

	IsReceptionDone
	IsReceptionDoneByTimeout
	IsTransmissionDone
	IsCommunicationError

	Data transfer in master/slave mode (MEWTOCOL/Modbus RTU)
	F145_WRITE_DATA
	F145_WRITE_DATA_TYPE_OFFS
	F146_READ_DATA
	F146_READ_DATA_TYPE_OFFS
	F145F146_MODBUS_COMMAND
	F145F146_MODBUS_MASTER
	Evaluation of IsF145146NotActive flag

	Is145F146NotActive
	IsF145F146Error

	Data transfer via network
	Data transfer via MEWNET link
	F145_SEND
	F146_RECV

	Data transfer via shared memory of a MEWNET-F-Slave station
	F152_RMRD
	F153_RMWT

	Data exchange with flexible network
	FNS_InitConfigDataTable
	FNS_InitConfigNameTable

	Data transfer within the PLC
	F0_MV
	F1_DMV
	F2_MVN
	F3_DMVN
	F4_GETS
	F7_MV2
	F8_DMV2
	F10_BKMV
	F10_BKMV_NUMBER
	F10_BKMV_OFFSET
	F10_BKMV_NUMBER_OFFSET
	F11_COPY
	F12_EPRD
	F12_ICRD
	F13_ICWT
	F14_PGRD
	P13_EPWT
	F15_XCH
	F16_DXCH
	F17_SWAP
	F18_BXCH
	F143_IORF
	F147_PR
	F150_READ
	F151_WRT
	F190_MV3
	F191_DMV3
	F309_FMV
	Data transfer to and from special data registers
	Transferring data to and from file register banks 1 or 2
	ReadDataFromFileRegisterBank
	WriteDataToFileRegisterBank

	Date and time instructions
	F138_TIMEBCD_TO_SECBCD
	F139_SECBCD_TO_TIMEBCD
	F157_ADD_DTBCD_TIMEBCD
	F158_SUB_DTBCD_TIMEBCD
	F230_DTBCD_TO_SEC
	F231_SEC_TO_DTBCD
	GET_RTC_DTBCD
	SET_RTC_DTBCD

	Selection Instructions
	F285_LIMT
	F286_DLIMT

	Edge detection instructions
	DF
	DFN
	DFI
	ALT

	High-speed counter instructions
	28.1 Introduction
	Writing the high-speed counter control code
	High-speed counter: writing and reading the elapsed value
	F165_HighSpeedCounter_Cam

	Timer instructions
	TM_1ms_FB
	TM_10ms_FB
	TM_100ms_FB
	TM_1s_FB
	TM_1ms
	TM_10ms
	TM_100ms
	TM_1s
	F137_STMR
	F183_DSTM

	Process control instructions
	Explanation of the operation of the PID instuctions
	F355_PID_DUT
	F356_PID_PWM
	PID_FB
	PID_FB_DUT
	SCALE_INT
	SCALE_INT_UINT
	SCALE_REAL
	SCALE_UINT
	SCALE_UINT_INT
	SmoothSignal_INT
	SmoothSignal_REAL
	SmoothSignal_UINT

	FP-e display instructions
	F180_SCR
	F180_SCR_DUT
	F181_DSP

	System register instructions
	SYS1
	SYS2

	Special instructions
	F140_STC
	F141_CLC
	F142_WDT
	F148_ERR
	F149_MSG
	F155_SMPL
	F156_STRG

	Program execution control instructions
	MC
	MCE
	JP
	F19_SJP
	LOOP
	LBL
	BRK
	ICTL

	Pulse output instructions
	35.1 Introduction
	Writing the pulse output control code
	Pulse output: writing and reading the elapsed value
	F171_PulseOutput_Trapezoidal
	F173_PulseOutput_PWM
	F175_PulseOutput_Linear
	F176_PulseOutput_Center
	F176_PulseOutput_Pass

	Part IV Tool Instructions
	Analog unit instructions
	Unit_AnalogInOut_FP0_A21
	Unit_AnalogInput_FP0_A80
	Unit_AnalogInput_FP0_RTD_INT
	Unit_AnalogInput_FP0_RTD_REAL
	Unit_AnalogInput_FP0_TC4_TC8
	Unit_AnalogInOut_FPG_A44
	Unit_AnalogOutput_FP0_A04I
	Unit_AnalogOutput_FP0_A04V
	ExpansionUnitNumberToIOWordOffset_FP0
	ExpansionUnitNumberToIOWordOffset_FPX_FP0

	GT panel instructions
	GT_ActivateScreen
	GT_ChangeBacklightBrightness

	High-speed counter instructions
	38.1 Introduction
	High-speed counter control instructions
	HscControl_CountingDisable
	HscControl_CountingEnable
	HscControl_ElapsedValueContinue
	HscControl_ElapsedValueReset
	HscControl_HscInstructionClear
	HscControl_ResetInputDisable
	HscControl_ResetInputEnable
	HscControl_SetDefaults
	HscControl_WriteElapsedValue

	High-speed counter information instructions
	HscInfo_GetControlCode
	HscInfo_GetCurrentSpeed
	HscInfo_IsActive
	HscInfo_IsChannelEnabled
	HscInfo_IsCountingDisabled
	HscInfo_IsElapsedValueReset
	HscInfo_IsResetInputDisabled
	HscInfo_ReadElapsedValue
	HscInfo_ReadTargetValue

	High-speed counter target value match control
	Hsc_TargetValueMatch_Reset
	Hsc_TargetValueMatch_Set

	Pulse output instructions
	39.1 Introduction
	Pulse output function blocks
	PulseOutput_Center_FB
	PulseOutput_Home_FB
	PulseOutput_Jog_FB
	PulseOutput_Jog_Positioning0_FB
	PulseOutput_Jog_Positioning1_FB
	PulseOutput_Jog_TargetValue_FB
	PulseOutput_Linear_FB
	PulseOutput_Pass_FB
	PulseOutput_Trapezoidal_FB

	Pulse control instructions
	PulseControl_CountingDisable
	PulseControl_CountingEnable
	PulseControl_DeceleratedStop
	PulseControl_ElapsedValueContinue
	PulseControl_ElapsedValueReset
	PulseControl_JogPositionControl
	PulseControl_NearHome
	PulseControl_PulseOutputContinue
	PulseControl_PulseOutputStop
	PulseControl_SetDefaults
	PulseControl_WriteElapsedValue
	Pulse_TargetValueMatchClear

	Pulse information instructions
	PulseInfo_GetControlCode
	PulseInfo_GetCurrentSpeed
	PulseInfo_IsActive
	PulseInfo_IsChannelEnabled
	PulseInfo_IsCountingDisabled
	PulseInfo_IsElapsedValueReset
	PulseInfo_IsHomeInputTrue
	PulseInfo_IsPulseOutputStopped
	PulseInfo_IsTargetValueMatchActive
	PulseInfo_ReadAccelerationForbiddenAreaStartingPosition
	PulseInfo_ReadCorrectedFinalSpeed
	PulseInfo_ReadCorrectedInitialSpeed
	PulseInfo_ReadElapsedValue
	PulseInfo_ReadTargetValue
	PulseInfo_ReadTargetValueMatchValue

	Pulse output target value match control
	Pulse_TargetValueMatch_Reset
	Pulse_TargetValueMatch_Set

	Appendix Programming Information
	FP TOOL Library
	Floating Point Instructions
	Index Registers
	Real Numbers
	Floating Point Constant (f)
	BCD Type Constant

	Overflow and Underflow
	Values When Overflow/Underflow Occurs
	Decimal to binary/BCD/gray code table

	Special data registers
	Relays and memory areas
	Relays and memory areas for FP0
	Relays and memory areas for FP0R
	Relays and memory areas for FP-Sigma
	Relays and memory areas for FP-X
	Relays and memory areas for FP-e
	Relays and memory areas for FP2
	Relays and memory areas for FP2SH
	Relays and memory areas for FP10SH

	System registers
	Types of system registers
	System registers for FP-X
	System registers for FP-Sigma
	System registers for FP0R
	System registers for FP0
	System registers for FP-e
	System registers for FP2/FP2SH/FP10SH

	Error codes
	Table of syntax check error
	Table of self-Diagnostic errors
	Table of communication check error

	Error codes
	Error Codes E1 to E8
	Self-Diagnostic Error Codes
	MEWTOCOL-COM Error Codes

	MEWTOCOL-COM Communication Commands
	Hexadecimal/Binary/BCD
	ASCII Codes
	Availability of all instructions on all PLC types

	Index
	Panasonic Electric Works Global Sales Companies

