d

sluoseue

[enuepy Bulwwelbolid salLvs d4

oV adoing SHIOAN 01193|3 dluoseued

N3IZACLEONODV

ciLoze/L

Panasonic

PROGRAMMABLE CONTROLLER

FP Series

Programming Manual

1 : ~ F97 DSRG
start—— EN ENO
- -44 s

data_table[0] s2_Start
data_table[3] s3_End

start—— EN ENO L.
-DT90037 (——number_matches
-start EN ENO S
-DT90038 (——position_1match -

BEFORE BEGINNING

Liability and Copyright for the Hardware

This manual and everything described in it are copyrighted. You may not copy this manual, in whole or part,
without written consent of Panasonic Electric Works Europe AG (PEWEU).

PEWEU pursues a policy of continuous improvement of the design and performance of its products. Therefore
we reserve the right to change the manual/product without notice. In no event will PEWEU be liable for direct,
special, incidental, or consequential damage resulting from any defect in the product or its documentation,
even if advised of the possibility of such damages.

We invite your comments on this manual. Please e-mail us at:
techdoc.peweu@eu.panasonic.com.

Please direct support matters and technical questions to your local Panasonic representative.

LIMITED WARRANTY

If physical defects caused by distribution are found, PEWEU will replace/repair the product free of charge.
Exceptions include:

* When physical defects are due to different usage/treatment of the product other than described in
the manual.

* When physical defects are due to defective equipment other than the distributed product.
* When physical defects are due to modifications/repairs by someone other than PEWEU.

* When physical defects are due to natural disasters.

Important symbols

One or more of the following symbols may be used in this documentation:

DANGER!

The warning triangle indicates especially important safety
instructions. If they are not adhered to, the results could be
fatal or critical injury.

VY,

m ¢ CAUTION

Indicates that you should proceed with caution. Failure to do so may result in injury or
significant damage to instruments or their contents, e.g. data.

+NOTE

Contains important additional information.

AVl ¢ EXAMPLE

|
Contains an illustrative example of the previous text section.
A—
X * Procedure
3.~

Indicates that a step-by-step procedure follows.

* REFERENCE

Indicates where you can find additional information on the subject at hand.

Table of Contents

Part | Basics

A = 7 LY o S PP UT TR PPRUPPPPPPPPRTRPN 26
T OPEIANAS ... 27
R P N [01U 1 €= @ U o U (=SSR 27
T.1.2 INEEIMNAI REIAYS...ccoi it e ettt e e e e e e et e e e e e e e e ssb b b aeeeaeeeseassaeeaaaeeeaannnes 27
1.1.3 Special INternal REIAYS..........uiiiiiieee et e e e e aae 27
1.1.4 TIMErs @Nd COUNTEISoi ittt ettt e bttt e bt e e s s bt e e abe e e sabeeebe e e smbeeenbeesnnee s 28
1.1.5 Data ReGISIEIS (D) ciiiiiiiieiiii ettt ettt h et e e e ettt e e e eab et e e e aabe e e e e sabeeeeesnbeeesnbeeeeeanes 28
1.1.6 Special Data ReGISIEIS (DT).....cciiuiieeiiiiiieeiiiiee e etieee e ettt e e e ettt e e e s steeeeesteeeessteeeeesnsseeeeaasseaaesaeeesanes 29
S A 1 = =T 15 (= (3 I PP PUPURRIN 29
1.1.8 Link Relays and RegiSters (L/LD)......oouuiiii ittt e e 29
1.2 AQAIESSES ...ttt ettt e e oo e e e e e e e e et e e e e e e e e e e 30
2 R o e o [| (=TT PSPPSRt 30
L A | =L O o [[(=TT SO PP PRPPPPPPPPN 31
1.2.3 SpecCifying Relay AQArESSES.........uuviiiiiieie it e e e e e e et e e e e e e e ssntsseeeeaeeannnes 33
1.2.4 Timer Contacts (T) and Counter Contacts (C)ooiiiiiiiiiiiiiiee e 34
T1.2.5 EFrOr @larm FEIAYSttt e e e e e ettt et e e e e e s e nbn b e e e e e e e e e s naeeaaeeeaannnee 34
1.2.5.1 Restrictions of error alarm relays ... 36

T.2.6 PUISE FEIAYS (P) c.neeeiiiiiiiiie ettt e e e ettt e e e e bttt e e s ant et e e e anbe e e e e anbeeeeanbeeeeeanes 36
1.2.6.1 Restrictions of PUISE relay (P).......uuiiiiiiiiie ettt e e e s enaee s 37

1.2.7 External input (X) and oUtpUL relays (Y) ..ceoioeeiii ittt e e et e e e e e e s neeeeenes 37
1.2.8 Word representation of relays (WX, WY, WR, and WL).........ccooiiiiii e 37
LG T O7o] 1] r= 1 | £ TP SO PPR PPN 39
1.3.1 DeCimal CONSIANTSviiiiiiiiii ettt e e bt e e e nnee s 39
1.3.2 Hexadecimal CONSIANESoiiiiiiie ettt e et e e e sbeeeeaae 39
(I G T = O] B I 0] < =1 o | £ PSRRI 39

Table of Contents

LR D= L= 1Y o= SO PP PO P PPPPPPOTTPPPI 40
1.4.1 Elementary data tyPeS......cccuuiiiiiiee e e e e a e e e e e e e araaaaaaaes 40
(1 30 e = 1 USSR RSR 40

(1 30 | SRR 41

(1 300 1 T U 1 SR SURTRTRN 41

(I 30t T RSOSSN 41

(1 30t TR T U 1 T RO 41
141,68 REAL ettt b bbbt a bbb bttt et be e she e e e snne b ere e 41

I 3t T A T @ 1 I PR SPURRPRRN 42
T.4.1.8 DWORD ..ttt bbbt h e h ettt bt eh et e ae ettt e ehe e nhe e st aanere e 42

1 g T T I 1RSSR 42
1.4.1.10 DATE_AND _TIMEoooiieiii ittt ettt ettt e s e sneesnteeteenaeesneeenseenneenseenseas 43

(1 e e O N I SRR 44
1.4.1.12 TIME_OF DAY ...ttt ettt ettt ettt e st e e a et et e e eeeste e et e e emeeanseaseesaeesneeanneanseenneennnas 44
(T g T S I N[RSSO 45
1.4.2 GeNEriC data tYPES ...oeiiiiiiiiii e 50
(I 3 S LU RSP 51
1.4.3.1 CreatiNng DUTS ..o e e s e e e et e e e b ee e enees 51
1.4.3.2 Using DUTs in the global variable list ... 51
1.4.3.3 UsSing DUTS iN @ POU NEAAETuiiiiiiieie e 52
1.4.3.4 DUTs with non-overlapping elements...........oooo e 52
1.4.3.5 DUTs with overlapping elements ... 53
L N - U 53
1.4.5 Special data types only available in conversion fuNCHIONSocciiiiiiiiiini e, 55
(I 3 TR N = 10 |y SRS 55

(I 3T = 1 @ | SRR PSURTRN 55
1.4.5.3 BOD_WORDottt ettt ettt ettt et eehe e et e e et e abe e saeeeaeeemeeenteebeeaaeesneeanneaneeas 56
1.4.5.4 WORD_BE Dottt ettt bttt ettt b e e s h e sae et e b b e nbeenneeanee 56
1.4.5.5 BOD_DWORD..... .ottt b et ee ettt b e e sb et e et e bt e ebe e sheesae e st e b b 56
1.4.5.6 DWORD_BCD..... oottt ettt et b e ehe ettt e e sb e e s beesae e s bt e beenbeesbeenneeannea 56
(T A | = BT PSSRSO 56
1.4.5.8 ETLANADDR ...ttt ee ettt et e st e st eesteenteesteesteesseeenseaneeesaeesneesneeanteenseenseas 57
1.45.9 ANY_IN_UNITS_OF _WORDSoooiiiiieiiiiie et sieesee st ee st seeeseee e steesaeesneesneeenneenneeneeas 57
1.4.5.10 ANY_SIMPLE_NOT_BOOL ...ttt smee e eeesaeeeneas 58

Table of Contents

MOVE

Part Il IEC instructions

AFTNMEtIC INSTTUCTIONS ..ieieeeee e e e
ADD AAd
SuB Subtract
MUL MUl
DIV VI e e
ABS Absolute Value .
MOD Modular arithmetic division, remainder stored in output

variable ..
SQRT Square root
SIN Sine with Radian Input Data
ASIN ATCSINe
COs Cosine .
ACOS AICCOSING
TAN Tangent .
ATAN Arctangent
ATANZ_YX Returns the angle g of the Cartesian coordinates (x,y) .. __.
LN Natural logarithm .
LOG Logarithmtothe Base 10
EXP Exponent of input variabletobasee
EXPT Raises 1st input variable by the power of the 2nd input

variable
CRC16 Cyclic Redundancy Check
LIMIT Limit value for input variable

Bitwise B0Olean INSIFUCLIONScvniiiiieeeeeeeeee e
AND Logical AND operation
OR Logical OR operation ...
XOR Exclusive OR operation
NOT Bit inversion

Table of Contents

6.

7.

Bit-Shift INSTIUCTIONS et e 93

SHR
SHL

ROR
ROL

Comparison instructions

GT
GE
EQ
LE
LT
NE
WITHIN_LIMITS

Conversion instructions

WORD_TO_BOOL
DWORD_TO_BOOL
INT_TO_BOOL
DINT_TO_BOOL
UINT_TO_BOOL
UDINT_TO_BOOL
BOOL_TO_WORD
BOOL16_TO_WORD
BOOLS_TO_WORD
DWORD_TO_WORD
INT_TO_WORD
DINT_TO_WORD
UINT_TO_WORD
UDINT_TO_WORD
TIME_TO_WORD
STRING_TO_WORD

STRING_TO_WORD_STEPSAVE
R

BOOL_TO_DWORD
BOOL32_TO_DWORD
BOOLS_TO_DWORD
WORD_TO_DWORD
INT_TO_DWORD

Shiftbitstotheright
shiftbitstothe left ______
Rotate Nbitstheright
RotateNbitstotheleft

Greater than

Greater than or equal to

Equalto

Less than or equal | to
Lessthan

Not equal

Evaluate if a value is W|th|n the I|m|ts

WORD in BOOL

DOUBLE WORD in BOOL
INTEGER intoBOOL
DOUBLE INTEGER Into BOOL

Unsigned INTEGER into BOOL

Unsigned DOUBLE INTEGER into BOOL |

BOOL into WORD

BOOL16 to WORD
16 Variables of the_ data type BOOL ’[O WORD
DOUBLE WORD inWORD

INTEGER into WORD

DOUBLE INTEGER |nto WORD

Unsigned INTEGER into WORD

Unsigned DOUBLE INTEGER |nto WORD

TIME into WORD

STRING (hexademmal format) to WORD
STRING (Hexadecimal Format r|ghtJust|f|ed) to WORD

BOOL into DOUBLE WORD

BOOL32 to DOUBLE WORD B
32 Variables of the data type | BOOL to DWORD
WQRQJD.DQU.BJ:E.WQBQ------__________________________________
INTEGERINo DOUBLEWORD

100

104
106
108
109
110
111
112

114
115
116
117
118
119
120
121
122
124
125
126
127
128
129
130

131
132
133
134
136
137

Table of Contents

DINT_TO_DWORD
UINT_TO_DWORD
UDINT_TO_DWORD
REAL_TO_DWORD
TIME_TO_DWORD
STRING_TO_DWORD

STRING_TO_DWORD_STEPSAV
ER

BOOL_TO_INT
WORD_TO_INT
WORD_BCD_TO_INT
DWORD_TO_INT
DINT_TO_INT
UINT_TO_INT
UDINT_TO_INT
REAL_TO_INT
TRUNC_TO_INT

TIME_TO_INT
STRING_TO_INT
STRING_TO_INT_STEPSAVER
BOOL_TO_UINT
WORD_TO_UINT
WORD_BCD_TO_UINT
DWORD_TO_UINT
INT_TO_UINT

DINT_TO_UINT
UDINT_TO_UINT
REAL_TO_UINT
TRUNC_TO_UINT

STRING_TO_UINT
STRING_TO_UINT_STEPSAVER

BOOL_TO_DINT
WORD_TO_DINT
DWORD_BCD_TO_DINT
DWORD_TO_DINT
INT_TO_DINT
UINT_TO_DINT
UDINT_TO_DINT
REAL_TO_DINT
TRUNC_TO_DINT

DOUBLE INTEGER into DOUBLEWORD 138
Unsigned INTEGER into DOUBLEWORD 139
Unsigned DOUBLE INTEGER into DOUBLEWORD 140
REALinto DOUBLEWORD 141
TIMEinto DOUBLEWORD 142
STRING (Hexadecimal Format) to DOUBLE WORD 143
STRING (Hexadecimal Format right-justified) to DOUBLE

WORD 144
BOOLinto INTEGER . . . 145
WORD value in INTEGER . . 146
Binary WORD value into INTEGER .. . 147
DOUBLE WORD in INTEGER 148
DOUBLE INTEGER into INTEGER 149
Unsigned DOUBLE INTEGER into INTEGER . . . 150
Unsigned DOUBLE INTEGER into INTEGER . 151
REALinto INTEGER . 152
Truncate (cut off) decimal digits of REAL input variable,

convertto INTEGER . . 153
TIME into INTEGER . . . 154
STRING (decimal format) to INTEGER 155
STRING (Decimal Format right-justified) to INTEGER 156
BOOL into Unsigned INTEGER 157
WORD to Unisgned INTEGER __ 158
Binary coded WORD value in Unsigned INTEGER . 159
DOUBLE WORD into Unsigned INTEGER 160
INTEGER to Unsigned INTEGER 161
DOUBLE INTEGER into Unsigned INTEGER 162
Unsigned DOUBLE INTEGER into Unsigned INTEGER 163
REAL into Unsigned INTEGER 164
Truncate (cut off) decimal digits of REAL input variable,

convert to UNSIGNED INTEGER 165
STRING (decimal format) to Unsigned INTEGER 166
STRING (Decimal Format right-justified) to Unsigned

INTEGER 167
BOOL into DOUBLE INTEGER 168
WORDInDOUBLE INTEGER e 169
Binary coded DWORD value into DOUBLE INTEGER 170
DOUBLE WORD in DOUBLE INTEGER 171
INTEGER into DOUBLE INTEGER 172
Unsigned INTEGER into DOUBLE INTEGER . . _ 173
Unsigned DOUBLE INTEGER into DOUBLE INTEGER 174
REAL into DOUBLE INTEGER 175
Truncate (cut off) decimal digits of REAL input variable,

convertto DOUBLE INTEGER 176

Table of Contents

TIME_TO_DINT
STRING_TO_DINT
STRING_TO_DINT_STEPSAVER

BOOL_TO_UDINT
WORD_TO_UDINT
DWORD_TO_UDINT
DWORD_BCD_TO_UDINT
INT_TO_UDINT
UINT_TO_UDINT
DINT_TO_UDINT
REAL_TO_UDINT
TRUNC_TO_UDINT

STRING_TO_UDINT
DATE_TO_UDINT
DT_TO_UDINT
TOD_TO_UDINT
DWORD_TO_REAL
INT_TO_REAL
DINT_TO_REAL
UINT_TO_REAL
UDINT_TO_REAL
TIME_TO_REAL
STRING_TO_REAL
WORD_TO_TIME
DWORD_TO_TIME
INT_TO_TIME
DINT_TO_TIME
REAL_TO_TIME
UDINT_TO_DT
DT_TO_DATE
UDINT_TO_DATE
DT_TO_TOD
UDINT_TO_TOD
BOOL_TO_STRING
WORD_TO_STRING
DWORD_TO_STRING
DATE_TO_STRING
DT_TO_STRING
INT_TO_STRING

INT_TO_STRING_LEADING_ZER
oS

DINT_TO_STRING

TIME into DOUBLE INTEGER
STRING (Decimal Format) to DOUBLE INTEGER

STRING (Decimal Format right-justified) to DOUBLE

INTEGER

BOOL into Unsigned DOUBLE INTEGER |

WORD in Unsigned DOUBLE INTEGER
DOUBLE WORD in Unsigned DOUBLE INTEGER

Binary value of DOUBLE WORD in Unsigned IN'I'_E_G_ER_______

INTEGER into Unsigned DOUBLE INTEGER

Unsigned INTEGER to Unsigned DOUBLE INTEGER
DOUBLE INTEGER into Unsigned DOUBLE__IN'_I’_EG_E_R________

REAL into unsigned DOUBLE INTEGER

Truncate (cut off) decimal digits of REAL input vanable

convert to Unsigned DOUBLE INTEGER

STRING (Decimal Format) into Unsigned | DOUBLE INTEGER

DATE into Unsigned DOUBLE INTEGER

DATE__AND_TIME into Unsigned DOUBLE INTEGER
TIME_OF DAY into Unsigned DOUBLE INTEGER
DWORDintoREAL

INTEGER into REAL___
DOUBLE INTEGER into REAL _

Unsigned INTEGER intoREAL
Unsigned DOUBLE INTEGER into. REAL
TIMEintoREAL .
STRINGtOREAL

WORDINnTIME

DOUBLE WORD in TIME

INTEGER into TIME

DOUBLE INTEGER Into TIME

REAL into TIME_

Unsigned DOUBLE INTEGER into DATE_AND TIME

DATE_AND_TIME to DATE
Unsigned DOUBLE INTEGER into_ DATE
DATE_AND_TIME to TIME_OF_DAY

Unsigned DOUBLE INTEGER into TIME_OF_DAY
BOOLintoSTRNG

WORD into STRING
DOUBLE WORD into_ STRING
DATE into STRING
DATE_AND_TIME |nto STRING

JNIEQER_'!F_Q.SIBIN_G___
INTEGERInto STRING .

DOUBLE INTEGERinto STRING

177
178

179
180
181
182
183
184
185
186
187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
212
214
216
217
218

220
221

Table of Contents

8.

9.

UDINT_TO_STRING

DINT_TO_STRING_LEADING_ZE DOUBLE INTEGER into STRING

ROS

UDINT_TO_STRING_LEADING_Z Unsigned DOUBLE INTEGER into STRING

EROS
UINT_TO_STRING

UINT_TO_STRING_LEADING_ZE Unsigned INTEGER into STRING

ROS
REAL_TO_STRING
TIME_TO_STRING
IPADDR_TO_STRING

IPADDR_TO_STRING_NO_LEADI IP Address to STRING

NG_ZEROS
ETLANADDR_TO_STRING

ETLANADDR_TO_STRING_NO_L ETLAN Address to STRING

EADING_ZEROS
TOD_TO_STRING
WORD_TO_BOOL16
DWORD_TO_BOOL32
WORD_TO_BOOLS
DWORD_TO_BOOLS
INT_TO_BCD_WORD
DINT_TO_BCD_DWORD
UINT_TO_BCD_WORD
UDINT_TO_BCD_DWORD
STRING_TO_IPADDR

T L e e TTE e m R R R R R R R R R E R R R R R R R R R R R R R

STRING_TO_IPADDR_STEPSAV STRING (IP-Address Format 00a.0bb.0cc.ddd) to DWORD

ER
STRING_TO_ETLANADDR

STRING_TO_ETLANADDR_STEP STRING (IP-address format 00a.0bb.0cc.ddd) to ETLAN

SAVER

Selection instructions

MAX
MIN
MUX
SEL

String instructions......

LEN
LEFT
RIGHT
MID

Address

225

226
227

228
229
231
233

234
235

Table of Contents

CONCAT Concatenate (attach)astring . 270
DELETE Delete characters fromasting = 272
FIND Find string's position 274
INSERT Insertcharacters .. 276
REPLACE Replaces characters . 278

10. Date and time INSITUCTIONS ...onie e 281

ADD_DT_TIME AddTIMEto DATE AND TIME = 282
ADD_TOD_TIME AddTIMEto TIME_OF DAY . 283
CONCAT_DATE_INT Concatenate INT valuestoformadate 284
CONCAT_DATE_TOD Concatenate date and timeofday = 285
CONCAT_DT_INT Concatenate INT values to formdateandtime = 286
CONCAT_TOD_INT Concatenate INT values to form the time ofday = 288
DAY_OF_WEEK1 Returnthe day oftheweek = 289
GET_RTC_DT ReadtheReal-TimeClock . 290
IS_VALID_DATE_INT Check whethera DATEisvalid = 291
IS_VALID_DT_INT Check whether DATE AND TIMEisvalid__________ . 292
IS_VALID_TOD_INT Check whetherthe TIME_OF DAY isvalid = 294
SET_RTC_DT Setthe Real-TimeClock = 295
SPLIT_DATE_INT Splitadateinto INTEGERvalues . 296
SPLIT_DT_INT Splita date and time into INTEGER values = 297
SPLIT_TOD_INT Splitthe time of day into INT values = 299
SUB_DATE_DATE Subtracts a date from anotherdate = 300
SUB_DT_DT Subtract date and time fromdateandtime 301
SUB_DT_TIME Subtracts time fromdate andtime = 302
SUB_TOD_TIME Subtracts a TIME value fromthetimeofday __________________ 303
SUB_TOD_TOD Subtract Time of Day from TimeofDay . 304

11, BiStable INStTUCTIONS ..o et eens 305

SR Set/reset . 306
RS Reselset . 308

12. Edge detection INSITUCTIONS ..o.uuiii i 311

R_TRIG Rising edge trigger . 312
F_TRIG Falling edge trigger 313

13, COUNT I IN S TUCTIONS et 315

CTU Upcounter ... 316

10

Table of Contents

CTD Downcounter 318
CTUD Up/down counter . 320
14, TIMEr INSTIUCTIONS et e e e s e e e e e e e eaaeseenes 323
TOF Timer with switch-offdelay 324
TON Timer with switch-ondelay . . 326
P Timer with defined period 328
ADD_TIME AAdTIME 330
CONCAT_TIME_INT Concatenate INT values to formatime . 331
DIV_TIME_INT Divide TIME by INTEGER 332
DIV_TIME_DINT Divide TIME by DOUBLE INTEGER 333
DIV_TIME_REAL Divide TIMEby REAL 334
MUL_TIME_INT Multiply TIME by INTEGER ... 335
MUL_TIME_DINT Multiply TIME by DOUBLE INTEGER 336
MUL_TIME_REAL Multiply TIMEby REAL 337
SPLIT_TIME_INT Splita time into INTEGER values . . . | 338
SUB_TIME Subtract TIME . 339

Part Ill FP instructions

15, AFTRMEtIC INSTTUCTIONS .ieiiie ettt e e e e e eeaees 341
F20_ADD 16-bit addition 342
F21_DADD 32-bit addiion 344
F22_ADD2 16-bit addition, destination can be specified .. 346
F23_DADD2 32-bit addition, destination can be specified 348
F40_BADD 4-digit BCD addition 350
F41_DBADD 8-digit BCD addition 352
F42_BADD?2 4-digit BCD addition, destination can be specified 354
F43_DBADD2 8-digit BCD addition, destination can be specified 356
F35_INC 16-bitincrement 358
F36_DINC 32-pitincrement . 360
F55_BINC 4-digit BCD increment 362
F56_DBINC 8-digit BCD increment ... 364
F25_SUB 16-bit subtraction 366
F26_DSUB 32-bit subtraction . 368
F27_SUB2 16-bit subtraction, destination can be specified ... 370
F28_DSUB2 32-bit subtraction, destination can be specified 372
F45_BSUB 4-digit BCD subtraction 374
F46_DBSUB 8-digit BCD subtraction . . 376
F47_BSUB2 4-digit BCD subtraction, destination can be specified 378

Table of Contents

F48_DBSUB2
F37_DEC
F38_DDEC
F57_BDEC
F58_DBDEC
F30_MUL
F31_DMUL
F34_MULW
F39_DMULD
F50_BMUL
F51_DBMUL
F32_DIV
F33_DDIV
F52_BDIV
F53_DBDIV
F313_FDIV
F70_BCC
F160_DSQR
F300_BSIN
F301_BCOS
F302_BTAN
F303_BASIN
F304_BACOS
F305_BATAN
F87_ABS
F88_DABS
F287_BAND
F288_DBAND
F348_FBAND
F289_ZONE
F290_DZONE
F349 FZONE
F85 NEG
F86_DNEG
F270_MAX
F271_DMAX
F350_FMAX

F272_MIN
F273_DMIN

8-digit BCD subtraction, destination can be specified
16-bit decrement

32-bit decrement
4-digit BCD decrement
8-digit BCD decrement

16-bit multiplication, destlnatlon can be speC|f|ed
32-bit multiplication, destination can be specified

16-bit data multiply (result in 16 bits)

32-bit data multiply (resultin 32 bits)
4-digit BCD multiplication, destination can be specrﬁed
8-digit BCD multiplication, destination can be 11 specified
16-bit division, destination can be specified
32-bit division, destination can be specified
4-digit BCD division, destination can be speC|f|ed_______________
8-digit BCD division, destination can be specified
Floating Point DataDivide __________
Block check code caleulation .
32-bitdatasquareroot
BCD type Sine operation
BCD type Cosine operation
BCD type Tangentoperation .
BCD type Arcsine operation
BCD type Arccosine operation
BCD type Arctangentoperation
16-bit data absolute valve
32:bitdataabsolutevalue .
16-bit data deadband control .
32-bit data deadband control
Floating point data deadband control

16-bit data zone control

32-bit data (double word data) zone control
f'.Q_a_t!E‘Q__p_9_'U_t_‘??_t_%_z_Q_n_‘?_Q_Qr_‘FEQl___________________________________
16-bit data two's complement

32-bit data two's complement

Maximum value search in 16-bit data table

Maximum value search in 32-bit data table

Maximum value search in real number data tabIe (floatlng

point data)

Minimum value search in 16- b|t data table
Minimum value search in 32-bitdatatable

380
382
384
386
388
390
392
394
396
398
400
402
404
406
408
410
412
415
417
419
421
423
425
427
429
431
433
435
437
440
442
444
447
449
451
453

455
457
459

F351_FMIN Minimum value search in real number data table (roatlng
pointdata) 461

F275_MEAN Total and mean numbers calculat|on in. 16 b|t data table 483
F276_DMEAN Total and mean numbers calculation in 32-bit data table 465

12

Table of Contents

F352_FMEAN Total and mean numbers calculation in floating point data

able 467
F282_SCAL Linearization of 16-bitdata 469
F283_DSCAL Linearization of 32-bitdata . . 472
F284_RAMP Inclination output of 16-bitdata __ 475
F354_FSCAL Scaling of Real Number Data 478
F96_SRC Table data search (16-bitsearch) . 479
F97_DSRC 32-bittabledatasearch . .. 481
15.1 Introduction into the FIFO buffer.............ccoooo 483
F115_FIFT FIFO buffer area definition 484
F116_FIFR Read from FIFO buffer 488
F117_FIFW Write to FIFO buffer . 492
F98_CMPR Data table shift-out and compress . 496
F99_CMPW Data table shift-inand compress . __ 499

F277_SORT Sort data in 16-bit data table (in smaller or larger number
Order) 501

F278 DSORT Sort data in 32-bit data table (in smaller or larger number
order) . 503

F353 _FSORT Sort data in real number data table (floating point data

table) 505
16. Bistable INSTrUCTIONSc.uiii e 507
KEEP Serves as arelay with setand resetinputs 508
SET SET, RESET 509
17. Bitwise B0oolean iNStrUCLIONSccvuiiiiiiiiciie e e 511
F5_BTM Bitdatamove . 512
F6_DGT Digitdatamove . 514
F65_WAN 16-bitdata AND 518
F66_WOR 16-bitdata OR . 520
F67_XOR 16-bitdataexclusive OR . . 522
F68_XNR 16-bit data exclusive NOR 524
F69_WUNI 16-bitdataunite 526
F215_DAND 32-bitdata AND e 528
F216_DOR 32-bitdataOR 530
F217_DXOR 32-bitdata XOR . 532
F218_DXNR 32-bitdata XNR 534
F219_DUNI 32-bitdataunites 12 . 536
F130_BTS 16-bitdatabitset . 538
F131_BTR 16-bitdata bitreset . 539
F132_BTI 16-bitdata bitinvert 540
F133_BTT 16-bitdatatest . 541
F135_BCU Number of ON bits in 16:bitdata 543

Table of Contents

18. Bit-shift instructions

19. Comparison instructions

F136_DBCU
F84_INV
F93_UNIT
F94 DIST
F182_FILTER

LSR
F100_SHR
F101_SHL
F102_DSHR
F103_DSHL
F105_BSR
F106_BSL
F108_BITR
F109_BITL
F110_WSHR
F111_WSHL
F112_WBSR
F113_WBSL
F119_LRSR
F120_ROR
F121_ROL
F122_RCR
F123_RCL
F125_DROR
F126_DROL
F127_DRCR
F128_DRCL

F60_CMP
F61_DCMP
F62_WIN
F63_DWIN
F64_BCMP
F346_FWIN
F373_DTR
F374 DDTR

19.1 Further comparison instructions

Number of ON bits in 32-bitdata
16-bit data invert (one's complement)
16-bit data combine
debitdatadistribution
Time constantprocessing

Left shift register

Right shift of 16-bit_ data in blt umts
Left shift of 16-bit data in bitunits
Right shift of 32-bit data in bit units

Left shift of 32-bit data in bit units

Right shift of one hexadecimal digit (4 b|ts) of 16 b|t data
Left shift of one hexadecimal digit (4 bits) of 16-bitdata
Right shift of multiple bits of 16-bitdatarange

Left shift of multiple bits of 16-bit data range

Right shift of one word (16 bits) of 16-bit data range
Left shift of one word (16 bits) of 16-bitdatarange.
Right shift of one hex. digit (4 bits) of 16-bit 5 datarange
Left shift of one hex. digit (4 bits) of 16-bit datarange
LEFT/RIGHT shiftregister .
16-bit data right rotate

16-bit data left rotate

16-bit data right rotate with carr_y—flag data
16-bit data left rotate with carry-flagdata
32-bit data right rotate

32-bit data left rotate

32-bit data right rotate with carry flag data
32-bit data right rotate with carry flagdata

A6-bitdatacompare
32-bitdatacompare
16-bit data band compare
32-bit data band compare

Block data compare

Floating point data band compare_________________________________
16-bit data revision detection
32-bit data revision detecton

544
545
547
549
551

556
558
560
562
564
566
568
570
572
574
576
578
580
582
586
588
590
592
594
596
598
600

604
606
608
610
612
614
616
618

14

Table of Contents

20. Conversion instructions

F71_HEX2A
F72_ A2HEX
F73_BCD2A
F74_A2BCD
F75_BIN2A
F76_A2BIN
F77_DBIN2A
F78_DA2BIN
F80_BCD
F81_BIN
F82 _DBCD
F83 DBIN
F89 EXT
F90_DECO
F91_SEGT
F92_ENCO
F95 ASC
F235_GRY
F236_DGRY
F237_GBIN
F238_DGBIN
F240_COLM
F241_LINE
F250_BTOA
F251_ATOB
F252 ACHK
F325 FLT
F326_DFLT
F327_INT

F328_DINT

F333_FINT
F334_FRINT
F335_FSIGN

F337_RAD
F338_DEG

.. 621
HEX->ASCllconversion 622
ASCIl -> HEX conversion 625
BCD -> ASCllconversion 628
ASCIl->BCDconversion 631
16-bit BIN -> ASCll conversion 635
ASCIl -> 16-bit BIN conversion 638
32-bit BIN -> ASCll conversion . 641
ASCII -> 32 bit BIN conversion . 644
16-bit BIN -> 4-digit BCD conversion 647
4-digit BCD -> 16-bit BIN conversion 649
32-bit BIN -> 8-digit BCD conversion 651
8-digit BCD -> 32:bit BIN conversion 653
16-bit data sign extension, INT ->DINT 655
Decode hexadecimal -> bitstate | 657
16-bit data 7-segmentdecode . 659
Encode bit state -> hexadecimal . 660
12 Character -> ASCll transfer 662
16-bitdata -> 16-bit Gray code . 665
32-bit data -> 32-bit Gray code 666
16-bit Gray code -> 16-bit binary data . __ 667
32-bit Gray code -> 32-bit binary data 668
Bit line to bit column conversion 669
Bit column to bit line conversion . | 671
Binary -> ASCll conversion 673
ASCII -> Binary conversion ... 677
ASClldatacheck . 682
16-Bit Integer Data to Floating Point Data Conversion 684
32-Bit Integer Data to Floating Point Data Conversion __ __ __ 685
Floating point data -> 16-bit integer data (the largest integer
not exceeding the floating pointdata) 687
Floating point data -> 32-bit integer data (the largest integer
not exceeding the floating pointdata) . . 689
Rounding the first decimal pointdown 691
Rounding the first decimal pointoff . . __ 693
Floating point data sign changes (negative/positive
conversion) . 695
Conversion of angle units (Degrees -> Radians) . . 697
Conversion of angle units (Radians -> Degrees) 699

15

Table of Contents

21, COUNTEI INSIITUCTIONS .uuviiiiii ettt e e e e e e e a e 701
CT_FB DownCounter .. T02
CcT Counter .. TO5
F118_UDC UPDOWNcounter . 708

22. Data transfer via communication POrtSccoevviiiieiiiiiiiie e, 711

22.1 Description of the communication MOAES............uuviiiiiiiiiiiiiiiiiiie . 712
22.2 Setting the communication paramMEters 714
22.2.1.1 Setting the CPU's COM Ports in PROG Mode via System Registersccoceeeiiiinennne 714
22.2.1.2 Setting the CPU's COM Ports in PROG Mode via DIP Switches (FP10SH)..........cc.c......... 715
22.2.1.3 Setting in RUN Mode with SYS instructions (FP-Sigma, FP-X)cccooiiiiiiiie 717
22.2.1.4 Changing the communication mode in RUN mode............cocoviiiiiiiiiiiice e 717

SetCommunicationMode Switch communication mode between 'Program
controlled’ and MEWTOCOL-COM' 718
22.3 Getting the commuNICation MOuuuuuiiiiiiiiiii e 724
22.3.1 Checking for PLC lINK MOcouiiiiiiiiiee ettt ettt e e eneee s 724
IsPlcLink Evaluation of "PLC Link" flag for allports ______ __ __ __ 725
22.3.2 Checking for program controlled MOAEuuiiiiiieiii e 725
IsProgramControlled Evaluates the "program controlled" flag__ . __ 726
22.3.3 Checking for MEWTOCOL-COM master / slave MOde.........cuevviiiiiiieiiiie et 726

F161_MRD_PARA Getting the communication modes in RUN mode from
MCUsCOMport . 728

F161_MRD_STATUS Getting the statuses in RUN mode from MCU's COM

port 730
22.3.3.1 Getting the communication modes and statuses via the input (X) flags from the MCU's COM
POrtS iN RUN MOAEooiiiiii it 732
22.4 Data transfer in program controlled MOdeeuviiiiiiiiiiiiiiiiii - 733
22.4.1 Sending data to eXtErNal AEVICESoo.uiiiiiiiiiei e 733
SendCharacters Send characters to CPUorMCU port 738
SendCharactersAndClearString ~ Send characters and clesr string 740
F159_MTRN Serial data communication to CPU or MCU port 742
22.4.1.1 Format of send and reCeive datacceeeiiiiiie i 745
22.4.2 Receiving data from external dEVICEScccuuiiiiiiei i 747
ReceiveData Receive data from CPUorMCUport 751
ReceiveCharacters Receive characters from CPUorMCU port .. 753
ClearReceiveBuffer Reset the receive buffer 754
F161_MRCV Read serial data from the MCU's COM port 756
22.4.3 Flag operation in program controlled communicationcccccoiiiiiiiiiiiiin e 757

16

Table of Contents

IsReceptionDone
IsReceptionDoneByTimeout

IsTransmissionDone
IsCommunicationError

22.5 Data transfer in master/slave mode (MEWTOCOL/Modbus RTU)

F145_WRITE_DATA

Evaluation of "reception done" condition by time-out
for all ports

Write Data to Slave

F145 WRITE_DATA TYPE_OFFS Write Data to Slave with Type and Offset

F146_READ_DATA
F146_READ_DATA_TYPE_OFFS
F145F146_MODBUS_COMMAND
F145F146_MODBUS_MASTER

Is145F 146NotActive
IsF145F146Error

23. Datatransfer Via NetWOTIK........coooui i
23.1 Data transfer via MEWNET LINKiiieee e
F145_SEND Datasend (MEWNET link) .
F146_RECV Datareceive (MEWNET link)
23.2 Data transfer via shared memory of a MEWNET-F-Slave stationcccccccciiiiiininnnnnnn.
F152_RMRD Data read from the slave staton
F153_RMWT Data write into the slave station
23.3 Data exchange with flexible NetWOrkK......... ..o,
FNS_InitConfigDataTable Functon_
FNS_InitConfigNameTable Functon.
24. Data transfer Within the PLC ..o
FO_MV 16-bitdatamove
F1_DMV 32-bitdatamove .
F2_MVN 16-bit data inversionand move .
F3_DMVN 32-bitdata inversionandmove .
F4 GETS Reading of the Numbers of the First WX and the First WY of
the Specified Slot
F7_MV2 Two 16-bitdatamove . . .
F8_DMV2 Two 32-bitdatamove .
F10_BKMV Block move .
F10_BKMV_NUMBER Block move by number
F10_BKMV_OFFSET Block move to an offset from source

Table of Contents

F10_BKMV_NUMBER_OFFSET
F11_COPY
F12_EPRD
F12_ICRD
F13_ICWT
F14_PGRD
P13_EPWT
F15_XCH
F16_DXCH
F17_SWAP
F18_BXCH
F143_IORF
F147_PR
F150_READ
F151_WRT
F190_MV3
F191_DMV3
F309_FMV

24 1 Data transfer to and from special data registers

ReadDataFromFileRegisterBank
WriteDataToFileRegisterBank

25. Date and time instructions

F138_TIMEBCD_TO_SECBCD
F139_SECBCD_TO_TIMEBCD
F157_ADD_DTBCD_TIMEBCD
F158_SUB_DTBCD_TIMEBCD
F230_DTBCD_TO_SEC
F231_SEC_TO_DTBCD
GET_RTC_DTBCD
SET_RTC_DTBCD

26. SeleCtioN INSTTUCTIONS .. e e e

F285_LIMT
F286_DLIMT

Block move by number to an offset from source

Blockcopy

EEPROMread frommemory
ICcardextendedmemoryread
IC card extended memory write .
Program Read fromICcard
EEPROMwritetomemory .
A6bitdataexchange

32-bit data exchange

Higher/lower byte in 16-bit dataexchange . __________
16-bit blocked data exchange .
Pattial /OQupdate

Parallel printout

Dataread fromintelligentunits .
Write into memory of intelligentunits
Three 16-bitdatamove
Three 32-bitdatamove .
Floating PointDataMove

Write Data to File Register Bank 1or2

hmins->sconversion
S:zhiminisconversion e

Time subtraction

Time Data Conversion into Seconds
Conversion of Seconds into Time Data__
Readthe Real-Time Clock
SettheReal-TimeClock

16:bit data upper and lower limitcontrol _____
32:bit data upper and lower limitcontrol ______

866
867
868
870
872
873
874
875

18

Table of Contents

27. Edge detection INSTIUCTIONSooiiiiiiiiiieceeeici et 883
DF Rising edge differential 884

DFN Falling edge differential 885

DF Rising edge differential (initial executiontype) . . 886

ALT Alternativeout 888

28. High-speed counter inStruCtioNScoovviiiii i 889
281 INTTOAUGCHION <. e e e e e 890
28.2 Writing the high-speed counter control COAeoooviiiiiiiiiiii e, 891
28.3 High-speed counter: writing and reading the elapsed value..............ccccoooovviiiiii e, 894
F165_ HighSpeedCounter_Cam camcontrol 895
F166_HighSpeedCounter_Set Target value match ON (high-speed counter) 901
F167_HighSpeedCounter_Reset Target value match OFF (high-speed counter) 905
F178_HighSpeedCounter_Measure Input pulse measurement 909

20, T T TN S U CTION S o vie ettt e et ettt e e e e e e e e e e e e e e eaenees 913
TM_1ms_FB Timer for 1ms intervals (0 to 32.767s) 914
TM_10ms_FB Timer for 10ms intervals (010 327.67s) 917
TM_100ms_FB Timer for 100ms intervals (0 to 3276.7s) 920
TM_1s_FB Timer for 1s intervals (0 to 32767s) 923
TM_1ms Timer for 1ms intervals (0 to 32.767s) 926
TM_10ms Timer for 10ms intervals (0 to 327.67s) . . 928
TM_100ms Timer for 100ms intervals (0 to 3276.7s) 930
TM_1s Timer for 1s intervals (0 to 32767s) 932
F137_STMR Timer 16-bit . 934
F183_DSTM Timer32-bit 935

30. Process CONtrol INSTrUCTIONS c..inie e 937
30.1 Explanation of the operation of the PID inStuctionsccccoooeiiiiiiiiii, 938
F355_PID_DUT PID processing instructon .~~~ 942
F356_PID_PWM PID processing with optional PWM output 945

PID_FB PID processing instruction 952
PID_FB_DUT PID processing instructon 954
SCALE_INT Scales INTEGERdata 956
SCALE_INT_UINT Scale INTEGER data into unsigned INTEGER data 958

Table of Contents

31.

32.

33.

34.

SCALE_REAL Scale REAL data

SCALE_UINT Scale UINT data

SCALE_UINT_INT Scales UINT input data to INT output data

SmoothSignal_INT Smooth INTsignals .

SmoothSignal_REAL Smooth REAL signals

SmoothSignal_UINT Smooth UINT signals

FP-e display iNStruUCtiONSccoovviiiiieiiiie e

F180_SCR Screen display instruction

F180_SCR_DUT Configuring the Display of the FP-e
F181_DSP Screen change instruction

System register INStrUCtiONS......ccccviviiiii e,

SYSt Change PLC system setting

SYS2 Change System Register Settings for PC Link Area

Special INSTIUCTIONS ...coviiice e e

F140_STC Carry-flag set e

F141_CLC Carry-flagreset

F142_WDT Watchdog timerupdate
F148_ERR Self-diagnostic error set/reset
F149_MSG Messagedisplay
F155_SMPL Transfersamplingdata
F156_STRG Setsampling trigger

Program execution control inStructions.........cc.ccoevveviiiieeennnnnn.

MC Master controlrelay
MCE Master controlrelayend
JP dumptolabel
F19_SJP Indirectjumptolabel

LOOP Loop tolabel

LBL Label for the JP- and LOOP-instruction .

BRK Break

ICTL Interrupt Control

- 1008
- 1009
- 1010
- 1011
- 1013
- 1014
- 1016
- 1017

20

Table of Contents

35. Pulse OULPUL INSTIUCTIONS ..uuuiiiiiiiiiie e 1019
0T T I [0] (oo [T3 o] o KPP ORTUR 1020
35.2 Writing the pulse output coONtrol COAe........ooviiiiiiiiiiiiiiiiiieeee e 1021
35.3 Pulse output: writing and reading the elapsed valuecooviiiiiiiieiieiiicc e, 1026

F166_PulseOutput_Set Target value match ON (pulseoutput) . _ 1027
F167_PulseOutput_Reset Target value match OFF (pulseoutput) 1030
F168_PulseOutput_Trapezoidal Trapezoidal control 4033
F168_PulseOutput_Home Homereturn. 1036
F169_PulseOutput_Jog JOG operaton 4040
F170_PulseOutput PWM PWMoutput 1043
F171_PulseOutput_Trapezoidal Trapezoidal control 4046
F171_PulseOutput_Home Homereturn .~ 1052
F171_PulseOutput_Jog_Positioning JOG operation and positioning 1056
F172_PulseOutput_Jog JOG operaton 1061
F173_PulseOutput_PWM PWMoutput 1067
F174_PulseOutput_DataTable Data table control 4070
F175_PulseOQutput_Linear Linear interpolaton _ 1073
F176_PulseOutput_Center Circular interpolation (center position) ____________________ 1078
F176_PulseOutput_Pass Circular interpolation (pass position) ... _......_ 1082
F177_PulseOutput_Home HomeReturn 4086
Part IV Tool instructions
36. ANalog UNIt INSTIUCTIONS civvvviii i e e 1091
Unit_AnaloginOut_FP0_A21 Reads data from the FPO-A21 unit .. 1092
Unit_Analoglnput_FP0_A80 Reads data from the FPO-A80 unit 1097
Unit_Analoginput_FPO_RTD_INT Reads analog data from the FPO-RTD6unit 1102
Unit_Analoginput_FPO_RTD_REAL Reads analog data from the FPO-RTD6 unit 1108
Unit_Analoginput_FPO_TC4_TC8 Reads data from the FPO-TC4/FPO-TC8 unit_____ 1114
Unit_AnalogInOut_FPG_A44 Reads data fromthe FPG-Ad4 unit 1119
Unit_AnalogOutput_FP0_A04I Reads data from the FPO-AQ4 unit 1123
Description
Unit_AnalogOutput_FPO_A04V Reads data from the FPO-AO4 unit .. 1126
ExpansionUnitNumberTolOWordOff = Calculate the 10 offset of analog units for FPO___
set_FPO 1129
ExpansionUnitNumberTolOWordOff ~ Calculates the 10 offset of analog units for FP-X__
set FPX_FPO 1130

21

Table of Contents

37. GT panel instructions

GT_ActivateScreen Controlthe GT panelscreen . 1134
GT_ChangeBacklightBrightness Changes the backlight brightnessofaGTpanel 1136
38. High-speed counter iINSTrUCTIONSviiiiiiiiii e 1137
1 J0 I 0o LT 1T o S 1138
38.2 High-speed counter control iINStrUCHIONSocueiiiiiiiiie e 1139
HscControl_CountingDisable Disables counting on a high-speed counter channel 1140
HscControl_CountingEnable Enables counting on a high-speed counter channel 1142
HscControl_ElapsedValueContinue Continues counting afterreset 1144
HscControl_ElapsedValueReset Sets elapsed valuetoo. =~~~ 1146
HscControl_HsclnstructionClear Clears high-speed counter instructon 1148
HscControl_ResetInputDisable Disables resetipput 1150
HscControl_ResetIinputEnable Enables resetinpt 1151
HscControl_SetDefaults Sets defaults for high-speed counter channel 1152
HscControl_WriteElapsedValue Writes elapsed value into_ high-speed counter channel 1153

38.3 High-speed counter information iNSTrUCLIONScoooiiiiiiiii e 1155
Hscinfo_GetControlCode Returns control code of high-speed counter channel = 1156
Hsclnfo_GetCurrentSpeed Returns current speed of high-speed counter channel 1157
Hsclnfo_IsActive Checks if high-speed counteris active 1158
Hsclinfo_IsChannelEnabled Checks if high-speed counter channel is enabled 1159
Hsclinfo_lsCountingDisabled Checks if counting is disabled 1160
Hsclnfo_IsElapsedValueReset Checks if elapsed value issettoO 1161
Hsclnfo_IsResetInputDisabled Checks if resetinputis disabled 1162
Hsclnfo_ReadElapsedValue Reads elapsed value from high-speed counter channel _____ 1164
HscInfo_ReadTargetValue Reads target value from high-speed counter channel__ 1165

38.4 High-speed counter target value match control..............oouiiiiiiiic e, 1166
Hsc_TargetValueMatch_Reset Target value match OFF (high-speed counter) . 1167
Hsc_TargetValueMatch_Set Target value match ON (high-speed couter) 1169

39. Pulse OULPUL INSITUCTIONS c.uuvuiiiiiceiii e e e 1171
112 T I a0 LT3 1T o RS 1172
39.2 Pulse output fFUNCION DIOCKSuuiiiiiiiii e 1173
PulseOutput_Center_FB Circular interpolation (center position) 1174
PulseOutput_Home_FB Home retun 1177
PulseOutput_Jog_FB JOGoperation 1180
PulseOutput_Jog_Positioning0_FB JOG operation and positioning 1182

22

Table of Contents

39.3 Pulse control instructions

39.4 Pulse information instructions

PulseOutput_Jog_ Positioning1 FB
PulseOutput_Jog_TargetValue FB
Description

PulseOutput_Linear_FB
PulseOutput_Pass_FB
PulseOutput_Trapezoidal FB

PulseControl_CountingDisable
PulseControl_CountingEnable
PulseControl_DeceleratedStop

PulseControl_ElapsedValueContin
ue

PulseControl_ElapsedValueReset
PulseControl_JogPositionControl
PulseControl_NearHome

PulseControl_PulseOQutputContinu
e

PulseControl_PulseOutputStop
PulseControl_SetDefaults
PulseControl_WriteElapsedValue
Pulse_TargetValueMatchClear

Pulselnfo_GetControlCode
Pulselnfo_GetCurrentSpeed
Pulselnfo_lsActive
Pulselnfo_lsChannelEnabled
Pulselnfo_lsCountingDisabled
Pulselnfo_lsElapsedValueReset
Pulselnfo_IsHomelnputTrue
Pulselnfo_IsPulseOutputStopped

Pulselnfo_lsTargetValueMatchActi
ve

Pulselnfo_ReadAccelerationForbid
denAreaStartingPosition

Pulselnfo_ReadCorrectedFinalSpe
ed

Pulselnfo_ReadCorrectedlInitialSpe
ed

Pulselnfo_ReadElapsedValue
Pulselnfo_ReadTargetValue

Pulselnfo_ReadTargetValueMatch
Value

JOG operation and positioning 1185
JOG operation with targetvalve 1187
Linearinterpolation .. 1189
Circular interpolation (pass position) 1192
Trapezoidalcontrol . 1195
.. 1198
Disables counting on a pulse output channel 1199
Enables counting on a pulse outputchannel 1201
Performs a deceleratedstop 1203
Continues pulse counting afterreset

1205
Sets elapsed valuetoO 1207
Starts position control . 1209
Starts deceleration whennearhome 1210
Continues pulseoutput

1212
Stopspulseoutput . 1214
Sets defaults for pulse output channel ... __ 1216
Writes elapsed value into a pulse output channel 1217
Clears target value matchcontrol 1219
.. 1220
Returns control code of pulse output channel 1221
Returns current speed on pulse output channel ___________ __ 1222
Check if pulse outputis active 1224
Checks if pulse output channel is enabled 1225
Checks if pulse counting isdisabled . 1226
Checks if elapsed value issetto O __ _ _ _ __________ 1227
Checks if home inputisTRUE 1228
Check if pulse output has stopped . 1229
Checks if target value match controlis active

1230
Read acceleration forbidden area starting position _

1231
Reads corrected value of final speed

1232
Reads corrected value of initial speed .

1233
Reads elapsed value from pulse output channel 1234
Reads target value from pulse output channel .. _ 1235
Reads output control target value from pulse output
channel . 1236

23

Table of Contents

39.5 Pulse output target value match control ... 1237
Pulse_TargetValueMatch_Reset Target value match OFF (pulseoutput) 1238
Pulse_TargetValueMatch_Set Target value match ON (pulse output) 1241

40. Appendix Programming Information............ccccceeeiiiiiiiiiiie e 1245

40.1 FP TOOL LIDIAIY ..eeeeiiieee ittt e e e e e et e e e e e e e s st eeeeeeeeaaannnnsaseeeeaaeeeennnnnes 1246

40.2 Floating Point INSIrUCLIONSooeiiiiiie e e e e e e e e e e e e eeenaaas 1248

40.3 INAEX REGISIEIS ...ttt e e e e e e e e e e e e 1250

40.4 ReaINUMDEIS ...t e e e e e r e e e e e e e e 1251

40.4.1 Floating Point Constant (f).........ooo i e 1251
40.4.2 BCD TYPE CONSEANT...cciiiiiiiiiiiiiee ettt e e e e s e e e e aab e e e e e aabee e e e ebeeeanees 1251
40.5 Overflow and UNErflOWcoiuiiiiiiiiii e 1252
40.5.1 Values When Overflow/Underflow OCCUIScccoiiuiiiiiiiiiie e 1252
40.5.2 Decimal to binary/BCD/gray code fablec..oiiiiiiiiiiiiiiie et 1253
40.6 Special data regiSTErS ..o 1254
40.7 Relays and MEMOIY @rEaS........cuuuiuiiiiiiiiiieieie e e e e ettt e e e e e s e e e e e e e s e bbb e e e e e e e e s e aanneeees 1255
40.7.1 Relays and memory areas for FPO.........c..oii it 1255
40.7.2 Relays and memory areas for FPORoooiiiiiee e a e 1257
40.7.3 Relays and memory areas for FP-Sigmacoooiiiiiiiiii e 1259
40.7.4 Relays and memory areas for FP-Xooo et 1261
40.7.5 Relays and memory areas fOr FP-€ooo e 1263
40.7.6 Relays and memory areas for FP2..........c..ooi it 1265
40.7.7 Relays and memory areas for FP2SH..........coo e 1268
40.7.8 Relays and memory areas for FPTOSH. ... 1270
40.8 SyStemM regisSters.....ccoooiiiiiiiii i 1273
40.8.1 Types Of SYStEM FrEGISTErS. ... veiii i e 1273
40.8.2 System registers fOr FP-X ... e 1274
40.8.3 System registers for FP-Sigma.........cooo e 1283
40.8.4 System registers for FPOR ... 1288
40.8.5 System registers for FPOoo i 1294
40.8.6 System registers fOr FP-€..... ... 1297

24

Table of Contents

40.8.7 System regqisters for FP2/FP2SH/FPA0SHooiiiiii e 1300
40.9 EITON COUBS ...t e e e s e e e e s s e e e snee s 1306
40.9.1 Table of SYNtAX ChECK ©ITONc. i s 1306
40.9.2 Table of Self-DIiagNOStiC EITOISciiiiiiiie ettt e e e e e s st eessnseeeeeaneeeaeaneeas 1307
40.9.3 Table of communiCation ChECK EITONc.oiiiiiiiii e 1311
40.10 EITOI COUBS ...ttt et e et e e e sae e e e e 1312
40.10.1 Error Codes ET 0 ES.... ..o e 1312
40.10.2 Self-DiagnostiC ErrOr COUESouuiiiiiiiiie et s 1312
40.10.3 MEWTOCOL-COM Error COUES........cceeiiiiiieiieiie sttt 1313
40.11 MEWTOCOL-COM Communication Commands............ccceecvierimeerieiesiee e 1315
40.12 Hexadecimal/Binary/BCDoooo ittt 1316
40.13 ASCH COUES ...ttt et e e e e e e st e 1317
40.14 Availability of all instructions on all PLC types........cccoooiiiiiiiiii 1318
I O X e 1335

Record of changes

25

Chapter 1

Basics

Basics

1.1 Operands

In FPWIN Pro the following operands are available:
* in- and outputs (X/Y) as well as internal memory areas
* internal relays
* special internal relays
e timers and counters
e data registers
* special data registers
* file registers

* link registers and relays

The number of operands which are available depends on the PLC-type and its configuration. To see how many
of the respective operands are available, see your hardware description.

1.1.1 Inputs/Outputs

The amount of inputs/outputs available depends on the PLC and unit type. Each input terminal corresponds to
one input X, each output terminal corresponds to one output Y.

In system register 20 you set whether an output can be used once or more during the program.

= Outputs which do not exist physically can be used like flags. These flags
are non-holding, which means their contents will be lost, e.g. after a
power failure.

1.1.2 Internal Relays

Internal Relays are memory areas where you can store interim results. Internal relays are treated like internal
outputs.

In system register no. 7 you define which internal relays are supposed to be holding/non-holding. Holding
means that its values will be retained even after a power failure.

The number of available internal relays depends on the PLC type (see hardware description of your PLC).

1.1.3 Special Internal Relays

Special internal relays are memory areas which are reserved for special PLC functions. They are automatically
set/reset by the PLC and are used:

¢ toindicate certain system states, e.g. errors

* as an impulse generator

* toinitialize the system

* as ON/OFF control flag under certain conditions

such as when some flags get a certain status if data are ready for transmission in a PLC network.

The number of special internal relays available depends on the PLC type (see hardware description of your
PLC).

27

Basics

= Special internal relays can only be read.

1.1.4 Timers and Counters

Timers and Counters use one common memory and address area.

Define in system registers 5 and 6 how the memory area is to be divided between timers and counters and
which timers/counters are supposed to be holding or non-holding. Holding means that even after a power failure
all data will be saved, which is not the case in non-holding registers.

Entering a number in system register 5 means that the first counter is defined. All smaller numbers define
timers.

For example, if you enter zero, you define counters only. If you enter the highest value possible, you define
timers only.

In the default setting the holding area is defined by the start address of the counter area. This means all timers
are holding and all counters are non-holding. You can of course customize this setting and set a higher value for
the holding area, which means some of the timers, or if you prefer, all of them can be defined as holding.

In addition to the timer/counter area, there is a memory area reserved for the set value (SV) and the elapsed
value (EV) of each timer/counter contact. The size of both areas is 16 bits (WORD). In the SV and EV area one
INTEGER value from 0 to 32,767 can be stored.

Timer/Counter No. |SV EV Relay

T™MO SVo EVO TO
TM99 SV99 | EV99 T99
CT100 SV100 | EV100 C100

While a timer or counter is being processed, the respective acual value can be read and under certain
conditions be edited.

= After changing the settings in system register 5, do not forget to adjust
the addresses of the timers/counters in your PLC program because they
correspond to the TM/CT numbers.

1.1.5 Data Registers (DT)

Data registers have a width of 16 bits. You can use them, for example, to write and read constants/parameters.
If an instruction requires 32 bits, two 16-bit data registers are used. If this is the case, enter the address of the
first data register with the prefix DDT instead of DT. The next data register (word) will be used automatically (for
more information, please refer to addresses (see page 30)).

2nd word 1st word
DT2 DT1

32 bit data register

Data registers can be holding or non-holding. Holding means that even after a power failure all data will be

28

Basics

saved. Set the holding/non-holding areas in system register 8 by entering the start address of the holding area.

The amount of data registers available depends on the PLC type (see hardware description).

1.1.6 Special Data Registers (DT)

Special data registers are like the special internal relays reserved for special functions and are in most cases
set/reset by the PLC.

The register has a width of 16 bits (data type = WORD). The amount of special data registers available depends
on the PLC type (see hardware description).

Most special data registers can only be read. Here some exceptions:
* interrupts and scan time (DT9027, DT9023-DT9024; FPO T32P DT90027, DT90023 to DT90024)...

* actual values of the high-speed counter (DT9044 and DT9045; for FPO-T32CP DT90044 and
DT90045)

* control flag of the high-speed counter DT9052 (DT90053 for FPO-T32CP)
* real-time clock (FP2, FP2SH: DT90054 to DT90058; FP0O-T32CP: DT90054 to DT90058)

See also:

Data Transfer to and from Special Data Registers (see page 859)

1.1.7 File Registers (FL)

Some PLC types (see hardware description) provide additional data registers which can be used to increase the
number of data registers. File registers are used in the same way as data registers. Set the holding/non-holding
area in system register 9. Holding means that even after a power failure all data will be saved.

1.1.8 Link Relays and Registers (L/LD)

Link relays have a width of 1 bit (BOOL). In system registers 10-13 and 40-55, set the:
* transmission area
* amount of link relay words to be sent
* holding/non-holding area
Link registers have a width of 16 bits (WORD). In system registers 10-13 and 40-55, set the:
* transmission area
* amount of link relay words to be sent

* holding/non-holding area

29

Basics

1.2 Addresses

In the List of Global Variables, enter the physical address in the field “Address” for each global variable used in
the PLC program.

The operand and the address number are part of the address. In FPWIN Pro you can use either FP and/or IEC
addresses. The following abbreviations are used:

Meaning FP E
C
Input X |
Output Y Q
Memory (internal memory area) R MO
Timer relay T M1
Counter relay C M2
Set value SV M3
Elapsed value EV M4
Data register DT/DD | M5
T
Link relay L M6
Link register LD M7
File register FL M8

You find the register numbers (e.g. DT9000/DT90000) in your hardware description. The next two sections
show how FP and IEC addresses are composed.

1.2.1 FP Addresses

An address represents the hardware address of an in-/output, register, or counter.
For example, the hardware address of the 1st input and the 4th output of a PLC is:
e X0 (X =input, 0 = first relay)
* Y3 (Y = output, 3 = fourth relay)

Use the following address abbreviations for the memory areas. You find the register numbers in your hardware
description.

Memory Area Abbr. FP | Example
Memory (internal memory area) R R9000: self diagnostic error
Timer relay T T200: timer relay no. 200

(settings in system register 5+6)
Counter relay C C100: counter relay no. 100

(settings in system register 5+6)
Set value SV SV200 (set value for counter relay 200)
Elapsed value EV EV100 (elapsed value for timer relay 100)
Data register DT DT9001/DT90001 (signals power failure)
Link relay L L1270
Link register LD LD255
File register FL FL8188

30

Basics

1.2.2 |EC Addresses

The composition of an IEC-1131 address depends on:
* operand type
* datatype
* slot no. of the unit (word address)
* relay no. (bit address)

* PLC type

In- and Outputs are the most important components of a programmable logic controller (PLC). The PLC
receives signals from the input relays and processes them in the PLC program. The results can either be stored
or sent to the output relays, which means the PLC controls the outputs.

A PLC provides special memory areas, in short “M”, to store interim results, for example.

If you want to read the status of the input 1 of the first module and control the output 4 of the second module, for
example, you need the physical address of each in-/output. Physical FPWIN Pro addresses are composed of
the per cent sign, an abbreviation for in-/output, an abbreviation for the data type and of the word and bit
address:

Example IEC address for an input
%IX0.0
it /7 | \ -
physic . &3dnid | nipaat st byl WOR DA ddress Bl iddiie
=ele o

ulu

The per cent sign is the indicator of a physical address. “I” means input, “X” means data type BOOL.
The first zero represents the word address (slot no.) and the second one the bit address. Note that
counting starts with zero and that counting word and bit addresses differs among the PLC types.

Each PLC provides internal memory areas (M) to store interim results, for example. When using internal
memory areas such as data registers, do not forget the additional number (here 5) for the memory type:

Example IEC address for an internal memory area
__SMX5.0,0
Fhysic Interna Duata Typs WORD-Address DE Auddress
Address Krnony Ardd BOOL Memony
Area Type

Bit addresses do not have to be defined for data registers, counters, timers, or the set and actual
values.

According to IEC 1131, abbreviations for in- and output are “I” and “Q”, respectively. Abbreviations for the
memory areas are as follows:

Memory Type No. | Example
Internal Relay (R) 0 | %MX0.900.0 = internal relay R9000
Timer (T) 1 | %MX1.200 = counter no. 200
Counter (C) 2 | %MX2.100 = counter no. 100
Set Value counters/timers (SV) 3 %MW3.200 = set value of the counter no. 200

31

Basics

Memory Type

No. [Example

Elapsed Value counters/timers
(EV)

4 %MW4.100 = elapsed value of the timer no. 100

Data Registers (DT, DDT)

5 %MW5.9001 = data register DT9001

%MD5.90001 = 32-bit data register DDT90001

Link Relay (WL)

7 %MW?7.63 = link relay 63

Link Register (LD)

8 %MW8.127 = link register 127

File Register (FL)

9 %MW29.800 = file register 800

= Tables with hardware addresses can be found in the hardware
description of your PLC.

The following data types are available:

Keyword Data type Range Reserved Initial value
memory
BOOL Boolean 0 (FALSE) 1 bit 0
1 (TRUE)
WORD Bit string of length 16 | 0-65535 16 bits 0
DWORD Bit string of length 32 | 0-4294967295 32 bits 0
INT Integer -32768-32,767 16 bits 0
DINT Double integer -2147483648—- 2147483647 32 bits 0
UINT Unsigned integer 0-65,535 16 bits 0
UDINT Unsigned double 0-4294967295 32 bits 0
integer
REAL Real number -3.402823466*E38— 32 bits 0.0
-1.175494351*E-38
0.0
+1.175494351*E-38—
+3.402823466*E38
TIME Duration T#0s-T#327.67s 16 bits "
T#0s
THOs-T#21474836.47s 32 bits ¥
DATE_AND_TIME Date and time DT#2001-01-01-00:00:00— 32 bits DT#2001-01-01-00
DT#2099-12-31-23:59:59 :00:00
DATE Date D#2001-01-01-D#2099-12-31 32 bits D#2001-01-01
TIME_OF_DAY Time of day TOD#00:00:00-TOD#23:59:59 32 bits TOD#00:00:00
STRING Variable-length 1-32767 bytes (ASCII) depending | 2 words for the | "
character string on PLC memory size head + (n+1)/2
words for the
characters
" Depending on PLC type
= Please take into account that not all data types can be used with each

IEC command.

Numbering of in-/output addresses depends on the type of PLC used (see respective hardware description). For
FPO, FP-Sigma the addresses are not serially numbered. Counting restarts with zero at the first output.
Supposing you have one FP1-C24 with 16 inputs and 8 outputs, the resulting addresses are: for the input:
%I1X0.0 - %1X0.15, and for the output: %QX0.0 - %QX0.7. In other words the counting for the word and bit

32

Basics

number begins at zero for the outputs.

In-/Output addresses are numbered serially. Supposing the first slot of your PLC contains an input module with
16 inputs and the second slot of your PLC contains an output module with 32 outputs, the input module
occupies the addresses: %1X0.0 - %1X0.15, the output module: %QX1.0 - %QX2.15. The physical address
depends therefore on the module type (1/Q), the slot number (word address) the module is assigned and the
relay number (bit address).

Input module Output module
= | %1X0.0] o g
|~ o %QX1.0 A 8 %QX3.0_ 4 B
{im @ {88 &
S o® |

0

B

=

{
il
®6 =
oo |
I=liils

= | &

—

RO ERE

| %QX1.15 @ @ 9QX3.15

%Qx2.0. 2 % %Qx4.0 ¢

J L

| %ix01s ow | [&

PREROOHOOOE
o)
©

= 8] %ax2.15

GRCRCRCACKCKCICKCRS

L@ ® @ |® @ & &

This shows how the hexadecimal counting of 0-F for 0-15 is converted. The address assignment can be found
in your hardware description.

* Find the tables with all memory areas in your hardware description.

* When using timers, counters, set/elapsed values, and data registers,
the bit address does not have to be indicated.

* You can also enter the register number (R9000, DT9001/90001) or the
FP address, e.g. “X0” (input 0), instead of the IEC address.

1.2.3 Specifying Relay Addresses

External input relay (X), external output relay (Y), internal relay (R), link relay (L) and pulse relay (P)The lowest
digit for these relay’s adresses is expressed in hexadecimals and the second and higher digits are expressed in
decimals as shown below.

33

Basics

Example Configuration of external input relay (X)

d
<

XF, XE, XD, XC, XB, XA, X9, X8, X7, X6, X5, X4, X3, X2, X1, X0
XAF, o« oo , X10
XOF , X20

1.2.4 Timer Contacts (T) and Counter Contacts (C)

Addresses of timer contacts (T) and counter contacts (C) correspond to the TM and CT instruction numbers and
depend on the PLC type.

ajajns
Y

[Decimal |22
e.g. for FP2:
TO, T1 cereeerenrenenenens T2999
C3000, C3001cc..... C3072
= Since addresses for timer contacts (T) and counter contacts (C)

correspond to the TM and CT instruction numbers, if the TM and CT
instruction sharing is changed by system register 5, timer and counter
contact sharing is also changed.

1.2.5 Error alarm relays

+NOTE

Error alarm relays are only available for FP2SH/FP10SH.

Restrictions of error alarm relays (see page 36)

Error alarm relays are designed to facilitate the analysis of error conditions and to record errors. Therefore in the
special data registers a buffer has been defined so that the user has access to information about errors and
their occurrence, including the actual number of error relays in the TRUE state, the order they were set to TRUE
and the time at which the first error relay was set to TRUE.

When an error relay is set to TRUE by the error alarm program because the corresponding error situation has
arisen, the number of error relays in the TRUE state stored in special data register DT90400 increases by one
each time an error occurs. Relay numbers will be stored in DT90401 through DT90419 in the order that they
were set to TRUE. If at least one of the error alarm relays EO through E2047 is set to TRUE, R9040
(sys_blsErrorAlarmRelayOn) will be set to TRUE. The time at which the first error alarm relay was set to TRUE
is stored in DT90420 through DT90422.

34

Basics

The diagram below illustrates the internal structure and address assignment in the special data register area of
this error buffer.

GVL
g Global Variables
Class Identifier FP Address | IEC Address | Type Initial
1] VAR _GLOBAL Relay_E15 E15 SeMX 10, 15 BOOL FALSE
POU Header
gt Global variables O3 Program_i |
Class Identifier | Type | Inikial
VAR Var_0 BOOL FaLSE
1 WAR_EXTERMAL Relay E15 BonoL FALSE
LD
J <o Nar Do -Rel? E15
J | B .
| 1

Error alarm diagram

@
DT90400 3 4 /
DT90401 21 21
DT90402 | 12 12 ©)
DT90403 5 ® 5
DT90404 0 — 15
DT90405 0 0
DT90420
DT90421 @
DT90422

@ DT90400 Number of alarms that have occurred

@ DT90401-DT90419 Error alarm relays stored in the order they were set to TRUE
(® Erroralarm E15 is set to TRUE

@ Time at which the first error alarm relay was set to TRUE:

DT90420 Second and minute data

DT90421 Hour and day data

DT90422 Month and year data

R9040 TRUE when one of the error alarm relays E0—-E2047 is TRUE

Because in Control FPWIN Pro all write operations on error relays are internally compiled into SET (see page
508) and RST (see page 508) instructions, all write operations to an error relay affect the special internal relay

35

Basics

R9040 and the special data registers DT90400 to DT90422.
When all error alarm relays are set to FALSE, R9040 will be set to FALSE.

To monitor alarm relays using Control FPWIN Pro: Monitor — Special Relays and Registers — Alarm
Relays.

1.2.5.1 Restrictions of error alarm relays

There is no limit to the number of times an error alarm relay can be used in a program. However, if one error
alarm relay is used with different error conditions in more than one error alarm program it will not be possible to
accurately determine the nature of the error. The CPU does not check for multiple use.

When the power is turned OFF or when switching between PROG. and RUN, the error relays as well as the
affected special data registers are held. To reset the error relays and the special data registers, you have to
press up the initialize/test switch in PROG. mode.

However, in system register 4, bit 10 (Error alarm relay) can be set to "Clear not" to ensure that no error alarm
relays are turned OFF when the initialize/test switch is pressed up. Then only the next download of the program
will reset the error relays and the corresponding special data registers.

1.2.6 Pulserelays (P)

A pulse relay (P) goes ON for one scan only. The ON/OFF state is not externally output and only operates in the
program.

A pulse relay only goes on when a rising edge start instruction or a falling edge start instruction is executed.

When used as the trigger, a pulse relay only operates during one scan when a leading edge or trailing edge is
detected.

Example: Declared globally
GVL:

gt Global Varisbles |

Class Identifier | FP Address | IEC Address | Type | Initial
0 VAR GLOBAL pulse_aoutputl PO SeMa11.0.0 BOOL FaLSE
POU Header
Class Identifier | Tvpe | Initial
0 VAR signal_jinpuk1 BOOL FALSE
1 VAR _EXTERMAL pulse_outputl BOOL FALSE

Execution with arising edge:

36

Basics

Execution with a falling edge:

e ¥ I |]
- O " l I

e il i1 - - v _mind -
.................... NR— |

N SaEain

1.2.6.1 Restrictions of pulse relay (P)

A pulse relay can only be used once in a program as an output destination, i.e. duplicate output is prohibited.
There is no limitation on the number of times a pulse relay can used as a contact.

A pulse relay cannot be specified as an output destination for a KP, SET, RST or ALT instruction.

A word unit pulse relay (WP) cannot be specified as a storage location for a high-level instruction.

In Control FPWIN Pro pulse relays can only be used in the above situations or together with a DF or DFN
instruction. Although one reason might be to increase the number of relays, there is no special reason to use

these pulse relays in Control FPWIN Pro.

1.2.7 External input (X) and output relays (Y)

* The external input relays available are those actually allocated for input use.

* The external output relays actually allocated for output can be used for turning ON or OFF external
devices. The other external output relays can be used in the same way as internal relays.

* |/O allocation is based on the combination of I/O and intelligent modules installed.For FP10SH and
FP2SH, 8,192 points can be used, including both input and output. For FP2 and FP3, 2048 points

can be used.
Example
(Slot No.)
0 1 2 3 4
> The X0 to XF 16-point external relay is
o 20 Ew allocated to the 16-point input unit in
= SE|5¢ slot 0, and the Y10 to Y1F 16-point
» E_ 9|5 ° external output is allocated to the
g |0 |ag S 16-point output unit in slot 1.
g.‘é S 8 = The sixteen points X10 to X1F cannot
oS be used in this combination.

T—Y10 to Y1F

X0 to XF

1.2.8 Word representation of relays (WX, WY, WR, and WL)

The external input relay (X), external output relay (Y), internal relay (R) and link relay (L) can also be expressed

in word format. The word format treats 16-bit relay groups as one word. The word expressions for these relays
are word external input relay (WX), word external output relay (WY), word internal relay (WR) and word link

relay (WL), respectively.

37

Basics

Example:

Configuration of word external input relay (WX)

XF XEXDXCXB XA X9X8 X7 X6 X5X4 X3 X2 X1 X0

wxo [[[T[]]I T]]
XAFXAEXID - -----omrmmem o X12X11X10
wxt [Tl
X12FX12EX12D" "~~~ """~ F X122X121X120
wxiz [[T[T
= Since the contents of the word relay correspond to the state of its relays
(components), if some relays are turned ON, the contents of the word
change.

38

Basics

1.3 Constants

A constant represents a fixed value. Depending on the application, a constant can be used as an addend,

multiplier, address, in-/output number, set value, etc.
There are 3 types of constants:

* decimal

* hexadecimal

e BCD

1.3.1 Decimal Constants

Decimal constants can have a width of either 16 or 32 bits.
Range 16 bit: -32,768 to 32,768
Range 32 bit: -2,147,483,648 to 2,147,483,648

Constants are internally changed into 16-bit binary numbers including character bit and are processed as such.

Simply enter the decimal number in your program.

1.3.2 Hexadecimal Constants

Hexadecimal constants occupy fewer digit positions than binary data. 16 bit constants can be represented by

4-digit, 32-bit constants by 8-digit hecadecimal constants.
Range 16 bit: 8000 to 7FFF
Range 32 bit: 80000000 to 7FFFFFFFF

Enter e.g.: 16#7FFF for the hexadecimal value 7FFF in your program.

1.3.3 BCD Constants

BCD is the abbreviation for Binary Coded Decimal.
Range 16 bit: 0 to 9999

Range 32 bit: 0 to 99999999

Enter BCD constants in the program either as:

binary: 2#0001110011100101 or
hexadecimal: 16#9999

39

Basics

1.4 Data types

In Control FPWIN Pro, variable declarations require a data type. All data types conform to IEC61131-3.

For details, please refer to the Programming Manual or to the online help of Control FPWIN Pro.

1.4.1 Elementary datatypes

Keyword Data type Range Reserved Initial value
memory
BOOL Boolean 0 (FALSE) 1 bit 0
1 (TRUE)
WORD Bit string of length 16 | 0-65535 16 bits 0
DWORD Bit string of length 32 | 0—4294967295 32 bits 0
INT Integer -32768-32,767 16 bits 0
DINT Double integer -2147483648- 2147483647 32 bits 0
UINT Unsigned integer 0-65,535 16 bits 0
UDINT Unsigned double 0-4294967295 32 bits 0
integer
REAL Real number -3.402823466*E38— 32 bits 0.0
-1.175494351*E-38
0.0
+1.175494351*E-38~
+3.402823466*E38
TIME Duration TH#0s-T#327.67s 16 bits
T#0s
THOs-T#21474836.47s 32 bits ¥
DATE_AND_TIME | Date and time DT#2001-01-01-00:00:00— 32 bits DT#2001-01-01-00
DT#2099-12-31-23:59:59 :00:00
DATE Date D#2001-01-01-D#2099-12-31 32 bits D#2001-01-01
TIME_OF_DAY Time of day TOD#00:00:00-TOD#23:59:59 32 bits TOD#00:00:00
STRING Variable-length 1-32767 bytes (ASCII) depending | 2 words for the | "
character string on PLC memory size head + (n+1)/2
words for the
characters

" Depending on PLC type

1.4.1.1 BOOL

Variables of the data type BOOL are binary variables. They can only have the value 0 or 1, and always have a
width of 1 bit.

The condition 0 corresponds to FALSE (e.g. initial value in the POU header) and means that the variable is
switched off. In this case we also speak of the variable not being set.

The condition 1 corresponds to TRUE (e.g. initial value in the POU header) and means that the variable is
switched on. In this case we also speak of the variable being set.

The default initial value, e.g. for the variable declaration in the POU header or in the global variable list = 0
(FALSE). In this case the variable is not set during the PLC program start. If this is not the case, the initial value
may also be set to TRUE.

40

Basics

1.4.1.2 INT

Variable values of the data type INTEGER are natural numbers without decimal places. The range of values for
INTEGER values is from -32768 to 32767.

The default initial value of a variable of this data type is 0.

Numbers can be entered in decimal, hexadecimal or binary format.

Decimal number Hexadecimal number Binary number
1234 16#4D2 2#10011010010
-1234 16#FB2E 2#1111101100101110
1.4.1.3 UINT

Variable values of the data type unsigned INTEGER are numerical numbers without decimal places. The range
of values for UINT values is from 0-65535.

1.4.14 DINT

Variable values of the data type DOUBLE INTEGER are natural numbers without decimal places. The value
range for a DOUBLE INTEGER values is from -2147483648 to 2147483647.

The default initial value of a variable of this data type is 0.

Numbers can be entered in decimal, hexadecimal or binary format.

Decimal number Hexadecimal number Binary number

123456789 16#75BCD15 2#111010110111100110100010101
-123456789 16#F8A432EB 2#1111100010100100001100101110
1.4.1.5 UDINT

Variable values of the data type unsigned DOUBLE INTEGER are numerical numbers without decimal places.
The value range for UDINT values is from 0-4294967295.

1.4.1.6 REAL

Variables of the data type REAL are real 32 bit numbers based on IEEE754. The mantissa is 23 bits and the
exponent is 8 bits.

Bit position
31 30 29 - 23 22 - 16 15 14 13 12 - 3 2 1 0

Exponents (8-bit) Mantissa (23-bit)

Sign bit: 0 positive
1 negative

The value range for REAL values is between -3.402823466*E38 to -1.175494351*E-38, 0.0,
+1.175494351*E-38 to +3.402823466*E38.

The default for the initial value, e.g. for the variable declaration in the POU header or in the global variable list =
0.0

41

Basics

For FP-e and FPO only: Do not use REAL instructions in interrupt programs.
You can enter REAL values in the following format:

[+-] Integer.Integer [(Ee) [+-] Integer]

Examples:
5.983e-7

-33.876e12
3.876e3
0.000123

123.0

= The REAL value always has to be entered with a decimal point (e.g. 123.0).

1.4.1.7 WORD

A variable of the data type WORD consists of 16 binary states. The switching states of 16 in/outputs can be
combined as a unity in one word (WORD).

The default initial value of a variable of this data type is 0.

Numbers can be entered in decimal, hexadecimal or binary format.

Decimal number Hexadecimal number Binary number
1234 16#4D2 2#10011010010
64302 16#FB2E 2#1111101100101110

1.4.1.8 DWORD

A variable of the data type DOUBLE WORD consists of 32 binary states. The switching states of 32
inputs/outputs can be combined as a unity in one DOUBLE WORD.

The default initial value of a variable of this data type is 0.

Numbers can be entered in decimal, hexadecimal or binary format.

Decimal number Hexadecimal number Binary number

123456789 16#75BCD15 2#111010110111100110100010101
4171510507 16#F8A432EB 2#1111100010100100001100101110
1.41.9 TIME

TIME (16 Bits): FP3, FP-C, FP5, FP10, FP10S

For variables of the data type TIME (16 bits) you can indicate a duration of 0.01 to 327.67 seconds. The
resolution amounts to 10 ms.

TIME (32 Bits): FP-X, FP-Sigma, FPO, FPOR, FP2/2SH, FP10SH
For variables of the data type TIME (32 bits) you can indicate a duration of 0.01 to 21 474 836.47 seconds. The

42

Basics

resolution amounts to 10 ms.

Default for 16 and 32 values = T#0

+NOTE

(corresponds to 0 seconds)

Duration data must be delimited on the left by the prefix T# or TIME#.

The units of duration literals can be separated by the character

Time units, e.g., seconds, milliseconds, etc., can be represented in upper- or lower- case letters.

"Overflow" of the most significant unit of a duration literal is permitted, e.g., the notation T#25h_15m

is permitted.
Description Examples
Duration literals without underlines: T#14ms T#-14ms T#14.7s T#14. 7m
short prefix T#14.7h T#14.7d t#25h15m
t #5d14h12n18s3. 5m
long prefix TI ME#14s TIME#-14s tine#14.7s
Duration literals with underlines: TH#25h 15m
short prefix T#5d_14h_12m 18s_3.5ns
long prefix TI ME#25h_15m
time#5d_14h _12m 18s_3. 5ms

1.4.1.10 DATE_AND_TIME

Variable values of the data type DATE_AND_TIME are date and time literals. The range of values for
DATE_AND_TIME values is from DT#2001-01-01-00:00:00— DT#2099-12-31-23:59:59.

Description Examples

Short prefix

DT#2010-06-07-15:36:55
dt#2010-06-07-15:36:55

Long prefix DATE_AND_TIME#2010-06-07-15:36:55
date_and_time#2010-06-07-15:36:55
Internal Seconds after DT#2001-01-01-00:00:00
representation
Advantages:

Can be used to set (SET_RTC_DT (see page 294)) or read (GET_RTC_DT (see page 289)) the

PLC's real-time clock, for example

Facilitates all kinds of calculations for date and time
Well suited for solar tracking applications

Sun's position, sunrise, sunset

Conversions between universal time and local time
Building automation

Holidays (e.g. Easter holidays), daylight saving time

Enables better integration and adaptation of POUs created with other manufacturers' IEC 61131-3
programming software, e.g. OSCAT (Open Source Community for Automation Technology)

43

Basics

1.4.1.11 DATE

Variable values of the data type DATE are date literals. The range of values for DATE values is from
D#2001-01-01-D#2099-12-31.

Description Examples

Short prefix D#2010-06-07
d#2010-06-07

Long prefix DATE#2010-06-07
date#2010-06-07

Internal Seconds after 2001-01-01

representation

Advantages:

* Facilitates all kinds of calculations for date and time
* Well suited for solar tracking applications

- Sun's position, sunrise, sunset

- Conversions between universal time and local time
* Building automation

* Holidays (e.g. Easter holidays), daylight saving time

1.4.1.12 TIME_OF_DAY

Variable values of the data type TIME_OF_DAY are time of day literals. The range of values for TIME_OF_DAY
values is from TOD#00:00:00-TOD#23:59:59.

Description Examples
Short prefix TOD#15:36:55
tod#15:36:55
Long prefix TIME_OF_DAY#15:36:55
time_of day#15:36:55
Internal Seconds after TOD#00:00:00
representation
Advantages:

* Facilitates all kinds of calculations for date and time
* Well suited for solar tracking applications

- Sun's position, sunrise, sunset

- Conversions between universal time and local time
¢ Building automation

* Holidays (e.g. Easter holidays), daylight saving time

44

Basics

1.4.1.13 STRING

The data type STRING consists of a series (a string) of up to 32767 ASCII characters. The maximum number of
characters depends on the memory size of the PLC. Change the default setting under Extras — Options —
Compile options — Code generation.

The default initial value, e.g. for variable declarations in the POU header or global variable list, is ", i.e. an empty
string.

Declaration
To declare STRING type variables in the POU header use the following syntax:

STRINGIn], where n = number of characters
The default number of characters for STRING is 32.

Internal memory structure of strings on the PLC

Each character of the string is stored in one byte. A string's memory area consists of a header (two words) and
one word for every two characters.

* The first word contains the number of characters reserved for the string.
* The second word contains the actual number of characters in the string.

* Subsequent words contain the ASCII characters (two per word)

To reserve a certain memory area for the string, specify the string length using the following formula: Memory
size = 2 words (header) + (n+1)/2 words (characters)

The memory is organized in word units. Therefore, word numbers are always rounded up to the next whole
number.

Word x Number of characters reserved for string
Word x+1 Actual number of characters in string
Word x+2 Character 2 Character 1
Word x+3 Character 4 Character 3
Word x+4 Character 6 Character 5

Word x+(n+1)/2+1 Character n Character n-1
High byte Low byte

See F159_MTRN (see page 741) for a programming example.

String literals (according to IEC 61131-3)

A character string literal is a sequence of zero or more characters prefixed and terminated by the single quote
character (').

Three-character combinations of the dollar sign ($) followed by two hexadecimal digits are to be interpreted as
the hexadecimal representation of the eight-bit character code.

Two-character combinations beginning with the dollar sign are to be interpreted as shown in the table:

Combination Interpretation when printed
$$ Dollar sign ($24)

$ Single quote ($27)

$L or $I Line feed ($0A)

$N or $n New line ($0D$0A)

$P or $p Form feed (page) ($0C)

$R or $r Carriage return ($0D)

45

Basics

Combination Interpretation when printed
$T or $t Tab ($09)

Examples of string literals

Example Explanation

Empty string (length 0)

‘A String of length 1 containing the single character A

String of length 1 containing the space character

'$" String of length 1 containing the single quote character
'SRL String of length 2 containing CR and LF characters
'$$1.00' String of length 5 which would print as "$1.00"
'$02$03"' String of length 2 containing STX and ETX characters

Strings as constants

It is possible to enter values of the data type STRING directly as constants into a function or a function block.
The string must be enclosed in single quotes.

Transfer a constant character string 'abc' to the string variable sTarget.

| Class | 1dentifier | Type | Initial
0 | var | bstart BOOL FALSE
1 VAR, sTarget STRING[Z0] "
z VAR
<
1 R MOVE |-
- hStat—— EN ENO —~ - - - -

“'abe'— ~==sTarget

Transferring strings to functions or function blocks
When character strings are transferred, only as many characters that fit into the target string are transferred.
Please refer to the following examples in the online help under the keyword 'STRING':

1. Copy a source string to a target string which is shorter.

2. Copy a constant character string to another which is shorter.

Generate a message using a string function.

+NOTE

The conversion functions INT_TO_STRING (see page 217), DINT_TO_STRING (see page 220),
REAL_TO_STRING (see page 228), TIME_TO_STRING (see page 230), etc. need many system
resources in terms of programming steps and processing time. When you use these functions
frequently, create a user-defined function that embeds the conversion function and use the
user-defined function in your project. For older PLC types (FPO, FP3, FP5, FP10), this is also true
for the CONCAT (see page 269) and FIND (see page 273) instructions.

STRING with EN/ENO

Ladder diagram (LD) and function block diagram (FBD)
STRING instructions with enable input (EN) and enable output (ENO) contacts may NOT be connected to each

46

Basics

other in LD and FBD. First connect the STRING instructions without EN/ENO and then add an instruction with
EN/ENO in the final position. The enable input (EN) then controls the output of the overall result.

(

AV ¢ EXAMPLE

This arrangement is not possible:

COMCAT
start ——

atringl —
atring2 —

COMCAT

atring3

This arrangement is possible:

stringl = Thig'—
String2 = 'ig'— p

Instruction list (IL)

functions with EN/ENO.

»

Er ENO

COMCAT

COMCAT

COMCAT

L EM ENO

COMCAT

7@—%&52

.--"""-

——result

atring

—

——result = This is a Test'

& e
String3 = a'J;ngd = 'Test'f

STRING instructions with EN/ENO may be connected to each other in IL. Nevertheless, in order to avoid
intermediate variables, it is recommended that you use a conditional jump instead of connecting a series of

AVAR ¢ EXAMPLE

Program with dummy string

Class Identifier | Tvpe | Initial
] VAR skark BinOL FALSE
1 VAR Stringl STRIMNG[4] This'
7 WAR String2 STRING[3] 'is'
5 YAR String STRING[Z] 'y
4 WAR String4 STRING[S] ' Test'
5 VAR result STRIMG[3Z] "
& WAR, help_string STRIMG[3Z] "

[* When start = TRUE then calculate

result = String1 + String2 + String3 + Stringd *)

LD start _

E_CONCAT String1, String2, help_string
E_CONCAT help_string, String3, help_string
E_CONCAT help_string, Stringd, result

47

Basics

Program with conditional jump

Class Identifier | Type | Initial |
0 VAR skart Bl FALSE
1 VAR Skringl STRIMG[] "This'
2 VAR String2 STRIMG[3] 'ig'
3 VAR String3 STRIMG[Z] ‘&
4 VAR String STRIMNG[S] ' Test'
5 VAR result STRIMG[32] !
1 [* "hen start = TRUE then calculate
re=sult = String1 + String2 + String3 + Stringd *]

LCM start

JkAPC marker

LC String 1

COMTACT String2

COMNTACT String3

COMTACT String4

5T re=sult
2 [Inzert code far netwark 2 hare *]
marker:

The difficulty of programming with a dummy string lies in correctly choosing its length. When connecting
unconditional string instructions in series, the length is calculated automatically.

H CityRufCall [CalcPressure. CityRufCall_1] Body [LD]

7 - - HangOffStart - - - - - - - - SendStrin | :
I]! uEHIJ -

- ATH$0D'— Input r'_(m-gﬁu. S o o

Class Identifier | Type | Initial | Commen
I offvar_nput *] Input STRING[32] o
SendSuing [FUN: BOOL] Body [LD] ™
1 B . FM4TRNS o
[Adr_Of VarOffs | | LEN ENO ——SendString = 2#0-
Input = "ATH$r'— Var Adr — s I o

R {_MJ

Input = 'ATH$r'— IN

£

szage? [FUN: STRING[32]] Body [LD]

REAL TO_STRING

——RealString =" 10.0000000"

Reall =10.0 — IN

MakeMessage? = "Actual value: 10.00 bar!*

‘ - ‘Actual value: xxx.xx barl’

48

Basics

From these commands one gets the following address occupation:

Another use with functions from the FP TOOL Library (Adr_OfVarOffs....):

akeMessage? = "Actual value: 10.00 bar!*

49

Basics

1.4.2 Generic datatypes

Generic data types are used internally by system functions and function blocks and cannot be selected in
user-defined POUs. Generic data types are identified by the prefix ANY.

+NOTE

Generic data types are not available in user-defined POUs.

Hierarchy of generic data types

ANY
ANY_NUM REAL, ANY_INT
ANY_INT INT, DINT
UINT, UDINT
ANY16 WORD
INT, UINT
ANY32 DWORD
DINT, UDINT
DATE, TOD, DT
ANY_BIT BOOL
WORD, DWORD
ANY_DATE DATE, TOD, DT

50

Basics

143 DUT

A DUT (data unit type) is composed of several elementary data types which may differ in type.

1.4.3.1 Creating DUTs

uJIF'
Object - New — DUT or | ™

Enter DUT name

If desired, select the check box for DUTs with overlapping elements (see page 53).
[OK]
Open the new DUT from the "Project" pane

Declare variables for the DUT

tr

Object — Check or

1.4.3.2 Using DUTs in the global variable list

1.

2
3
4,
5

© © N o

11.
12.
13.

Open "Global variables" from "Project" pane

= E
. . —= = .
Enter anew linewith © & or == | if necessary

Under "Class", select "VAR_GLOBAL"
Under "Identifier", enter a symbolic name

Enter FP address or IEC address

The first element of the DUT determines the address type: for BOOL type elements, assign a 1-bit
address (e.g. R10), for other data types assign a 16-bit address (e.g. WR1). If you assign an
address, DUTs with non-overlapping elements must consist entirely of BOOL type elements, or
entirely of non-BOOL type elements.

Under "Type", select ﬁ to open the "Type selection” dialog
Under "Type Class", select "Data Unit Types"

Under "Type", select the desired DUT

[OK]

. Under "Initial", select =1 to open the "Data Unit Initial Values" dialog

This dialog shows how the individual variables have been defined in the DUT. You can only change
the initial values for one single variable (not for the DUT).

Change initial value for the desired variable, if necessary
[OK]

Under "Comment", enter a text, if desired

51

Basics

14.

Object — Save

+NOTE

A DUT defined in the global variable list can be used in a POU body only when copied into the
header of the corresponding POU beforehand.

1.4.3.3 Using DUTs in a POU header

1.

e

© N o g

10.
11.
12.
13.

Open POU header from "Project" pane

=t

E
Enter anew linewith “& or == if necessary
Under Class, select "VAR"

Under "Identifier", enter a symbolic name

Under "Type", select j to open the "Type selection" dialog
Under "Type Class", select "Data Unit Types"

Under "Type", select the desired DUT

[OK]

Under "Initial", select = to open the "Data Unit Initial Values" dialog

This dialog shows how the individual variables have been defined in the DUT. You can only change
the initial values for one single variable (not for the DUT).

Change initial value for the desired variable, if necessary
[OK]
Under "Comment", enter a text, if desired

Object — Save

Now the DUT or a single variable of the DUT can be used in the POU body. The DUT can be
assigned with the help of the "Variables" pane (<F2>).

+NOTE

A DUT defined in the global variable list can be used in a POU body only when copied into the
header of the corresponding POU beforehand.

1.4.3.4 DUTs with non-overlapping elements

Using the Properties dialog, you can assign a DUT one of two ways of occupying memory:

1. with overlapping elements (see page 53)

2. with non-overlapping elements

How DUTs with non-overlapping elements occupy memory:

All elements of the data type BOOL are lumped together in a block and allocated one after the other in a
memory area reserved for bits, beginning at a 16-bit word address.

52

Basics

All elements of the data type ARRAY OF BOOL are lumped together in a block and allocated in a memory area
reserved for bits, beginning at a 16-bit word address.

All other elements are lumped together and allocated one after the other in a block in a memory area reserved
for 16-bit words.

For details on working with DUTs and predefined system DUTs, please refer to the online help.

1.4.3.5 DUTs with overlapping elements

How DUTSs with overlapping elements occupy memory:

All elements of the same data type (BOOL, WORD, INT, DWORD, DINT, REAL and STRINGs with the same,
common string length) are each lumped together and allocated one after the other beginning from a common
starting address. Arrays are also allocated to this common starting address.

The following conditions apply to this starting address: If DUT consists of BOOL or ARRAY OF BOOL type
elements, it is stored in a memory area reserved for bits; otherwise it is stored in a memory area reserved for
16-bit words.

To avoid ambiguity during initialization no initialization is allowed The following default initializations are
executed:

* BOOL: FALSE

* WORD, INT, DWORD, DINT: 0

* REAL:0.0

* STRING: " (i.e. the address occupied by the maximum string length is initialized with the maximum

length of the string that is greater or equal to zero. The rest of the string is initialized with zeros.)

Also, all element variables of the data type STRING must be located at the end of the declaration.

+NOTE

* In general, you should pay exact attention to how memory area is occupied by the data types used.

* Especially when using STRINGs, note that their particular way of occupying memory allows them to
be repeatedly overwritten with the help of other elements.

* Ensure the maximum string length and the current string length are valid values before using string
commands.

For details on working with DUTs and predefined system DUTSs, please refer to the online help.

144 Array

Arrays

An array is a group of variables which all have the same elementary data type and that are grouped together,
one after the other, in a continuous data block. This variable group itself is a variable and must hence be
declared for this reason. In the program you can either use the whole array or individual array elements.

53

Basics

Declaration

To declare ARRAY type variables in the POU header use the following syntax:
ARRAYIA...B,C...D,E...F] OF <data type> where:

A= [first element index

B= |last element index

first dimension

C= |first element index

D= |last element index

second dimension (optional)

E= |first element index

F= |last element index

third dimension (optional)

Arrays can be 1, 2 or 3-dimensional. In each dimension, an array can have several fields. Element indexes are
positive or negative integers. The first element must be smaller than the last element.

+NOTE

An array cannot be used as a variable by another array.

When accessing an index of an array, Control FPWIN Pro does not check the index against the bounds
of the array. Make sure the index lies within the range defined in the POU header.

Example: ARRAY [1..5] OF INT

In this example, ai_array[99] is out of range but does not produce an error message.

| Class | Identifier

| Type | Tritial | Comment

0 Lvar | ai_array ARRAY [1,.5] OF INT | [100,200,... | array with five elaments
1 VAR i_oukOFRange IMT 99
2 WAR
1]
1
BO0 —Mai_array[i_uut[ﬁlfﬁange]
........ R e
2
Data types valid for arrays are:
« BOOL
 DATE
* DATE_AND_TIME
e DINT
« DWORD
o INT
* REAL
* STRING
 TIME

54

Basics

« TIME_OF_DAY

* UDINT
* UINT
* WORD

Data Unit Type

A Data Unit Type (DUT) is a group of variables composed of several different elementary data types (BOOL,
WORD etc.). These groups are used when tables are edited, such as for data table control, e.g.
F174_PulseOutput_DataTable (see page 1069). Define a DUT in the DUT pool first. Then you can use the DUT
in the “Type” field of the global variable list or of a POU header similarly to the integer, BOOL etc. data types. In
the program you can then use either the whole DUT or individual variables of the DUT.

+NOTE

A DUT cannot be used as a variable by another DUT.

For details on working with ARRAYs or DUTs, please refer to the online help.

1.45 Special data types only available in conversion functions

+NOTE

* Valid data types are: BOOL16, BOOL32, BOOLS, SDT, SDDT, BCD, IPADDR, ETLANADDR

* These data types are valid for conversion functions to special data types (see page 1335) only.

* These data types cannot be declared in POU headers.

1.4.5.1 BOOL16

Allowed are:

* Arrays with exactly 16 elements of the data type BOOL
Note:
These types can lie in the areas X, Y, R, L, T, and C. For failure to make an assignment in the
address field of the global variable list or for local variables, they are automatically placed in area R
by the compiler.

* All DUTs with exactly 16 members of the data type BOOL
Note:
These are automatically placed by the compiler in area R.

1.4.5.2 BOOL32

Allowed are:

* Arrays with exactly 32 elements of the data type BOOL
Note:
These types can lie in the areas X, Y, R, L, T, and C. For failure to make an assignment in the
address field of the global variable list or for local variables, they are automatically placed in area R

55

Basics

by the compiler.

e Al DUTs with exactly 32 members of the data type BOOL
Note:
These are automatically placed by the compiler in area R.

1.4.5.3 BCD_WORD

The data type BCD_WORD (binary-coded decimal) only occurs in the conversion functions
INT_TO_BCD_WORD (see page 243) and UINT_TO_BCD_WORD (see page 245). These conversion functions
use variables of the type WORD, which are interpreted as BCD numbers, e.g. the decimal number 654 is
interpreted as the hexadecimal number 16#0654.

1.4.54 WORD_BCD

The data type WORD_BCD (binary-coded decimal) only occurs in the conversion functions
WORD_BCD_TO_INT (see page 146) and WORD_BCD_TO_UINT (see page 158). These conversion functions
use variables of the type WORD, which are interpreted as BCD numbers, e.g. the decimal number 654 is
interpreted as the hexadecimal number 16#0654.

1.45.5 BCD_DWORD

The data type BCD_DWORD (binary-coded decimal) only occurs in the conversion functions
DINT_TO_BCD_DWORD (see page 244) and UDINT_TO_BCD_DWORD (see page 246). These conversion
functions use variables of the type DWORD, which are interpreted as BCD numbers, e.g. the decimal number
654 is interpreted as the hexadecimal number 16#0654.

1.4.5.6 DWORD_BCD

The data type DWORD_BCD (binary-coded decimal) only occurs in the conversion functions
DWORD_BCD_TO_DINT (see page 169) and DWORD_BCD_TO_UDINT (see page 182). These conversion
functions use variables of the type DWORD, which are interpreted as BCD numbers, e.g. the decimal number
654 is interpreted as the hexadecimal number 16#0654.

1.4.5.7 IPADDR

The data type IPADDR only occurs in the following conversion functions:
* |PADDR_TO_STRING (see page 232)
* |PADDR_TO_STRING_NO_LEADING_ZEROS (see page 233)
e STRING_TO_IPADDR (see page 247)

« STRING_TO_IPADDR_STEPSAVER (see page 248)

These conversion functions interpret variables of the type DWORD as strings in IPADDR format. This format
consists of four octal numbers (with or without leading zeros) separated by periods in opposite order, i.e. the
highest octal number in the IPADDR number will be the lowest octal number in the string.

56

Basics

Example:
Value Conversion function Result
16#01020304 IPADDR_TO_STRING 004.003.002.001

IPADDR_TO_STRING_NO 4.3.2.1
_LEADING_ZEROS

+NOTE

If you want an interpretation of the DWORD in direct order, use the conversion functions that
invoke the data type ETLANADDR.

1.4.5.8 ETLANADDR

The data type ETLANADDR only occurs in the following conversion functions:
e ETLANADDR TO_STRING (see page 234)
» ETLANADDR _TO_STRING_NO_LEADING_ZEROS (see page 235)
* STRING_TO_ETLANADDR (see page 249)

* STRING_TO_ETLANADDR_STEPSAVER

These conversion functions interpret variables of the type DWORD as strings in ETLANADDR format. This
format consists of four octal numbers (with or without leading zeros) seperated by periods in direct order, i.e. the
highest octal number in the ETLANADDR number will be the highest octal number in the string.

Example:
Value Conversion function Result
16#01020304 ETLANADDR_TO_STRING 001.002.003.004

ETLANADDR_TO_STRING_ 12.3.4
NO_LEADING_ZEROS

+NOTE

If you want an interpretation of the DWORD in inverse order, use the conversion functions
invoking the data type IPADDR.

1.4.5.9 ANY_IN_UNITS_OF_WORDS

Allowed are:
* Datatypes INT, DINT, WORD, DWORD, REAL, STRING, TIME

* Arrays with data types other than BOOL
* Al DUTs that contain elements with data types besides BOOL
Note:

These data types can lie in the following areas: WX, DWX, WY, DWY, WR, DWR, WL, DWL, SV,
DSV, EV, DEV, DT, DDT, LD, DLD, FL, DFL. For failure to make an assignment in the address field

57

Basics

of the global variable list or for local variables, they are automatically placed in DT, DDT, FL or DFL
by the compiler.

* Arrays with the data type BOOL under the condition that the total number of elements can be
divided by 16.

Note:
These types can lie in the areas X, Y, R, L, T, and C. For failure to make an assignment in the

address field of the global variable list or for local variables, they are automatically placed in R by
the compiler.

* Al DUTs with a number of simple BOOL variables divisible by 16 remain.

Note:
These are automatically placed by the compiler in area R.

1.4.5.10 ANY_SIMPLE_NOT_BOOL

Allowed are:
Data types INT, DINT, WORD, DWORD, REAL, STRING, TIME (but not BOOL)

These data types can lie in the following areas:

WX, DWX, WY, DWY, WR, DWR, WL, DWL, SV, DSV, EV, DEV, DT, DDT, LD, DLD, FL, DFL.
For failure to make an assignment in the address field of the global variable list or for local
variables, they are automatically placed in DT, DDT, FL or DFL by the compiler.

58

Chapter 2

Data transfer instructions

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Data transfer instructions

MOVE Move value to specified destination

Description

PLC
types

Data types

Example

POU header

Body

LD

ST

MOVE assigns the unchanged value of the input variable to the output variable.

- MOVE |

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of MOVE (see page 1328)

* When using the data type STRING with small PLCs like FP-e or FPO,
make sure that the length of the result string is equal to or greater than
the length of the source string.

* For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data type I/O Function
all data types input source
all data types output as input destination

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | 1dentifier | Tvpe | Initial | Comment |
1] input_walue INT 0 all types allowed
1 AR output_walue INT O all bvpes allowed

In this example the input variable input_value has been declared. Instead, you may enter a
constant directly at the input contact of a function.

Input_value is assigned to output_value without being modified.

When programming with structured text, enter the following:
out put _val ue: = i nput _val ue;

60

Chapter 3

Arithmetic instructions

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Arithmetic instructions

ADD

Description

PLC types
==

Data types

Example

POU header

Body

LD

Add

This function adds the input variables IN1 + IN2 +... and writes the addition result into the output
variable.

~ ADD |
|

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of ADD (see page 1335)
* All operands must be of the same data type.

* This function can be expanded to a maximum of 28 input contacts.

Data type 1/0 Function
INT, DINT, REAL 1st input augend
INT, DINT, REAL 2nd input addend
INT, DINT, REAL output as input sum

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables which are required for programming the function are declared in the
POU header.

| Class | Iderkifier | Twpe | Initial |
YAR enable EOOL FALSE
YAR summand_1 IMT 1]
WoR summand_2 IMT 0
VAR sum IMT]

L3 o= O

In this example the input variables (summand_1, summand_2 and enable) have been declared.
Instead, you may enter constants directly into the function (enable input e.g. for tests).

If enable is set (TRUE), summand_1 is added to summand_2. The result is written into sum.

J ehakle
) | _ ADD
~EN EMNO -
surntmandl = 100 — ——sum=111
surmmand? =11 —— P

62

Arithmetic instructions

SUB Subtract

Description The content of the accumulator is subtracted from the operand defined in the operand field.The
result is transferred to the accumulator.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part 1l

PLC types Availability of SUB (see page 1335)
= * All operands must be of the same data type.

* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data types Data type 110 Function
INT, DINT, REAL 1st input minuend
INT, DINT, REAL 2nd input subtrahend
INT, DINT, REAL output as input result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the
POU header.

| Class | dentifier | Tvpe | Initial |

0 enable BOOL FALSE
1 VAR, rninuend INT 0
Z WAOR, subtrabend INT 0
3 WOR, resulk INT 0

In this example the input variables (minuend, subtrahend and enable) have been declared.
Instead, you may enter constants directly into the function (enable input e.g. for tests).

Body If enable is set, subtrahend (data type INT) is subracted from minuend. The result will be written
into result (data type INT).

LD enable
Ll
sLUB
—EM EMNO —
minuend =111 — ——result= 100
subtrahend = 11—

63

Arithmetic instructions

Description MUL multiplies the values of the input variables with each other and writes the result into the output
variable.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

oMUl
|

P

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of MUL (see page 1335)
= * All operands must be of the same data type.

e This function can be expanded to a maximum of 28 input contacts.
* Modifying elements

* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data types Data type 1/0 Function
INT, DINT, REAL 1st input multiplicand
INT, DINT, REAL 2nd input multiplicator
INT, DINT, REAL output as input result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the
POU header.

| Class | Identifier | Tvpe | Inital |
enable BOOL FALSE
WAR mulkiplicand INT 0
WAR, multiplicatar — IWMT 0
WAR result INT 0

L3 o= O

In this example the input variables (multiplicand, multiplicator and enable) have been declared.
Instead, you may enter constants directly into the function (enable input e.g. for tests).

Body If enable is set (TRUE), the multiplicant is multiplied with the multiplicator. The result will be
written into result.

LD enahle
L
hALIL
~EN ENO —
multiplicand =111 — ——rtesult="11100
multiplicator = 100 — P

64

Arithmetic instructions

DIV Divide
Description DIV divides the value of the first input variable by the value of the second.
~ DM 'r
To add an enable input and enable output to the instruction, select [With EN/ENO] from the

"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

PLC types Availability of DIV (see page 1335)

= * Input and output variables must be of one of the noted data types. All
operands must be of the same data type.

* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data types Data type 1/0 Function
INT, DINT, REAL 1st input dividend
INT, DINT, REAL 2nd input divisor
INT, DINT, REAL output as input result

65

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Arithmetic instructions

Example

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the

POU header.

| Class | Identifier | Twpe | Initial |

0 enable BOOL FALSE
1 WaR dividend INT i
2 WaR divisor INT n
3 WA resulk INT 0

In this example the input variables (dividend, divisor and enable) have been declared. Instead,
you may enter constants directly into the function (enable input e.g. for tests).

Body If enable is set (TRUE), dividend is divided by divisor. The result is written into result.

LD

enakle O
/) EX ERE -
dividend = 11100 —— ——result =100
divisor=111—

66

Arithmetic instructions

ABS Absolute Value

Description ABS calculates the value in the accumulator into an absolute value. The result is saved in the
output variable.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- ABS |

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part 1l

PLC types Availability of ABS (see page 1318)

Data types Data type 1/0 Function
INT, DINT, input input data type
REAL
INT, DINT, output as input absolute value
REAL
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial |
1] input_value INT | -123
1 WAR absolute_wvalue INT 0O

This example uses variables. You can also use a constant for the input variable.

Body Input_value of the data type INTEGER is converted into an absolute value of the data type
INTEGER. The converted value is written into absolute_value.

LD
input_walue = 123—— ABS l,—-absulute_value =123

ST When programming with structured text, enter the following:
absol ut e_val ue: =ABS(i nput _val ue) ;

67

Arithmetic instructions

MOD Modular arithmetic division, remainder stored in output variable

Description MOD divides the value of the first input variable by the value of the second. The rest of the integral
division (5 : 2 : 2 + rest = 1) is written into the output variable.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- MOD '[
To add an enable input and enable output to the instruction, select [With EN/ENO] from the

"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part Il

PLC types Availability of MOD (see page 1328)

Data types Data type 1/0 Function
INT, DINT 1st input dividend
INT, DINT 2nd input divisor
INT, DINT output as input remainder
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Iderkifier | Type | Initial | Comment |
0 dividend INT 1t
1 WaR divisor INT 4
2 AR remainder IMNT 0 11 divided by 4 = 2 with
3 WAR remainder of 3
3 is writken into output variable

Body This example uses variables. You may also use constants for the input variables. Dividend (11) is
divided by divisor (4). The remainder (3) of the division is written in remainder.

LD

dividend =11 — MOD | ——remainder =3
drvisar = 4 ——

ST When programming with structured text, enter the following:
remai nder: = di vidend MOD di vi sor;

68

Arithmetic instructions

SQRT Square root

Description SQRT calculates the square root of an input variable of the data type REAL (value = 0.0). The
result is written into the output variable.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- SORT |

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part 1l

PLC types Availability of SQRT (see page 1331)

= The number of steps may vary depending on the PLC and parameters used, see
also Table of Code Intensive Instructions in the online help.

Data types Data type 1/0 Function
REAL input input value
REAL output as input square root of input value

Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = input variable does not have the data
R9008 | %MX0.900.8 | for an instant Byge REAL or input variable is not =
R900B | %MX0.900.11 permanently = output variable is zero
R9009 %MX0.900.9 for an instant = processing result overflows the output

variable
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Commert |
1] input_walue REAL 0.0 number == 0
1 WAR output_walue REAL 0.0 number == 10

This example uses variables. You can also use a constant for the input variable.
Body The square root of input_value is calculated and written into output_value.
LD

input_walue = 144.III—-__S_QET__E—-uutput_value =120

ST When programming with structured text, enter the following:
out put _val ue: = SQRT(i nput _val ue);

69

Arithmetic instructions

SIN Sine with Radian Input Data

Description SIN calculates the sine of the input variable and writes the result into the output variable. The angle
data has to be specified in radians (value < 52707176).

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

-

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part Il

= * The accuracy of the calculation decreases as the angle data specified
in the input variable increases. Therefore, we recommend to enter
angle data in radians = -2x and < 2.

* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

PLC types Availability of SIN (see page 1330)

Data types Data type I/O Function
REAL input input value, angle data in radians
REAL output as input SINE of input value
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = input variable does not have the data
- type REAL or
0,
R9008 %MX0.900.8 for an instant input variable = 52707176
R900B %MX0.900.11 permanently = output variable is zero
R9009 %MX0.900.9 for an instant = processing result overflows the output
variable
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the

POU header.

| Class | Identifier | Tvpe | Initial | Commert |
0 input_walue REAL 0.0 number == 0
1 WAR output_walue REAL 0.0 number ==10

This example uses variables. You can also use a constant for the input variable.
Body The sine of input_value is calculated and written into output_value.

LD

input_value =0.0—— &IN (——output_value = 0.0

70

Arithmetic instructions

ASIN Arcsine

Description ASIN calculates the arcsine of the input variable and writes the angle data in radians into the output
variable. The function returns a value from - 7t/2 to m/2.

="

PLC types

Data types

Error flags

Example

- ASIN L

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

The number of steps may vary depending on the PLC and parameters used, see
also Table of Code Intensive Instructions in the online help.

Availability of ASIN (see page 1318)

Data type 1/0 Function

REAL input input value between -1 and +1

REAL output as input | arcsine of input value in radians

No. IEC address | Set If

R9007 %MX0.900.7 permanently = input variable does not have the data

- type REAL or
0,

R9008 %MX0.900.8 for an instant input variable is not = -1.0 and < 1.0

R900B | %MX0.900.11 permanently = output variable is zero

R9009 %MX0.900.9 for an instant = processing result overflows the output
variable

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Initial | Comment |
1] input_walue RE&L 0.0 number between -1 and +1

1

VAR,

output_walue REAL 0.0

angle data in radians -FijZ to Pifz2

This example uses variables. You can also use a constant for the input variable.

Body The arc sine of input_value is calculated and written into output_value.

LD

input_value = 00— ASIN ——output_wvalue = 0.0

ST When programming with structured text, enter the following:
out put _val ue: =ASI N(i nput _val ue) ;

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

71

Part 1l

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Arithmetic instructions

COS

Description

PLC types

Data types

Error flags

Example

POU header

Body

LD

ST

Cosine

COS calculates the cosine of the input variable and writes the result into the output variable. The
angle data has to be specified in radians (value < 52707176).

- cos |

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

* The accuracy of the calculation decreases as the angle data specified
in the input variable increases. Therefore, we recommend to enter
angle data in radians = -2x and < 2.

* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Availability of COS (see page 1318)

Data type I/O Function

REAL input input value, angle data in radians

REAL output as input cosine of input value

No. IEC address | Set If

R9007 %MX0.900.7 permanently = input variable does not have the data

R9008 %, MX0.900.8 for an instant type REAL or input variable = 52707176

R900B %MX0.900.11 permanently output variable is zero

R9009 %MX0.900.9 for an instant processing result overflows the output
variable

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Initial | Comment |
0 input_walue REAL 0.0 angle datain radians
1 WaR oubput_walue REAL 0.0 cosine

This example uses variables. You can also use a constant for the input variable.

The cosine of input_value is calculated and written into output_value.

input_walue =00—— CO35 I,—'Dutput_ualue =1.0

When programming with structured text, enter the following:
out put _val ue: =COS(i nput _val ue) ;

72

Arithmetic instructions

ACOS Arccosine

Description

="

PLC types

Data types

Error flags

Example

POU header

Body

LD

ST

ACOS calculates the arccosine of the input variable and writes the angle data in radians into the
output variable. The function returns a value from 0.0 to .

- ACOS |

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

The number of steps may vary depending on the PLC and parameters used, see
also Table of Code Intensive Instructions in the online help.

Availability of ACOS (see page 1318)

Data type 1/0 Function

REAL input input value between -1 and +1

REAL output as input arccosine of input value in radians

No. IEC address Set If

R9007 %MX0.900.7 permanently = input variable does not have the data

R9008 | %MX0.900.8 | for an instant type REAL or input variable is not = -1.0
and < 1.0

R900B | %MX0.900.11 permanently = output variable is zero

R9009 %MX0.900.9 for an instant = processing result overflows the output
variable

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.
| Class | Identifier | Tvpe | Initial | Comment |
1] input_walue REAL 0.0 number bebween -1 and +1
1 WOR, output_walue REAL 0.0 angle data in radians 0.0 to pi

This example uses variables. You can also use a constant for the input variable.

The arc cosine of input_value is calculated and written into output_value.

input_value = 00— ACOS l,—-u:uutput_value =15707596

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

73

Part 1l

Arithmetic instructions

When programming with structured text, enter the following:
out put _val ue: =ACOS(i nput _val ue) ;

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

74

Arithmetic instructions

Description TAN calculates the tangent of the input variable and writes the result into the output variable. The
angle data has to be specified in radians (value < 52707176).

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- TAN |

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

= * The accuracy of the calculation decreases as the angle data specified
in the input variable increases. Therefore, we recommend to enter
angle data in radians -2rx and 2.

e The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

PLC types Availability of TAN (see page 1331)

Data types Data type 1/0 Function
REAL input input value in radians
REAL output as input tangent of input value
Error flags No. IEC address | Set If
0,
R9007 %MX0.900.7 permanently = input variable does not have the data
R9008 | %MX0.900.8 for an instant type REAL or input variable = 52707176
R900B | %MX0.900.11 permanently = output variable is zero
R9009 %MX0.900.9 for an instant = processing result overflows the output
variable
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the

POU header.

| Class | Identifier | Tvpe | Initial | Comment |
1] input_walue REAL 0.0 angle data in radians
1 VAR output_walue REAL 0.0 tangent

This example uses variables. You can also use a constant for the input variable.
Body The tangent of input_value is calculated and written into output_value.

LD

75

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Arithmetic instructions

ATAN Arctangent

Description

==

PLC types

Data types

Error flags

Example

POU header

Body

LD

ST

ATAN calculates the arctangent of the input variable (value + 52707176) and writes the angle data
in radians into the output variable. The function returns a value greater than -x/2 and smaller than
/2.

- ATAN |

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

The number of steps may vary depending on the PLC and parameters used, see
also Table of Code Intensive Instructions in the online help.

Availability of ATAN (see page 1318)

Data type 1/0 Function

REAL input input value between -52707176 and +52707176

REAL output as input arctangent of input value in radians

No. IEC address Set If

R9007 %MX0.900.7 permanently input variable does not have the data

R9008 %MX0.900.8 for an instant type REAL or input variable = 52707176

R900B | %MX0.900.11 permanently output variable is zero

R9009 %MX0.900.9 for an instant processing result overflows the output
variable

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Initial | Camment |
0 input_wvalue REAL 0.0 number between +/-52707176
1 WOR, output_walue REAL 0.0 andle in radians =-PifZ and <Pif2

This example uses variables. You can also use a constant for the input variable.

The arc tangent of input_value is calculated and written into output_value.

input_value = 00— ATAN |,—J|:|utput_value =0.0

When programming with structured text, enter the following:
out put _val ue: =ATAN(i nput _val ue);

76

Arithmetic instructions

ATAN2 YX Returns the angle ¢ of the Cartesian coordinates (x,y)

Description ATAN2_YX returns the angle ¢ of the Cartesian coordinates (x,y) within the range of -x to +.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

ATANZ ¥ |
- ¥
= |
Each position P of the two-dimensional coordinates can be defined by Cartesian coordinates P(x,y)
or by polar coordinates P(r,p) (r = radius, ¢ = angle).

Part 1l

90°
A
Y
_______ P
/
180° ¢ ! > 0°
X
270°
Define ATAN2_YX as follows:
ATAN2_YX(y,X) X y
V
arctan - x>0
W
arctan :; + T y=0
‘; x<0
arctan - — y<0
T y>0
I —_
2
T x=0 y<0
2
0 y=0

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of ATAN2_YX (see page 1318)

77

Arithmetic instructions

%)
c
=
o Data types Data type I/O Function
E REAL y Cartesian y coordinate
2 REAL X Cartesian x coordinate
&
- Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).
= The same POU header is used for all programming languages.
6_5 POU header All input and output variables used for programming this function have been declared in the POU
header.
Class Identifier | Tvpe | Inikial |
] ViR rPhilR.ad REAL 0.0
1 VAR rPhizRad REAL 0.0
2 WaR tPhilDeqgres REAL 0.0
3 WaR tPhizDeqgres REAL 0.0
4 VAR _COMSTAMT DEGR_OF_RAD REAL 97, 29577951 3058253205767 95154514105
5 VAR bCalculatePhil BinoL FALSE
LD Angle value of point in guadrant 2 p
ATANZ YK
00—y ——tPhilTHad = 2 3561947
00— x
rPhiTRad = 2 3561947 —— MLIL +Phi1 Degree = 13500002
DEGR_OF RAD =57 29575 — p
Angle value of point in guadrant 4 4
ATANZ Ya
S0—y ——tPhiZRad = -0.785359519
50— x
rPhiZzRad = -0.72529819 — MUL ——rPhi2Degree = -45.0
DEGR_OF_RAD =57 29575 — p

ST When programming with structured text, enter the following:
(* Angle value of point in quadrant 2 *)
r Phi 1Rad: =ATAN2_YX(y := 10.0, x := -10.0); (* Result: 2.3561947 *)
r Phi 1Degree : = rPhi 1Rad * DEGR _OF RAD, (* Result: 135.00002 *)

(* Angle value of point in quadrant 4 *)
r Phi 2Rad: =ATAN2_YX(y := -5.0, x := 5.0); (* Result: -0.78539819 *)
r Phi 2Degree : = rPhi 2Rad * DEGR_OF_RAD; (* Result: -45.0 *)

78

Arithmetic instructions

Description LN calculates the logarithm of the input variable (value > 0.0) to the base e (Euler's number =
2.7182818) and writes the result into the output variable. This function is the reversion of the EXP
(see page 80) function.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

LN F

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

= The number of steps may vary depending on the PLC and parameters used, see
also Table of Code Intensive Instructions in the online help.

PLC types Availability of LN (see page 1328)

Data types Data type 1/0 Function
REAL input input value
REAL output as input natural logarithm of input value
Error flags No. IEC address Set If
R9007 | %MX0.900.7 permanently = input variable does not have the data
R9008 2,MX0.900.8 for an instant type REAL or input variable is not > 0.0
R900B | %MX0.900.11 permanently = output variable is zero
R9009 %MX0.900.9 for an instant = processing result overflows the output
variable
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
1] input_value REAL 0.0 number = 0.0
1 W AR output_walue REAL 0.0 number unegqual 0

This example uses variables. You can also use a constant for the input variable.
Body The logarithm of input_value is calculated to the base e and written into output_value.

LD

input_wvalue=10— LN E—Dutput_ualue =0.0

ST When programming with structured text, enter the following:
out put _val ue: =LN(i nput _val ue) ;

79

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Arithmetic instructions

Description

==

PLC types

Data types

Error flags

Example

POU header

Body

LD

ST

LOG calculates the logarithm of the input variable (value > 0.0) to the base 10 and writes the result
into the output variable.

- Lo |

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

The number of steps may vary depending on the PLC and parameters used, see
also Table of Code Intensive Instructions in the online help.

Availability of LOG (see page 1328)

Data type I/0 Function
REAL input input value
REAL output as input logarithm of input value
No. IEC address Set If
R9007 | %MX0.900.7 tl
% permanenty = input variable does not have the data
R9008 | %MX0.900.8 for an instant type REAL or input variable is not > 0.0
R900B | %MX0.900.11 permanently output variable is zero
R9009 %MX0.900.9 for an instant processing result overflows the output
variable

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Initial | Comment |
0 inpuk_walue REAL 0.0 rumber = 0,0
1 WAR, output_walue REAL 0.0 number unequal O

This example uses variables. You can also use a constant for the input variable.

The logarithm of input_value is calculated to the base 10 and written into output_value.

input_value =10.0— LOG I—u:uutput_value =14

When programming with structured text, enter the following:
out put _val ue: =LOG i nput _val ue) ;

80

Arithmetic instructions

EXP

Description

==

PLC types

Data types

Error flags

Example

POU header

Body

LD

ST

Exponent of input variable to base e

EXP calculates the power of the input variable to the base e (Euler's number = 2.7182818) and
writes the result into the output variable. The input variable has to be greater than -87.33 and
smaller than 88.72. This function is the reversion of the LN (see page 78) function.

- ExP |

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

The number of steps may vary depending on the PLC and parameters used, see
also Table of Code Intensive Instructions in the online help.

Availability of EXP (see page 1320)

Data type 1/0 Function

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

REAL input input value between -87.33 and +88.72

REAL output as input exponent of input variable to base e

No. IEC address | Set If

R9007 %MX0.900.7 permanently = input variable does not have the data
- type REAL or input variable is not >

R9008 %MX0.900.8 for an instant 87.33 and < 88.72

R900B | %MX0.900.11 permanently output variable is zero

R9009 %MX0.900.9 for an instant processing result overflows the output

variable

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Initial | Comment |

1] input_walue RE&L 0.0 > -87.33 and < 83,72
1 AR output_walue REAL 0.0 number =0

This example uses variables. You can also use a constant for the input variable.

The power of input_value is calculated to the base e and written into output_value.

input_value =10— EXF ——output_value = 27182817

When programming with structured text, enter the following:

out put _val ue: =EXP(i nput _val ue) ;

81

Part 1l

Arithmetic instructions

EXPT Raises 1st input variable by the power of the 2nd input variable

Description EXPT raises the first input variable to the power of the second input variable (OUT = IN1™?) and
writes the result into the output variable. Input variables have to be within the range -1.70141 x 10
E*to 1.70141 x 10 E®.

- EXPT |
]

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

PLC types Availability of EXPT (see page 1320)

Data types Data type 1/0 Function
REAL 1stinput input value
REAL 2nd input exponent of the input value
REAL output as 1st input result
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = first and the second input variable do not
RO008 | %MX0.900.8 | for an instant have the data type REAL
R900B | %MX0.900.11 permanently = output variable is zero
R9009 %MX0.900.9 for an instant = processing result overflows the output
variable
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | 1dentifiet | Type | Initial | Comment |
0 input_wvalue 1 REAL 0.0 "number from -1.70141%10-~58 ta
1 YAR, input_walue 2 REAL 0.0 "number from -1.70141x10-~55 ko
2 YAR output_walue REAL 0.0 number From -1.70141x1038 ko
3 VaR 1.70141=x10"~35

In this example the input variables (input_value_1 and input_value_2) have been declared.
Instead, you may enter constants directly at the input contacts of a function.

Body Input_value_1 is raised to the power of input_value_2. The result is written into output_value.
LD

input_wvalue_1=201— EXFT ——output_value =161
input_wvalue_2=40—

ST

82

Arithmetic instructions

When programming with structured text, enter the following:
out put _val ue: =i nput _val ue_1**i nput _val ue_2;

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

83

Arithmetic instructions

CRC16 Cyclic Redundancy Check

Description This function calculates the CRC16 (Cyclic Redundancy Check) for all PLC types by using 8 bytes
(8 bits) specified with the parameter NumberOfBytes and the starting address StartAddress.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

CRC1E |
- Start&ddress CRC I
- MumberOfBytes Isalid -

Part Il

Depending on the PLC type, one of the following two implementations of the function will be used:

" PLCs which support the instruction F70_BCC (see page 411) with the parameter
s1=10 to calculate CRC16 (FP-e, FP-Sigma, FP2, FP2SH, FP10SH) use
F70_BCC (see page 411) directly.

" For the other PLCs (FPO, FPOR, FP3, FP5, FP10), a sub-program making an
explicit CRC16 calculation is called. The following restrictions apply to this
sub-program:

= During the first eight execution scans an internal table is built. During this time, no
check sum is calculated, and the output IsValid remains FALSE. Starting with the fifth
scan, the check sum is calculated, and the output IsValid is set to TRUE.

= StartAddress requires an address in the DT or FL area.

= The number of steps can increase up to approx. 200 when CRC16 is used as
a sub-program.

When programming, please be aware that a certain amount of time is
needed to build the internal table and to calculate the check sum, especially
for large data volumes.

PLC types Availability of CRC16 (see page 1318)

84

Arithmetic instructions

(2]

c

Data t 2
atatypes | nput variables (VAR_INPUT): =
>

Variable Data | Function ..3.)

type L

StartAddress ANY Starting address for the calculation of the check sum. For PLCs O

L

which do not support the instruction F70_BCC (see page 411)
with CRC16 calculation (FPO, FP5, FP10), the starting address
must be in the DT or FL area.

NumberOfBytes INT The number of bytes (8 bits), beginning with AdrStart, on which
the CRC16 calculation is performed.

c
o

Output variables (VAR_OUTPUT):

CRC ANY16 | The calculated check sum, which is only valid if the flag IsValid
is set to TRUE.
IsValid BOOL | Flag indicating whether the calculated check sum is valid or not.

For PLCs which do not support the instruction F70_BCC (see
page 411) with CRC16 calculation (FPO, FP5, FP10) the CRC is
not valid:

= during the first eight execution scans when an internal
table is built

= if the address area of the variable StartAddress is not in
the DT or FL area.

For PLCs that support the instruction F70_BCC with CRC16
calculation, the CRC is always valid.

Example In this example, the same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Initial |
0 Arrayl ARRAY [0..10] OF INT [0,1,2,3,4,5,6,7,5,9,10]
1 VAR, ARRAYL _BYTES INT 22
2 VAR ArrawlCrc WHOIRD 1]
K] VAR CriIsyalid B0l FALSE
LD CRC1E

Arrayl = Structure —— StartAddress CRC ——Array1 Cro = 16#DEZE
ARRAY1_BYTES = 22— MumberOfBytes IsWalid m

ST When programming with structured text, enter the following:
CRC16(Start Address : = Arrayl,
Nunber O Byt es : = ARRAY1_ BYTES,
CRC => ArraylCrc,
IsValid => Crclsvalid);

85

Arithmetic instructions

%)
c

= imit value for input variabl

= LIMIT Limit value for input variable

2

2 Description In LIMIT the 1st input variable forms the lower and the 3rd input variable the upper limit value. If the
- 2nd input variable is within this limit, it will be transferred to the output variable. If it is above this

8 limit, the upper limit value will be transferred; if it is below this limit the lower limit value will be

- transferred.

g LIMIT |

- Il
-
- Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of LIMIT (see page 1328)

Data types Data type I/O Function
all data types | 1stinput upper limit
all data types | 2nd input value compared to upper and lower limit
all data types | 3rd input lower limit
all data types | output as input | result, 2nd input value if between upper and lower limit,
otherwise the upper or lower limit
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Initial | Comment |
0 loveer_limik_sar INT 0 all byvpes allowed
1 YAR, comparision_walue INT O all types allowed
2 YAR upper_limit_wval INT 0 all tvpes allowed
3 WO, result INT 1] all types allowed

In this example the input variables (lower_limit_val, comparison_value and upper_val) have
been declared. Instead, you may enter a constant directly at the input contact of a function.

Body Lower_limit_val and upper_limit_val form the range where the comparison_value has to be, if it
has to be transferred to result. If the comparison_value is above the upper_limit_val, the value
of upper_limit_val will be transferred to result. If it is below the lower_limit_val, the value of
lower_limit_val will be transferred to result.

LD
LIkAIT
lower_limit_wal = T —— kil ——result =45
comparison_value = 45— [N
upper_limit_val = 100 —— hx

ST When programming with structured text, enter the following:

result:=LIMT(M\: =l ower _Iimt_val, |IN =conparison_val ue,
MX: =upper _limt_val);

86

Chapter 4

Bitwise Boolean instructions

Bitwise Boolean instructions

AND Logical AND operation

Description The content of the accumulator is connected with the operand defined in the operand field by a
logical AND operation. The result is transferred to the accumulator.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part Il

PLC types Availability of AND (see page 1335)
= * All operands must be of the same data type.

* This function can be expanded to a maximum of 28 input contacts.

* Modifying elements

Data types Data type I/O Function
BOOL, WORD, DWORD | 1st input element 1 of logical AND operation
BOOL, WORD, DWORD | 2nd input element compared to input 1
BOOL, WORD, DWORD | output as input result
Truth table: Input 1 Input 2 Output
Signal 0 0 0
0 1 0
1 0 0
1 1 1
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Type | Initial | Comment |

1] WAR. brear_1 BOOL FALSE Inpuk 1
1 WAR. bvar_2 BOOL FALSE Input 2
£ WAR. brvar_3 BOOL FALSE Oubput

Body bvar_1 will be logically AND-linked with bvar_2. The result will be written into the output variable
bvar_3.

LD
buwar 1 —— AND ——buvar 3
bwar_2 —— e

ST When programming with structured text, enter the following:
bvar _3: = bvar_1&bvar _2;

88

Bitwise Boolean instructions

Description The content of the accumulator is connected with the operand defined in the operand field by a
logical OR operation. The result is transferred to the accumulator.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part 1l

PLC types Availability of OR (see page 1335)
= * All operands must be of the same data type.

* This function can be expanded to a maximum of 28 input contacts.

* Modifying elements

Data types Data type I/O Function
BOOL, WORD, DWORD | 1st input element 1 of logical OR operation
BOOL, WORD, DWORD | 2nd input element compared to input 1
BOOL, WORD, DWORD | output as input result
Truth table: Input 1 Input 2 Output
Signal 0 0 0
1 0 1
0 1 1
1 1 1
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Type | Initial | Comment |

0 VAR brear_1 BOOL FALSE Inpuk 1
1 VAR, brear_2 BOOL FALSE Input 2
£ VAR brvar_3 BOOL FALSE Oubput

Body bvar_1 and bvar_2 are linked with a logical OR. The result will be written in bvar_3. This example
uses variables. You may also use constants for the input variables.

LD

bwar_ 1—— 0OR —bwar_3
bwar_2 —— -

ST When programming with structured text, enter the following:
bvar_3:= var_1 OR bvar_2;

89

Bitwise Boolean instructions

XOR Exclusive OR operation

Description The content of the accumulator is connected with the operand defined in the operand field by a
logical XOR operation. The result is transferred to the accumulator.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part Il

PLC types Availability of XOR (see page 1335)
= * All operands must be of the same data type.

* This function can be expanded to a maximum of 28 input contacts.

* Modifying elements

Data types Data type I/O Function
BOOL, WORD, DWORD 1st input element 1 of logical XOR operation
BOOL, WORD, DWORD 2nd input element compared to input 1
BOOL, WORD, DWORD output as input result
Truth table: Input 1 Input 2 Output
Signal 0 0 0
1 0 1
0 1 1
1 1 0
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Type | Imitial | Comment |

1] WAR. brvar_1 BOOL FALSE Inpuk 1
1 WAR, brvar_2 BooL FALSE Input 2
2 WAR. brvar_3 BOOL FALSE Oubput

Body The Boolean variables bvar_1 and bvar_2 are logically EXCLUSIVE-OR linked and the result is
written in bvar_3.

LD

bwar 1 —— XOR ——bwar 3
bvar_2 —— o

ST When programming with structured text, enter the following:
var_3:= var_1 XOR var_2;

90

Bitwise Boolean instructions

Neln Bit inversion

Description NOT performs a bit inversion of input variables. The result will be written into the output variable.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part 1l

PLC types Availability of NOT (see page 1328)

= All operands must be of the same data type.
Data types Data type 1/0 Function
BOOL, WORD, input input for NOT operation
DWORD
BOOL, WORD, output as input result
DWORD
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Idertifier | Twpe | Imitial | Comment |
1] input_wvalue WORD 0 byvpe: BOOL, WORD ar DAWORD
1 VAR negakion WORD 0 twpe: BOOL, WORD or DWORD

This example uses variables. You can also use a constant for the input variable.

Body The bits of input_value are inversed (0 is inversed to 1 and vice versa). The inversed result is
written into negation.

LD

input_walue —— MOT ——negation

ST When programming with structured text, enter the following:
negati on: = NOT(i nput_val ue);

91

Chapter 5

Bit-shift instructions

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Bit-shift instructions

SHR Shift bits to the right

Description SHR shifts a bit value by a defined number of positions (N) to the right and fills the vacant positions
with zeros.

SHR |
- M
- I
To add an enable input and enable output to the instruction, select [With EN/ENO] from the

"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Bit shift to the right, zero-filled on left:

Source register (n = 4 bits)
Bit 15 . . 12 |1 3 .
DTO 1 0 1 o0 1 0
Target register

Bit 15 12 |1 3

DTO 0 o0 0 0 (1 © 1 1

:

:

:

:

The 4 most significant bits are filled with Os.

PLC types Availability of SHR (see page 1330)
Data types Data type I/O Function
1st input input value
ANY_BIT 2nd input number of bits by which the input value is shifted to the right
output as input result
= * If the second input variable N (the number of bits to be shifted) is of
the data type DWORD, then only the lower 16 bits are taken into
account.
* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Inikial |

0 [vaRr | source_reqister WORD 0

1 VaR target_reqister WORD 0O
This example uses variables. You can also use a constant for the input variable.

94

Bit-shift instructions

Body The last N bits (here 4) of source_register are right-shifted. The vacant positions on the left are
filled with zeros. The result is written into target_register.

LD

SHR ‘
source_register = 16#A5CE — M
4—N

target_register = 1680250

source_register = 16#AGBCE
42699
2#1010_0110_1100_1011
llE : 1]

WAR, WORD, 0

target_register = 16#0AGC
2663
Z#0000_1010_0110_1100
Igr

VAR, WORD, O

95

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Bit-shift instructions

SHL Shift bits to the left

Description SHL shifts a bit value by a defined number of positions (N) to the left and fills the vacant positions
with zeros.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Bit shift to the left, zero-filled on right:

Source register (n = 4 bits)

Bit position[15 = 12111 . 8|7 . . 4|3 . . 0
D

Target register / /

Bit positionfi5 . .1211 . . 8|7 . . 4|3 . .0
D 0000

n bits starting from bit position
0 are filled with Os.

PLC types Availability of SHL (see page 1330)

Data types Data type 1/0 Function
1stinput input value
ANY BIT 2nd input number of bits by which the input value is shifted to the left
output as input result
= * If the second input variable N (the number of bits to be shifted) is of
the data type DWORD, then only the lower 16 bits are taken into
account.
e The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Type | Initial |
0 source_register WORD 0
1 VAR karget_register WWORD 0O

This example uses variables. You can also use a constant for the input variable.

96

Bit-shift instructions

Body The first N bits (here 4) of source_register are left-shifted, the vacant positions on the right are
filled with zeros. The result is written into target_register.

LD

source_register = 16#A6CE —— IN
4—N

SHL |

target register = 16#5CED

“|source_register = 16#AGCE
42699
Z2#1010_0110_1100_1011
llE : L1}

VAR, WORD, 16#A5CE

target_register = 16#6CB0

27824
Z#0110_1100_1011_0000

VAR, WORD, 0

97

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

Bit-shift instructions

Description ROR rotates a defined number (N) of bits to the right.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

ROR |
- M
- I
To add an enable input and enable output to the instruction, select [With EN/ENO] from the

"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part Il

Source register (n = 4 bits)
Bit 15. .12(11. . 8|7 . .4|3. .0
DTO 0001|0010|{0011}J0J100

Targiregister \ \
Bit 15. 1211, . 8|7. .4|3. .0
DTO 0100(0001|0010(0011

t

PLC types Availability of ROR (see page 1330)

Data types Data type 1/0 Function
1st input input value
ANY BIT 2nd input number of bits by which the input value is rotated to the right
output as input | result
= The number of steps may vary depending on the PLC and parameters used, see
also Table of Code Intensive Instructions in the online help.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Inikial |
0 source_reqister WORD 0
1 VaR target_reqister WORD O

This example uses variables. You can also use a constant for the input variable.

Body The first N bits (here N = 4) of source_register are right-rotated. The result will be written into
target_register.

98

Bit-shift instructions

LD

ROR
source_register = 16#1234 — N
4— M

|—--target_register = 16#4123

source_register = 1681234
24#(%0201 001000110100
AR, WDRD, 20007 007 0007 10700

t-arget_register = 16#4123
16675
2#0100000100100011
[ryy

VAR, WORD, 0

99

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

Bit-shift instructions

ROL Rotate N bits to the left

Description ROL rotates a defined number (N) of bits to the left.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

ROL |
- M
- I
To add an enable input and enable output to the instruction, select [With EN/ENO] from the

"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part Il

Source register (n = 4 bits)
Bit 15. .12(11. . 8|7. .4|3. .0
DTO 0001joot10|{0011|j0100

< s
Target register

Bit 15. . 12|11. .8|7. .4|3. .0
DTO 0010|/0011{0100|0001

J

PLC types Availability of ROL (see page 1330)

Data types Data type I/O Function
1st input input value
ANY BIT 2nd input number of bits by which the input value is rotated to the left
output as input result
= The number of steps may vary depending on the PLC and parameters used, see
also Table of Code Intensive Instructions in the online help.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Type | Initial |
0 source_register WORD 0
1 VAR karget_register WWORD 0O

This example uses variables. You can also use a constant for the input variable.

Body The last N bits (here 4) of source_register are left-rotated. The result will be written in
target_register.

100

Bit-shift instructions

LD

ROL
source_register = 16#1234—— [N ——target_register = 16#2341
4— N
source register =16H234 2 [target_register = 1682341
4660 o025
24#1]1%01 001000110100 ?:1#]_01 0001101000001
AR, WORD, 2#0001007000110100 AR, WORD, 0

101

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

Chapter 6

Comparison instructions

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Comparison instructions

Description The content of the accumulator is compared with the operand defined in the operand field. If the

PLC types

==

Data types

Example

POU header

Body

accumulator is greater than the reference value, "TRUE" is stored in the accumulator, otherwise
"FALSE".

GT '[
p
To add an enable input and enable output to the instruction, select [With EN/ENO] from the

"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of GT (see page 1335)

* Inputs can be of any data type; all input variables must be of the same
data type though. Output must be of type BOOL.

* The number of input contacts lies in the range of 2 to 28.

* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data type 1/0 Function

all data types 1st input value for comparison

all data types 2nd input reference value

BOOL output result, TRUE if value for comparison is greater than the reference value

The variables that are compared to each other must be of the same data type.

When using more inputs, the first input is compared with the second, the second input is compared
with the third input etc. If the first value is greater than the second value AND the second value
greater than third etc., TRUE will be written into result, otherwise FALSE.

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.
| Class | Identifier | Tvpe | Initial |
WAR enable BOOL FALSE

WAR compatison_value IMWT 1]
WAR reference_wvalue INT 1]
WAR result BOOL FALSE

LRI S R |

In this example the input variables (comparison_value, reference_value and enable) have been
declared. Instead, you may enter constants directly into the function (enable input e.g. for tests).

If enable is set (TRUE), the comparison_value is compared with the reference_value. If the
comparison_value is greater than the reference_value, the value TRUE will be written into
result, otherwise FALSE.

104

Comparison instructions

enahle

J.J—|

comparisan_walue = 100—
teference_walue = 55 ——

EM

ET
EMD

105

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Comparison instructions

Description The content of the accumulator is compared with the operand defined in the operand field. If the

PLC types

==

Data types

Example

POU header

Body

accumulator is greater or equal to the reference value, "TRUE" is stored in the accumulator,
otherwise "FALSE".

GE '[
p
To add an enable input and enable output to the instruction, select [With EN/ENO] from the

"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of GE (see page 1335)

* Inputs can be of any data type; all input variables must be of the same
data type though. Output must be of type BOOL.

* The number of input contacts lies in the range of 2 to 28.

* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data type 1/0 Function

all data types 1st input value for comparison

all data types 2nd input reference value

BOOL output result, TRUE if value for comparison is greater than or equal to the
reference value

The variables that are compared to each other must be of the same data type.

When using more inputs, the first input is compared with the second, the second input is compared
with the third input etc. If the first value is greater than or equal to the second value AND the
second value is greater than or equal to the third value etc., TRUE will be written into result,
otherwise FALSE.

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables which are required for programming the function are declared in the
POU header.

| Class | Identifier | Tvpe | Initial |
VAR enable BOOL FALSE
WaR comparison_value IMT]
WaR reference_value INT 0
WAR result EOOL FALSE

L) o= O

In this example the input variables (comparison_value, reference_value and enable) have been
declared. Instead, you may enter constants directly into the function (enable input e.g. for tests).

If enable is set (TRUE), the comparison_value is compared with the reference_value. If the
comparison_value is greater than or equal to the reference_value, the value TRUE will be written
into result, otherwise FALSE.

106

Comparison instructions

LD

enahle

J.J—|

comparison_walue = 38—
teference_walue = 95 ——

EM

GE
EMNO

107

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Comparison instructions

Description The content of the accumulator is compared with the operand defined in the operand field. If both

PLC types

==

Data types

Example

POU header

Body

LD

values are equal, "TRUE" is stored in the accumulator, otherwise "FALSE".

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of EQ (see page 1335)

* Inputs can be of any data type; all input variables must be of the same
data type though. Output must be of type BOOL.

* The number of input contacts lies in the range of 2 to 28.

* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data type I/O Function

all data types 1st input value for comparison

all data types 2nd input reference value

BOOL output result, TRUE if value for comparison is equal to the
reference value

The variables that are compared to each other must be of the same data type.

When using more inputs, the first input is compared with the second, the second input is compared
with the third input etc. If the first value is equal to the second value AND the second value is equal
to the third value etc., TRUE will be written into result, otherwise FALSE.

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables which are required for programming the function are declared in the
POU header.

| Class | Identifier | Tvpe | Initial |
VAR enable BOOL FALSE
WaR comparison_value IMT]
WaR reference_value INT 0
WAR result EOOL FALSE

L) o= O

In this example the input variables (comparison_value, reference_value and enable) have been
declared. Instead, you may enter constants directly into the function (enable input e.g. for tests).

If enable is set (TRUE), the variable comparison_value is compared with the variable
reference_value. If the values of the two variables are identical, the value TRUE will be written into
result, otherwise FALSE.

enakle
- JIJ—| EC
EM EMNO —
comparison_value = 95 — —{EE
reference_walue = 98 — P

108

Comparison instructions

Description The content of the accumulator is compared with the operand defined in the operand field. If the
accumulator is less or equal to the reference value, "TRUE" is stored in the accumulator, otherwise
"FALSE".

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part 1l

PLC types Availability of LE (see page 1335)

= * Inputs can be of any data type; all input variables must be of the same
data type though. Output must be of type BOOL.

e The number of input contacts lies in the range of 2 to 28.

e The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data types Data type I/0 Function

all data types 1st input value for comparison

all data types 2nd input | reference value

BOOL output result, TRUE if value for comparison is less than or equal to the reference value

The variables that are compared to each other must be of the same data type.

When using more inputs, the first input is compared with the second, the second input is compared
with the third input etc. If the first value is less than or equal to the second value AND the second
value is less than or equal to the third value etc., TRUE will be written into result, otherwise FALSE.

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the

POU header.

| Class | Identifier | Tvpe | Inikal |
] VAR enable EOOL FALSE
1 WAR comparison_value IMT]
Z WoR reference_value IMT 0
3 VAR result EOOL FALSE

In this example the input variables (comparison_value, reference_value and enable) have been
declared. Instead, you may enter constants directly into the function (enable input e.g. for tests).

Body If enable is set (TRUE), the comparison_value is compared with the variable reference_value. If
the comparison_value is less than or equal to the reference_value, TRUE will be written into
result, otherwise FALSE.

LD enahle
JIJ—| LE
EM EMO —
comparison_value = 22 — — (e
reference_walue = 23— P

109

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Comparison instructions

Description The content of the accumulator is compared with the operand defined in the operand field. If the

PLC types

=

Data types

Example

POU header

Body

LD

accumulator is less than the reference value, "TRUE" is stored in the accumulator, otherwise
"FALSE".

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of LT (see page 1335)

* Inputs can be of any data type; all input variables must be of the same
data type though. Output must be of type BOOL.

* The number of input contacts lies in the range of 2 to 28.

* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data type I/O Function

all data types 1st input value for comparison

all data types 2nd input reference value

BOOL output result, TRUE if value for comparison is less than the
reference value

The variables that are compared to each other must be of the same data type.

When using more inputs, the first input is compared with the second, the second input is compared
with the third input etc. If the first value is less than the second value AND the second value is less
than the third value etc., TRUE will be written into result, otherwise FALSE.

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables which are required for programming the function are declared in the
POU header.

| Class | Identifier | Tvpe | Initial |
VAR enable BOOL FALSE
WaR comparison_value IMT]
WaR reference_value INT 0

3 WAR result EOOL FALSE

In this example the input variables (comparison_value, reference_value and enable) have been
declared. Instead, you may enter constants directly into the function (enable input e.g. for tests).

M = O

If enable is set (TRUE), the comparison_value is compared with the reference_value. If the
comparison_value is less than the reference_value, TRUE will be written into result, otherwise
FALSE.

J anable LT
| EM EHD result
‘ comparizon_walue —— —

reference_walye —— #

110

Comparison instructions

Description The content of the accumulator is compared with the operand defined in the operand field. If both
values are not equal, "TRUE" is stored in the accumulator, otherwise "FALSE".

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part 1l

PLC types Availability of NE (see page 1335)

= * Inputs can be of any data type; all input variables must be of the same
data type though. Output must be of type BOOL.

* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data types Data type 1/0 Function

all data types 1st input value for comparison

all data types 2nd input reference value

BOOL output result, TRUE if value for comparison is unequal to

the reference value, otherwise FALSE

The variables that are compared to each other must be of the same data type.

When using more inputs, the first input is compared with the second, the second input is compared

with the third input etc. If the first value is not equal to the second value AND the second value is

not equal to the third value etc., TRUE will be written into result, otherwise FALSE.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the

POU header.

| Class | Identifier | Tvpe | Inikal |
] WaR enable BCOOL FALSE
1 WAR comparison_value IMT]
Z WoR reference_value IMT 0
3 WAR result BOOL FALSE

In this example the input variables (comparison_value, reference_value and enable) have been
declared. Instead, you may enter constants directly into the function (enable input e.g. for tests).

Body If enable is set (TRUE), the comparison_value is compared with the reference_value. If the two
values are unequal, TRUE will be written into result, otherwise FALSE.

LD er]abJI_e
|| MNE
| EM EMNO —

comparison_walue = 22 — — (e

reference_walue = 23 ——

111

Comparison instructions

WITHIN LIMITS Evaluate if a value is within the limits

Description This instruction evaluates whether the value at the input IN is within the limits set at minimum (MN)
and maximum MX.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

WITHIN_ LIMITS |
— N
— IN ’a
— M

PLC types see see page 1333

Part Il

Datatypes | yariable Datatype | Function

MN Minimum limit

IN ANY_SIMPLE | Value compared to the limits

MX Maximum limit

Output variable BOOL TRUE if the input value at IN falls within the lower and upper limits
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Type | Initial |
] VAR iMinYalue IMNT S0
1 WAR ivalidateyalue INT 750
z2 VAR iMaschalue IMNT 1000
3 WaR bResulk oL FaLSE
LD
WITHIMN_LIMITS
iMinvalue = 50— MM e hResult]
ivalidate’'alue = 750 —— [N
iMaxvalue = 1000 —— M
ST bResult := WTH N.LIMTS(MN : = iMnValue, IN:=iValidateValue, MX :=

i MaxVal ue) ;

112

Chapter 7

Conversion instructions

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

WORD TO BOOL RUiEai:leleln

Description

PLC types
==

Data types

Example

WORD_TO_BOOL converts a value of the data type WORD into a value of the data type BOOL.

- WORD TO BOOL -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of WORD_TO_BOOL (see page 1333)

If the input value = 0 (16#0000), the conversion result will be = 0 (FALSE); in any
other case, it will be =1 (TRUE).

Data type I/O Function
WORD input input data type
BOOL output conversion result

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Iritial |
1] Boolean_value BOOL FALSE
1 WaR WORD value WORD 0O

This example uses variables. You can also use a constant for the input variable.

Body WORD_value of the data type WORD (16-bit) is converted into a Boolean value (1-bit). The result

LD

ST

will be written into Boolean_value.

WORD_wvalue = 16#0001 — WORD_TO_BOOL |—{sfata] EEGWEINE

When programming with structured text, enter the following:
Bool ean_val ue: =WORD TO BOCL(WORD val ue) ;

114

Conversion instructions

Do b e l:leJe]lll DOUBLE WORD in BOOL

Description DWORD_TO_BOOL converts a value of the data type DOUBLE WORD into a value of the data
type BOOL.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- DWYORD TO BOGOL L

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DWORD_TO BOOL (see page 1319)

= If the input value = 0 (16#0000), the conversion result will be = 0 (FALSE); in any
other case, it will be =1 (TRUE).

Data types Data type 1/0 Function
DWORD input input data type
BOOL output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial |
0 DWORD value DWORD 0
1 WOR, Boolean_walue BOoOL FaLSE

This example uses variables. You can also use a constant for the input variable.

Body DWORD_value of the data type DOUBLE WORD is converted into a Boolean value (1-bit). the
converted value is written into Boolean_value.

LD
DWORD _value = 16#00000001 — DWORD_TO_BOOL | Boalean_walue

ST When programming with structured text, enter the following:
Bool ean_val ue: =DWORD_TO BOOL(DWORD val ue) ;

115

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

INT TO BOOL INTEGER into BOOL

Description

PLC types
=

Data types

Example

POU header

Body

LD

ST

INT_TO_BOOL converts a value of the data type INT into a value of the data type BOOL.

- NT TO BOOL -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of INT_TO_BOOL (see page 1327)

If the input value = 0 (16#0000), the conversion result will be = 0 (FALSE); in any
other case, it will be =1 (TRUE).

Data type 1/0 Function
INT input input data type
BOOL output conversion result

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Inikial |
0 Boolean_value BOCL FALSE
1 WaR INT _walue INT 0

This example uses variables. You can also use a constant for the input variable.

INT_value (16-bit) of the data type INTEGER is converted into a Boolean value. The result is
written into Boolean_value.

When programming with structured text, enter the following:
Bool ean_val ue: =I NT_TO BOCL(| NT_val ue) ;

If INT_value has the value 0, the conversion result will be 0 (FALSE), in any other
case it will be 1 (TRUE).

116

Conversion instructions

DINT TO BOOL DOUBLE INTEGER into BOOL

Description DINT_TO_BOOL converts a value of the data type DINT into a value of the data type BOOL.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- DINT TO BOCL -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part 1l

PLC types Availability of DINT_TO_BOOL (see page 1319)

= If the input value = 0 (16#0000), the conversion result will be = 0 (FALSE); in any
other case, it will be =1 (TRUE).

Data types Data type 1/0 Function
DINT input input data type
BOOL output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Inikial |
0 DIMT _value CINT O
1 AR Boolean_value BOOL FALSE

In this example the input variable (DINT_value) has been declared. Instead, you may enter a
constant directly at the input contact of a function.

Body DINT_value of the data type DOUBLE INTEGER is converted into a value of the data type BOOL.
The converted value in written into Boolean_value.

LD
Boolean_walue

DINT_wvalug =0 —— DINT_TO_BOOL |—

ST When programming with structured text, enter the following:
Bool ean_val ue: =DI NT_TO BOCL(DI NT_val ue) ;

= If the variable DINT_value has the value 0, the conversion result is FALSE, in any
other case TRUE.

117

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

UINT TO BOOL Unsigned INTEGER into BOOL

Description UINT_TO_BOOL converts a value of the data type Unsigned INTEGER into a value of the data
type BOOL.

- UINT TO BOOL -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UINT_TO_BOOL (see page 1332)

= If the input value = 0 (16#0000), the conversion result will be = 0 (FALSE); in any
other case, it will be =1 (TRUE).

Data types Data type 1/0 Function
UINT Input input data type
BOOL Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class Identifier | Type | Inikial |
0 VAR INT _value UIMNT 37
1 WAR Boolean_wvalue BOOL FALSE
LD e |
LIMT walue = - UINT TO BOOL -

ST Bool ean_val ue: = U NT_TO BOOL(Ul NT_val ue);

118

Conversion instructions

UDINT TO BOOL Unsigned DOUBLE INTEGER into BOOL

Description UDINT_TO_BOOL converts a value of the data type Unsigned DOUBLE INTEGER into a value of
the data type BOOL.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- UDINT TO BOOL -

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_BOOL (see page 1332)

= If the input value = 0 (16#0000), the conversion result will be = 0 (FALSE); in any
other case, it will be =1 (TRUE).

Data types Data type 1/0 Function
UDINT Input input data type
BOOL Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.

Class | Identifier | Type | Inikial
0 VAR LDIMT _value UDINT 100546
1 WA, Boolean_value BOOL FALSE

LD UDINT salue = 100546 —— UDINT TO _BOOL |—{=hTIEE ORI

ST When programming with structured text, enter the following:
Bool ean_val ue : = UDI NT_TO BOOL(UDI NT_val ue) ;

119

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

BOOL TO WORD BOOL into WORD

Description BOOL_TO_WORD converts a value of the data type BOOL into a value of the data type WORD.

- BOOL TO WoORD -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of BOOL _TO_WORD (see page 1318)

Data types Data type 1/0 Function
BOOL input input data type
WORD output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial |
1] Boolean_value BOOL FALSE
1 YAR WORD walue WORD 0

In this example the input variable (Boolean_value) has been declared. Instead, you may enter a
constant directly at the input contact of a function.

Body The Boolean_value of the data type BOOL is converted into a value of the data type WORD. The
converted value is written into WORD_value.

LD Boolean_walue

| /) BOOL_TO_WORD ——WORD_value = 1640001

ST When programming with structured text, enter the following:
| F Bool ean_val ue THEN
WORD val ue: =BOOL_TO WORD(Bool ean_val ue) ;
END | F;

120

Conversion instructions

BOOL16_ TO WORD eSSty

Description This function copies a variable of the special data type BOOL16 (see page 55) (an array with 16
elements of the data type BOOL or a DUT of 16 members of the data type BOOL) at the input to
the data type WORD at the output.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- BOOLIE TO WORD L

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of BOOL16_TO_WORD (see page 1318)

Data types Data type Comment
ARRAY of BOOL | ARRAY with 16 elements
WORD output variable
POU header:
| Class | Identifier | Tvpe | Inikial |
0 Enable BOOL FoLSE
1 WAR, Array160FfBool3 ARRAY [0.,15] OF BOOL [16(FALSE)]
Z VAR, Array160fBoold ARRAY [0..15] OF BOOL [16(FALSE)]
3 WOF, Word_1 MY QRD 1
4 WOR, Word_2 WORD 0

Body with and without EN/ENO:

Array160fBoald ——_ BOOLIE_TO YWORD —rard
BOOL1E_TO_ORD
Enable — EM EMO r-
Array 160f Boald —— —"ardz

121

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

BOOLS TO WORD 16 Variables of the data type BOOL to WORD

Description

PLC types

This function converts 16 values of the data type BOOL bit-wise to a value of the data type WORD.

BOOLS TO WORD
- BoolO
- Booll
- Bool2
- Bool3
- Boold
- Bools
- Bools
- Bool?
- Boolg
- Boold
- Bool10
- Bool11
- Bool12
- Bool13
- Bool14
- Boolla

The inputs Bool0 to Bool15 need not be allocated in LD or FBD, or used explicitly in the ST editor's
formal list of parameters. Such unused inputs are assumed to be FALSE. No program code is
generated for these inputs (or for any input allocated with the constants TRUE or FALSE). Program
code is only generated for inputs to which a variable is allocated.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of BOOLS TO_WORD (see page 1318)

122

Conversion instructions

%]
c
(@)
5

Data types . .
P Variable | Datatype Function >
e
BOOLO ... | BOOL 16 input variables of the data type BOOL [%2]
BOOL15 k=
WORD output variable O
L

POU header:

c
o

| Class | 1dentifier | Type | Initial |

0 Wordd WORD 0

1 VAR Boolo BOOL FALSE
2 WAR Booll BOOL FALSE
3 VAR Bool2 BOOL FALSE
4 YAR Bool3 BOOL FALSE
5 VAR Boold BOOL FALSE
& YAR Bools BOOL FALSE
7 VAR Bools BOOL FALSE
g YAR Bool? BOOL FALSE
a VAR Boola BOOL FALSE

10 VAR, Bool? BOOL FALSE
11 VAR, Bool10 BooL FALSE
12 VAR, Eool11 BooL FALSE
13 VAR, Bool12 BOOL FALSE
14 VAR, Eooll3 BOOL FALSE
15 VAR, Booll4 BooL FALSE
e VAR, EoollS BooL FALSE

Body with and without EN/ENO:

EOOLS_TO_WORD

Boal) —— Boall ——hard 1
— Booll
TRUE —— Bool2
Boold —— Boold
Boal4 —— Boaold
FALSE —— Bool3
Boolé —— Boaolg
Bool? —— Boaol?
Boold —— Bool

TRUE —— EBEoold
Bool10 —— Baooli0
Bool11 —— Boolld
FALSE —— Bool12
Bool13 —— Booll3
Bool1d —— Boolld

— BoollS

123

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

DWORD TO WORD DOUBLE WORD in WORD

Description

PLC types
==

Data types

Example

POU header

Body

LD

ST

DWORD_TO_WORD converts a value of the data type DOUBLE WORD into a value of the data
type WORD.

— DWORD TO WoORD -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of DWORD_TO_WORD (see page 1319)

The first 16 bits of the input variable are assigned to the output variable.

Data type I/O Function
DWORD input input data type
WORD output conversion result

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Initial |
0 DWORD_value DWORD O
1 VAR WORD walue WORD]

This example uses variables. You can also use a constant for the input variable.

DWORD_value of the data type DOUBLE WORD (32-bit) is converted into a value of the data type
WORD (16-bit). The converted value is written into WORD_value.

DWORD _value = 16#000000FF — DWORD_TO_WORD |——WORD_value = 16#00FF

When programming with structured text, enter the following:
WORD val ue: =DWORD _TO WORD(DWORD_value) ;

124

Conversion instructions

INT TO WORD INTEGER into WORD

Description INT_TO_WORD converts a value of the data type INT into a value of the data type WORD.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

~INT T WORD -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part 1l

PLC types Availability of INT_TO_WORD (see page 1327)

= The bit combination of the input variable is assigned to the output variable.
Data types Data type 1/0 Function
INT input input data type
WORD output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial |
1] WORD walue WORD 0
1 VAR INT _value INT]

This example uses variables. You can also use a constant for the input variable.

Body INT_value of the data type INTEGER is converted into a value of the data type WORD. The result
is written into WORD_value.

LD

INT_value = 1 —_INT_TO_WORD ——\wWORD_valua = 16400071

ST When programming with structured text, enter the following:
WORD val ue: =I NT_TO WORD(| NT_val ue) ;

125

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

DINT TO WORD DOUBLE INTEGER into WORD

Description DINT_TO_WORD converts a value of the data type DINT into a value of the data type WORD.

- DINT TO WORD -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DINT_TO_WORD (see page 1319)

= The first 16 bits of the input variable are assighed to the output variable.
Data types Data type 1/0 Function
DINT input input data type
WORD output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial |
0 DIMNT walue DIMT O
1 YAR WORD value 'WORD 0

This example uses variables. You can also use a constant for the input variable.

Body DINT value of the data type DOUBLE INTEGER (32-bit) is converted into a value of the data type
WORD (16-bit). The converted value is written into WORD_value.

LD
DINT _valug = 1—— DINT_TO_WORD ——WORD_value = 16#0001

ST When programming with structured text, enter the following:
WORD val ue: =DI NT_TO WORD(DI NT_val ue) ;

126

Conversion instructions

UINT TO WORD Unsigned INTEGER into WORD

Description UINT_TO_WORD converts a value of the data type Unsigned INTEGER into a value of the data
type WORD.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- UINT TO WORD L

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UINT_TO_WORD (see page 1332)

= The first 16 bits of the input variable are assigned to the output variable.
Data types Data type 1/0 Function
UINT Input input data type
WORD Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class Identifier | Type | Inital |
1] VAR IMT _value INT 43931
1 VAR WORD _value WORD 16#0000
LD JINT value = 47981 —— UINT TO_WORD | WORD value = 1644800

ST WORD val ue: = U NT_TO WORD(Ul NT_val ue) ;

127

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

UDINT TO WORD Unsigned DOUBLE INTEGER into WORD

Description UDINT_TO_WORD converts a value of the data type Unsigned DOUBLE INTEGER into a value of
the data type WORD.

PLC types
=

Data types

Example

- UDINT TO WORD L

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of UDINT_TO_WORD (see page 1332)

The first 16 bits of the input variable are assigned to the output variable.

Data type

I/0

Function

UDINT

Input

input data type

WORD

Output

conversion result

In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.

Class Identifier | Type | Inital
] VAR UDINT walue UDIMT 65535
1 VAR WORD wvalue WORD 0

LD DINT value =D

- UDINT TO WORD ——WORD value = 1640000

ST When programming with structured text, enter the following:
WORD val ue : = UDI NT_TO WORD(UDI NT_val ue) ;

128

Conversion instructions

TIME TO WORD TIME into WORD

Description TIME_TO_WORD converts a value of the data type TIME into a value of the data type WORD.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- TIME TO WORD -

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TIME_TO_WORD (see page 1332)

Data types Data type 1/0 Function
TIME input input data type
WORD output conversion result
Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.
Examples: Input variable Output variable
T#123.4s 1234
T#1.00s 16#0064

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Inikial |
1] kirne_value TIME T#0s
1 WaR WORD walue WORD 0

This example uses variables. You can also use a constant for the input variable.

Body Time_value of the data type TIME is converted into a value of the data type WORD. The result will
be written into the output variable WORD_value.

LD

ST When programming with structured text, enter the following:
WORD val ue: =TI ME_TO WORD(ti ne_val ue);

129

Conversion instructions

STRING TO WORD STRING (hexadecimal format) to WORD

Description This function converts a STRING in hexadecimal format to a value of the data type WORD.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- STRIMG TO WORD -

Part Il

Thereby the attached string is first converted to a value of the data type STRING[32]. Finally this is
converted to a value of the data type WORD via a sub-program of approx. 270 steps that is also
used in the functions STRING_TO_INT, STRING_TO_WORD, STRING_TO_DINT and
STRING_TO_DWORD.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Example with and without EN/ENO:

String3 = ‘sbed —— _ STRING_TO_WORD | %ord1 = 1682ECD
STRIMG_TO_WORD
EN ENO
Strings = "1E#sffe —— ———WardZ = 1EHAFFE

Permissible format:

'[Space][Hexadecimal numbers][Space] e.g.' afFE

Permissible characters:

Space All characters except for "+ (plus), "-" (minus) and all hexadecimal
numbers

Hexadecimal Hexadecimal numbers in the ranges "0 - 9%, "A - F* or "a - f*.

numbers

The analysis ends with the first non-hexadecimal number.

PLC types Availability of STRING_TO_WORD (see page 1331)

Data types Data type Comment
STRING input variable
WORD output variable

130

Conversion instructions

STRING TO WORD STRING (Hexadecimal Format right-justified) to WORD
_STEPSAVER

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Description This function converts the string with the maximum possible number of characters that are right
aligned in hexadecimal format to a value of the data type WORD.

- STRING TO WORD STEPSAVER | 5_5
Examples Input Defined as Results in
D' STRING[1] 16#D
'CcD' STRING[2] 16#CD
'BCD' STRING[3] 16#BCD
'ABCD' STRING[4] 16#ABCD
'0ABCD' STRING[5] 16#ABCD
'00ABCD!' STRINGI6] 16#ABCD
The basic instruction F72_A2HEX (see page 624) is used. The PLC delivers an operation error
especially when a character appears that is not a hexadecimal number “0 - 9" or "A-F”.
To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.
Example |
String_2 ='C0* ——_ STRING_TO_WORD_STEPSAWER |—word1 = 16#00CTE
STRING_TO_#ORD_STEFS2VER |
EH ENO
String_6 = "00AECD —— ——iordz = 1EHABCD
Data types Data type Comment
STRING Input variable
WORD Output variable

Acceptable Format for STRING[4]:
'Hex1Hex2Hex3Hex4' e.g. perhaps 'AFFE'

Acceptable characters:

| Hex1 to Hex4 | Hexadecimal numbers in the range "0 - 9" or "A - F* (not "a - f"). |

PLC types Availability of STRING_ TO WORD_STEPSAVER (see page 1331)

131

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

BOOL TO DWORD BOOL into DOUBLE WORD

Description BOOL_TO_DWORD converts a value of the data type BOOL into a value of the data type
DWORD.

- BOOL TO DWWoRD -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of BOOL _TO DWORD (see page 1318)

Data types Data type I/0 Function
BOOL input input data type
DWORD output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Type | Initial |
1] Boolean_value BOOL FALSE
1 YAR DWORD walue [DWORD 0

In this example the input variable (Boolean_value) has been declared. Instead, you may enter a
constant directly at the input contact of a function.

Body The Boolean_value of the data type BOOL is converted into a value of the data type DOUBLE
INTEGER. The converted value is written into DWORD_value.

LD JEEDDIean_value
/) BOOL_TO_DWORD ——DWORD_value = 16400000001

ST When programming with structured text, enter the following:
| F Bool ean_val ue THEN
DWORD val ue: =BOOL_TO DWORD(Bool ean_val ue) ;
END | F;

132

Conversion instructions

Yolo| Iy R Lo b (ez1p) BOOL32to DOUBLE WORD

Description

PLC types

Data types

This function copies a variable of the special data type BOOL32 (see page 55) (an array with 32
elements of the data type BOOL or a DUT of 32 members of the data type BOOL) at the input to
the data type DWORD at the output.

- BOOLZ2 TO DWMORD L

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of BOOL32_TO_DWORD (see page 1318)

Data type Comment

ARRAY of BOOL | ARRAY with 32 elements

DWORD output variable
POU header:

| Class | Identifier | Type | Inikial |

o Enable BOOL FALSE

1 YAR Array320fBooll ARRAY [0..31] OF BOOL [32(FALSEN]
2 YAR Array32ofBoolz ARRAY [0..31] OF BOOL [32(FALSE)]
3 VAR Dh'ardl DWWORD]

4 VAR Dt'ordz DWORD 1]

Body with and without EN/ENO:

Arrap32 0fBooll ——_ BOOL3Z TO DWORD b Dwardt

BOOLIZ TO_DWORD |
Enable —— EN END |
Arraydz 0f Bool? —— ——Dwword2

133

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

Conversion instructions

BOOLS TO DWORD 32 Variables of the data type BOOL to DWORD

Description This function converts 32 values of the data type BOOL bit-wise to a value of the data type
DWORD.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

BOOLS TO WMYORD
- Boold -
- Booll
- BoolZ
- Bool3

Part Il

- Bool30
- Bool31

The inputs Bool0 to Bool31 need not be allocated in LD or FBD, or used explicitly in the ST editor's
formal list of parameters. Such unused inputs are assumed to be FALSE. No program code is
generated for these inputs (or for any input allocated with the constants TRUE or FALSE). Program
code is only generated for inputs to which a variable is allocated.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of BOOLS_TO_DWORD (see page 1318)

Data types Variable | Datatype Function
BOOLO ... | BOOL 32 input variables of the data type BOOL
BOOL31
DWORD output variable
POU header:

| Class | Iderkifier | Type | Inikial |

] dwordl DWORD O

1 VAR Boold BOOL FALSE
2 VAR Booll BOOL FALSE
3 VAR Boolz BOOL FALSE
4 VAR Boolz BOOL FALSE
5 VAR Boold BOOL FALSE
& VAR Bools BOOL FALSE
7 VAR Boolg BOOL FALSE
g VAR Bool? BOOL FALSE

etc. to Bool31

134

Conversion instructions

Body with and without EN/ENO:

BOOLS_TO_DYWORD

Bl —— Baowld

— Booll

TRUE —— EBool2
Bool3 —— Bowold

Boold —— Bowold

FALSE —— BoolS
Boolg —— Bouolg

Bool? —— Bowol?

Bioold —— Bonld

TRUE —— Bonold
Baol10 —— Bool10
Baol11 —— Boolld
FaLSE —— Booll2
Bool13 —— Bool13
Bool14 —— Bool14
— Bool15
— BoollE
FALSE —— Booll?
— Bool1d
— Bool18
— Bool20
— Bool21
TRUE —— Bool22
— Bool23
— Bool24
— Bool25
— Bool2E
— Bool27
— Bool2d
— Bool29
— Bool30
Baol3l —— Bool3

—— Cvwrard

%)
c
o

P
o
>
S
b
0
c

O

L

135

Part 1l

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

WORD TO DWORD WORD in DOUBLE WORD

Description WORD_TO_DWORD converts a value of the data type WORD into a value of the data type

==

Data types

Example

POU header

Body

LD

ST

DWORD.

- WORD TO DWWORD -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of WORD_TO_DWORD (see page 1333)
The bit combination of WORD_value is assigned to DWORD_value.

Data type I/0 Function
WORD input input data type
DWORD output conversion result

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Idertifier | Tvpe | Initial |
0 WORD walue WORD O
1 VAR WORD walue DWORD 0

This example uses variables. You can also use a constant for the input variable.

WORD_value of the data type WORD is converted into a value of the data type DOUBLE WORD.
The result will be written into DWORD_value.

When programming with structured text, enter the following:
DWORD_val ue: =WORD_TO_DWORD(WORD _val ue) ;

136

Conversion instructions

INT TO DWORD INTEGER into DOUBLE WORD

Description INT_TO_DWORD converts a value of the data type INT into a value of the data type DWORD.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- INT TO DWWORD L

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part 1l

PLC types Availability of INT_TO_DWORD (see page 1327)

Data types Data type 1/0 Function
INT input input data type
DWORD output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Twpe | Initial |
1] INT _value INT 1]
1 WaR DWORD walue DWORD 0

This example uses variables. You can also use a constant for the input variable.

Body INT_value of the data type INTEGER is converted into a value of the data type DOUBLE WORD
(32-bit). The result is written into DWORD_value.

LD
INT_walue = 1 ——_INT_TO_DWORD ——DWORD_wvalue = 16200000001

ST When programming with structured text, enter the following:
DWORD val ue: =I NT_TO DWORD(| NT val ue) ;

137

Conversion instructions

DINT TO DWORD DOUBLE INTEGER into DOUBLE WORD

Description DINT_TO_DWORD converts a value of the data type DINT into a value of the data type DWORD.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- DINT TO DWORD -

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DINT_TO_DWORD (see page 1319)

= The bit combination of the input variable is assigned to the output variable.
Data types Data type I/O Function
DINT input input data type
DWORD output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial |
0 DIMT walue DIMT 1]
1 VAR DWORD walue DWORD 0

This example uses variables. You can also use a constant for the input variable.

Body DINT_value of the data type DOUBLE INTEGER is converted into a value of the data type
DOUBLE WORD. The converted value is written into DWORD_value.

LD
DINT _walue = 1—— DINT_TO_DWORD | ——DWORD _value = 16400000001

ST When programming with structured text, enter the following:
DWORD _val ue: =DI NT_TO _DWORD(DI NT_val ue) ;

138

Conversion instructions

UINT TO DWORD Unsigned INTEGER into DOUBLE WORD

Description UINT_TO_DWORD converts a value of the data type Unsigned INTEGER into a value of the data
type DWORD.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- UINT TO DWORD L

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UNT_TO_DWORD (see page 1332)

Data types Data type 1/0 Function
UINT Input input data type
DWORD Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class Identifier | Tvpe | Initial |
0 VAR UINT _walue UIMT 65535
1 VaR DWORD value DWORD 1A#00000000
LD INT value = B5535 —— UINT TO_DWORD —DWORD value = 16#0000FFFF

ST DWORD val ue: = U NT_TO DWORD(Ul NT _val ue) ;

139

Conversion instructions

UDINT TO DWORD Unsigned DOUBLE INTEGER into DOUBLE WORD

Description UDINT_TO_DWORD converts a value of the data type Unsigned DOUBLE INTEGER into a value
of the data type DWORD.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- UDINT TO DWWORD -

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO _DWORD (see page 1332)

Data types Data type I/0 Function
UDINT Input input data type
DWORD Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Tvpe | Initial
0 VAR UDIMT _walue LDIMT 28582400001
1 VAR CWORD _walue DWORD 16#00000000
LD LIDINT walue = 2634401551 - UDINT TO DWVORD Ir ~OWORD walue = 1E&A000ETSF

ST When programming with structured text, enter the following:
DWORD val ue : = UDI NT_TO _DWORD(UDI NT val ue) ;

140

Conversion instructions

I\l 010 REAL into DOUBLE WORD

Description REAL_TO_DWORD moves bitset information of a REAL variable to a DWORD variable. The same
functionality can be obtained using DWORD_OVERLAPPING_DUT.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- REAL TO DWORD -

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of REAL_TO_DWORD (see page 1330)

Data types Data type 1/0 Function
REAL Input input data type
DWORD Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Idenkifier | Type | Inikial |
] VAR REAL walue REAL 234,567
1 VAR DWORD wvalue DWORD 16200000000
LD REAL wvalue =234 567 - BEAL TO DWMWORD Ir ~DWORD walue = 1E#43625127

ST When programming with structured text, enter the following:
DWORD val ue : = REAL_TO DWORD(REAL_ val ue);

141

Conversion instructions

TIME TO DWORD TIME into DOUBLE WORD

Description TIME_TO_DWORD converts a value of the data type TIME into a value of the data type DWORD.
The time 10ms corresponds to the value 1, e.g. an input value of T#1s is converted to the value
100 (16#64).

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

- TIME TO DWORD -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TIME_TO_DWORD (see page 1331)

Data types Data type I/0 Function
TIME input input data type
DWORD output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Commert |
0 kime_value TIME T#120ms
1 WAR WORD walue DWORD 0 result; 16#C

This example uses variables. You can also use a constant for the input variable.

Body time_value of the data type TIME is converted to value of the data type DWORD and written into
the output variable DWORD_value.

LD
time_value = T#120ms —_ TIME_TO_DWORD |——DWORD walue = 16#0000000C

ST When programming with structured text, enter the following:
DWORD _val ue: =TI ME_TO DWORD(ti nme_val ue) ;

142

Conversion instructions

STRING TO DWORD STRING (Hexadecimal Format) to DOUBLE WORD

Description This function converts a string in hexadecimal formal to a value of the data type DWORD.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- STRING_TO_DWORD |

At first the string is converted to a value of the data type STRING[32]. Finally this is converted to a
value of the data type DWORD in a subprogram of approximately 270 steps, which is also used by
the functions STRING_TO_INT, STRING_TO_WORD, STRING_TO_DINT and
STRING_TO_DWORD.

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

See also: STRING_TO_DWORD_STEPSAVER

Example with and without EN/ENO:

Stringl =" abed —— STRING_TO_DWORD | DWard1 = 16400004ECD
Enable STRING_TO_D'WORD |
- EN END
String? =" 16#affe —— —— D¥Word2 = 1EH0000AF FE

Acceptable Format:

_'[Space][Hexadecimal number][Space]' e.g. perhaps' afFE '

Acceptable characters:

Space Space “ ¢

Signs Plus "+“ and minus "-"

Hexadecimal Hexadecimal numbers in the range "0 - 9“ or "A - F* or "a - f".
numbers

The analysis ends with the first non-hexadecimal number.

PLC types Availability of STRING_TO_DWORD (see page 1331)

Data types Data type Comment
STRING Input variable
DWORD Output variable

143

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

STRING_TO_DWORD

_STEPSAVER

STRING (Hexadecimal Format right-justified) to DOUBLE WORD

Description This function converts the string with the maximum possible number of characters that are right
aligned in hexadecimal format to a value of the data type DWORD.

Explanation

Example

Data types

PLC types

- STRING_TO DWORD STEPSAVER |

Input Defined as Results in
'FE' STRING[2] 16#FE

'EFFE' STRING[4] 16#EFFE

'CDEFFE' STRINGI6] 16#CDEFFE

'ABCDEFFE' STRINGI8] 16#ABCDEFFE

'00ABCDEFFE' STRINGI[10] 16#ABCDEFFE

The basic instruction F72_A2HEX (see page 624) is used. The PLC delivers an operation error
especially when a character appears that is not a hexadecimal number “0 - 9" or "A - F”.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

String_d="AECD —

STRIMG_TO_DWORD_STEPSAVER | Dword! = 16H00004ECD

STRING_TO_DWORD_STEPSAVER |

EH END
String_12 ="00004ECDEFFE — ——Dwword2 = 16RAECEFFE
Data type Comment
STRING Input variable
DWORD Output variable

Acceptable Format for STRING[8]:

'Hex1Hex2Hex3Hex4Hex5Hex6Hex7Hex8' e.g. perhaps '001AAFFE’

Acceptable characters:

Hex1 to Hex8

Hexadecimal numbers in the range "0 - 9“ or "A - F* (not "a -). |

Availability of STRING_TO_DWORD_STEPSAVER (see page 1331)

144

Conversion instructions

BOOL TO INT BOOL into INTEGER

Description BOOL_TO_INT converts a value of the data type BOOL into a value of the data type INT.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- BOOL TO INT -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part 1l

PLC types Availability of BOOL_TO_INT (see page 1318)

Data types Data type 1/0 Function
BOOL input input data type
INT output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

|Class |I|:|entiFier |T~;.-'|:ue |Initia| |
0 Boolean_value BOOL FALSE
1 YAR INT _value INT 0

In this example the input variable (Boolean_value) has been declared. Instead, you may enter a
constant directly at the input contact of a function.

Body The Boolean_value of the data type BOOL is converted into a value of the data type INTEGER.
The converted value is written into INT_value.

LD Boolean_walue

/) BOOL_TO_INT ——INT_value = 1

ST When programming with structured text, enter the following:
| F Bool ean_val ue THEN
| NT_val ue: =BOOL_TO_| NT(Bool ean_val ue) ;
END | F;

145

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

WORD TO INT WORD value in INTEGER

Description

PLC types
==

Data types

Example

POU header

WORD_TO_INT converts a value of the data type WORD into a value of the data type INT.

- WORD TO INT L

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of WORD_TO_INT (see page 1333)

The bit combination of WORD_value is assigned to INT_value.

Data type I/O Function
WORD input input data type
INT output conversion result

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Initial |
1] WORD walue WORD 0O
1 WaR INT _walue IMT]

This example uses variables. You can also use a constant for the input variable.

Body WORD_value of the data type WORD is converted into a value of the data type INTEGER. The

LD

ST

result will be written into INT_value.

WORD_value = 16#00FF — WORD_TO_IMT ——INT_value = 255

When programming with structured text, enter the following:
I NT_val ue: =WORD_TO | NT(WORD_val ue) ;

146

Conversion instructions

WORD BCD TO INT Binary WORD value into INTEGER

Description WORD_BCD_TO_INT converts a binary coded BCD value of WORD into binary values of type
INT.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

— WWORD BCD TO INT

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of WORD_BCD_TO_INT (see page 1333)

Data types Data type 1/0 Function
WORD_BCD Input input data type
INT Qutput | conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Claszs | Identifier | Tvpe | Initial |
o BCD_value_16bit WORD D
1 VAR INT value INT]

This example uses variables. You can also use a constant for the input variable.
BCD constants can be expressed in Control FPWIN Pro as follows:

2#0001100110010101 or
16#1995

Body BCD_value_16bit of the data type WORD is converted into an INTEGER value. The converted
value is written into output variable INT_value.

LD BCD_value_16bit = 16#1995— WORD_BCD_TO_INT ——INT value = 1995

ST When programming with structured text, enter the following:
I NT_val ue: =WORD BCD TO | NT(BCD val ue_16bhit);

147

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

DWORD TO INT DOUBLE WORD in INTEGER

Description

PLC types
=

Data types

Example

POU header

Body

LD

ST

DWORD_TO_INT converts a value of the data type DWORD into a value of the data type INT.

— DWORD TO INT

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of DIWORD_TO_INT (see page 1319)

The first 16 bits of the input variable are assigned to the output variable.

Data type I/0 Function
DWORD input input data type
INT output conversion result

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Initial |
0 DWORD_value DWORD 0
1 WaR INT _value INT]

In this example the input variable (DWORD _value) has been declared. Instead, you may enter a
constant directly at the input contact of a function.

DWORD_value of the data type DOUBLE WORD (32-bit) is converted into an INTEGER value
(16-bit). The converted value is written into INT_value.

DWORD_value = 16#000000FF — DWORD_TO_INT ——INT_value = 255

When programming with structured text, enter the following:
I NT_val ue: =DWORD _TO | NT(DWORD val ue) ;

148

Conversion instructions

DINT TO INT DOUBLE INTEGER into INTEGER

Description DINT_TO_INT converts a value of the data type DINT into a value of the data type INT.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

— DINT TO INT

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part 1l

PLC types Availability of DINT_TO_INT (see page 1319)

= The value of the input variable should be between -32768 and 32767.
Data types Data type 1/O Function
DINT input input data type
INT output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

| Clasz | Identifier | Twpe | Initial |

1] DIMT wvalue DINT O

1 WAR INT wvalue INT O
This example uses variables. You can also use a constant for the input variable.

Body DINT_value of the data type DOUBLE INTEGER (32-bit) is converted into a value of the data type
INTEGER (16-bit). The converted value is written into INT_value.

LD
OINT wvalue = 0—— DINT _TO_INT I—-INT_vaIue =]

ST When programming with structured text, enter the following:
| NT_val ue: =DI NT_TO _| NT(DI NT_val ue) ;

149

Conversion instructions

"
c
=
©
g UINT TO INT Unsigned DOUBLE INTEGER into INTEGER
2 I
8 Description UINT_TO_INT converts a value of the data type Unsigned INTEGER into a value of the data type
= INT.
- UINT TO_INT |

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UINT_TO_INT (see page 1332)

Data types Data type I/0 Function
UINT Input input data type
INT Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class Identifier | Twpe | Inikial
0 VAR UIMT walue UINT 16333
1 VAR INT _walue INT 0
LD LIMT _walue = 1535: - LIMT TOINT Ir =IMT _value = 1555

ST I NT_val ue: = U NT_TO_I NT(Ul NT_val ue) ;

150

Conversion instructions

UDINT TO INT Unsigned DOUBLE INTEGER into INTEGER

Description UDINT_TO_INT converts a value of the data type Unsigned DOUBLE INTEGER into a value of the
data type INT.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

~ UDINT TO INT -

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_INT (see page 1332)

Data types Data type 1/0 Function
UDINT Input input data type
INT Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

Class Identifier | Tvpe | Initial
1] VAR DINT walue UDINT @ 32767
1 VAR INT _walue INT]

LD UDINT value = 32767 —— UDINT_TO_INT _——INT value = 52757

ST When programming with structured text, enter the following:
I NT_val ue : = UDI NT_TO_|I NT(UDI NT_val ue) ;

151

Conversion instructions

REAL TO INT REAL into INTEGER

Description REAL_TO_INT converts a value of the data type REAL into a value of the data type INTEGER.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- REAL TO INT L

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of REAL_TO_INT (see page 1330)

Data types Data type 1/0 Function
REAL input input data type
INT output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

Class Identifier | Type | Initial
] VAR INT _wvalue IMNT]
1 VAR REAL walue REAL 0.0

This example uses variables. You can also use a constant for the input variable.

Body REAL_value of the data type REAL is converted into a value of the data type INTEGER. The
converted value is stored in INT_value.

LD
REAL_wvalue = 051099998 — REAL_TO_INT ——INT_valug =1

ST When programming with structured text, enter the following:
I NT_val ue: = REAL_TO | NT(REAL_val ue) ;

152

Conversion instructions

TRUNC TO INT Truncate (cut off) decimal digits of REAL input variable, convert to
- = INTEGER

Description TRUNC_TO_INT cuts off the decimal digits of a REAL number and delivers an output variable of
the data type INTEGER.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- TRUNG TO INT L

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TRUNC_TO_INT (see page 1332)

= * If the decimal digits are cut off, positive numbers will be decreased
towards zero and negative numbers will be increased towards zero.

* The first 16 bits of the input variable are assigned to the output

variable.
Data types Data type 1/0 Function
REAL input input data type
INT output conversion result
Error flags No. IEC address Set If
R9007 %MX0.900.7 permanently = input variable does not have the data
type REAL
R9008 | %MX0.900.8 for an instant = output variable is greater than a 16-bit
INTEGER
R9009 %MX0.900.9 for an instant = output variable is zero
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | 1dentifier | Type | Initial | Comment |
1] REAL walue REAL 0.0 number bebw, -32765.99 ... +32767
1 AR INT walue INT O number betw, -32768 ... +32768

This example uses variables. You can also use a constant for the input variable.

Body The decimal digits of REAL_value are cut off. The result is stored as a 16-bit INTEGER in
INT value.

LD
REAL wvalue = 12345 —— TRUNC TO_INT ——INT_wvalue =123

ST When programming with structured text, enter the following:
| NT_val ue: =TRUNC TO_| NT(REAL_val ue) ;

153

Conversion instructions

TIME TO INT TIME into INTEGER

Description TIME_TO_INT converts a value of the data type TIME into a value of the data type INT.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- TIME TO INT ©

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TIME_TO_INT (see page 1331)

Data types Data type I/O Function
TIME input input data type
INT output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Twpe | Initial |

1] tme_value TIME T#0s

1 WAR IMT walue INT O
This example uses variables. You can also use a constant for the input variable.

Body Time_value of the data type TIME is converted into a value of the data type INTEGER. The result
will be written into the output variable INT_value.

LD
time_wvalue = T#1 25340ms —— TIME _TO INT |——INT walue = 1234

ST When programming with structured text, enter the following:
I NT_val ue: =TI ME_TO_I NT(ti nme_val ue) ;

154

Conversion instructions

STRING TO INT STRING (decimal format) to INTEGER

Description This function converts a STRING in decimal format to a value of the data type INT.

Example

PLC types

Data types

STRING TO INT -

Thereby the attached string is first converted to a value of the data type STRING[32]. Finally this is
converted to a value of the data type INT via a sub-programm of approx. 270 steps that is also
used in the functions STRING_TO_INT, STRING_TO_WORD, STRING_TO_DINT and

STRING_TO_DWORD.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the

context menu or press <Ctrl>+<Shift>+<v> in the programming window.

String1 =" 1234'— STRING_TO_INT I—'|r‘|t'| = 1234
STRING_TO_INT
e —— EN EMO —
Stringa = '[2222] —— 2 = 2999

Permissible format:

'[Space][Sign][Decimal numbers][Space]' e.g.' 123456

Permissible characters:

Space All characters except for "+“ (plus), "-" (minus) and all decimal numbers
Sign "+* (plus), "-" (minus)

Decimal Decimal numbers "0 - 9“

numbers

The analysis ends with the first non-decimal number.

Availability of STRING_TO_INT (see page 1331)

Data type Comment
STRING input variable
INT output variable

155

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

Conversion instructions

STRING TO INT STRING (Decimal Format right-justified) to INTEGER

STEPSAVER

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Description This function converts a right-justifed decimal number in a string to a value of the data type INT.

- STRIMG TO INT STEPSAVER |

Part Il

The basic instruction F76_A2BIN (see page 637) with approx. 7 steps is used. The PLC delivers an
operation error especially when a character appears that is not a decimal number “0 - 9”7, not a “+”
or “-“ or not a space.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Example Stiingl =' 1234'—— STRING_TO_INT_STEPSAVER ——Intl = 1234

Acceptable Format:

'[Space][Sign][Decimal number]' e.g. '.123456'

Acceptable characters:

Space Space “_*

Signs Plus "+“ and minus "-"
Decimal Decimal numbers "0 - "9*
Number

PLC types Availability of STRING_TO_INT_STEPSAVER (see page 1331)

Data types Data type Comment
STRING Input variable
INT Output variable

156

Conversion instructions

BOOL TO UINT BOOL into Unsigned INTEGER

Description BOOL_TO_UINT converts a value of the data type BOOL into a value of the data type Unsigned
INTEGER.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- BOOL TO UINT -

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of BOOL_TO_UINT (see page 1318)

Data types Data type 1/0 Function
BOOL Input input data type
UINT Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Type | Initial
1] VAR IIMT _value UINT O
1 WYAR Boolean_walue BOOL FALSE
LD Boolean valug—— BOOL TO UINT - UINT value =0

ST U NT _val ue: = BOOL_TO Ul NT(Bool ean_val ue) ;

157

Conversion instructions

WORD TO UINT WORD to Unisgned INTEGER

Description WORD_TO_UINT converts a value of the data type WORD into a value of the data type Unsigned
INTEGER.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- WORD TO UINT

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of WORD_TO_UINT (see page 1333)

Data types Data type I/O Function
WORD Input input data type
UDINT Output conversion result
Example In this example the function is programmed in ladder diagram (LD).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Type | Initial |
] VOR IMT_walue LIMT]
1 VAR WORD wvalue WORD 16#ABCD
LD wORD walue = 16#4B00 —— WORD TO_UINT ——UINT value = 43951

158

Conversion instructions

WORD BCD TO UINT Binary coded WORD value in Unsigned INTEGER

Description WORD_BCD_TO_UINT converts a binary coded value of the data type WORD into a value of the
data type Unsigned INTEGER.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- WORD BCD TO UINT |

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of WORD_BCD_TO_UINT (see page 1333)

Data types Data type 1/O Function
WORD_BCD Input input data type
UINT Output | conversion result
Example In this example the function is programmed in ladder diagram (LD).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Tvpe | Initial
] VAR IMT _value LIMT 0
1 VaR BCD_walue_16hit WORD 1e#2010
LD BCD walue 1Bbit = 16&2010 — WORD BCD TO LINT I—-UINT_'-xalue = 2010

159

Conversion instructions

DWORD TO UINT DOUBLE WORD into Unsigned INTEGER

Description DWORD_TO_UINT converts a value of the data type DWORD into a value of the data type
Unsigned INTEGER.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

— DWORD TO UINT

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DWORD_TO_UINT (see page 1319)

Data types Data type I/O Function
DWORD Input input data type
UINT Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Type | Initial
0 VAR UIMT _value LINT 1]
1 VAR CWORD _walue DWORD 16400001234
LD ODWWORD walue = TEROO001 254 - DWORD TO LINT Ir <UIMT _walue = 4660

ST U NT_val ue: = DWORD TO Ul NT(DAWORD val ue) ;

160

Conversion instructions

%)

c

§=)

INT TO UINT INTEGER to Unsigned INTEGER (:'3)
— 2
Description INT_TO_UINT converts a value of the data type INT into a value of the data type Unsigned G
INTEGER. T

- INT_TO UINT F £

(ol

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of INT_TO_UINT (see page 1327)

Data types Data type 1/0 Function
INT Input input data type
UINT Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

Class | Identfier | Tvpe | Initial |

] VaR UIMT walue UINT 0

1 VR INT _walue INT 32767
LD NT value = 52767 — INT_TO_UINT ——UINT value = 32767
ST U NT_value: = |INT_TO U NT(INT_val ue);

161

Conversion instructions

DINT TO UINT DOUBLE INTEGER into Unsigned INTEGER

Description DINT_TO_UINT converts a value of the data type DINT into a value of the data type Unsigned
INTEGER.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

— DIMT TO UINT

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DINT_TO_UINT (see page 1319)

Data types Data type I/0 Function
DINT Input input data type
UINT Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Tvpe | Inikial

0 VAR UINT walue UINT 0
1 VAR DIMT walue DINT 60234
LD DINT value = G034 —— DINT_TO_UINT _——UINT value = B0234

ST U NT_val ue: = DI NT_TO Ul NT(DI NT_val ue);

162

Conversion instructions

UDINT TO UINT Unsigned DOUBLE INTEGER into Unsigned INTEGER

Description UDINT_TO_UINT converts a value of the data type Unsigned DOUBLE INTEGER into a value of
the data type Unsigned INTEGER.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- UDINT TO UINT

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_UINT (see page 1332)

Data types Data type 1/0 Function
UDINT Input input data type
UINT Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class Identifier | Tvpe | Inikial
1] VAR, IMT _walue LIMT 0
1 VAR UDINT walue UDIMT 53123
LD . [.
LIDIMT walue = 53712 - LUDINT TO UINT - ——LHNT walue = 535712

ST U NT_val ue: = UDI NT_TO Ul NT(UDI NT_val ue);

163

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

REAL TO UINT REAL into Unsigned INTEGER

Description REAL_TO_UINT converts a value of the data type REAL into a value of the data type Unsigned

PLC types

Data types

Example

POU header

INTEGER.

- REAL TO UINT

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

See also: TRUNC_TO_UINT (see page 164)

Availability of REAL_TO_UINT (see page 1330)

Data type

/0 Function

REAL

Input input data type

UINT

Output conversion result

In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

All input and output variables used for programming this function have been declared in the POU

header.

Class | Identifier | Type | Initial
0 VAR LIMT walue UINT O
1 VAR REAL walue REAL 2585

LD pEAL value =285 REAL TO UINT ——UINT value = 29

ST U NT val ue: = REAL_TO Ul NT(REAL_val ue) ;

164

Conversion instructions

Truncate (cut off) decimal digits of REAL input variable, convert to
TRUNC—TO—UINT UNSIGNED INTEGER

Description TRUNC_TO_UINT cuts off any digits following the decimal of a REAL number and delivers an
output variable of the data type Unsigned INTEGER.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- TRUNC TO UIMT -

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TRUNC_TO_UINT (see page 1332)

= * If the decimal digits are cut off, positive numbers will be decreased
towards zero and negative numbers will be increased towards zero.

Data types Data type 1/0 Function
REAL Input input data type
INT Output conversion result
Error flags No. IEC address Set If
R9007 %MX0.900.7 permanently = the input variable is not of the data type
REAL
R9008 %MX0.900.8 for an instant = the output variable is greater than a
16-bit INTEGER
R9009 %MX0.900.9 for an instant = the output variable is zero
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Tvpe | Initial |
] WAR | UINT walue UINT 0O
1 YAR REAL_walue REAL 28.5

LD BEAL value =255 TRUNGC TO_UINT —UINT value = 25

ST U NT val ue: = TRUNC TO Ul NT(REAL val ue) ;

165

Conversion instructions

STRING TO UINT STRING (decimal format) to Unsigned INTEGER

Description STRING_TO_UINT converts a string in decimal formal to a value of the data type Unsigned
INTEGER.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- STRING TO LINT -

Part Il

See also: STRING_TO_UINT_STEPSAVER (see page 166)

First, the string is converted to a value of the data type STRING[32], which is subsequently
converted to a value of the data type UINT in a subprogram with approximately 270 steps. The
subprogram is also used by the functions STRING_TO_INT, STRING_TO_WORD,
STRING_TO_UDINT and STRING_TO_DWORD.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Acceptable Format:

'[Space][Sign][Decimal number][Space]’, e.g.' 123456 '

Acceptable characters:

Space Space ““

Signs Plus “+” and minus “*
Decimal Decimal numbers "0* - "9*
numbers

The analysis ends with the first non-decimal number.

PLC types Availability of STRING_TO_UINT (see page 1331)

Data types Data type Comment
STRING Input
UINT Output
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Tvpe | Initial
] VAR INT _walue UIMNT 0]
1 VAR STRIMG value STRIMNG[S] '543
LD STRING value = 547'—— STRING TO_UINT ——UINT value = 54

ST U NT_val ue: = STRI NG TO Ul NT(STRI NG val ue) ;

166

Conversion instructions

STRING TO UINT STRING (Decimal Format right-justified) to Unsigned INTEGER

STEPSAVER

Description

PLC types

Data types

Example

POU header

LD

ST

STRING_TO_UINT_STEPSAVER converts a right-justifed decimal number in a string to a value of
the data type Unsigned INTEGER.

STRING TO UINT STEPSAVER |

The basic instruction F76_A2BIN (see page 637) with approx. 7 steps is used. The PLC issues an
operation error especially if anything other than acceptable characters are used (see the following
table "Acceptable characters").

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Acceptable Format:

'[Space][Sign][Decimal number]', e.g. '.123456'

Acceptable characters:

Space Space “_*

Signs Plus "+“ and minus "-"
Decimal Decimal numbers "0 - "9*
Number

Availability of STRING_TO_UINT_STEPSAVER (see page 1331)

Data type Comment

STRING Input

UINT Output

In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Tvpe | Iitjal
] VAR IMT_walue UINT]
1 VAR STRIMNG value STRIMG[S] 'S43'
STRING walue = - STRING TO UINT STEFPSAYER Ir <UINT walue =12

Ul NT_val ue: = STRI NG TO Ul NT_STEPSAVER(STRI NG val ue) :

167

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

Conversion instructions

BOOL TO DINT BOOL into DOUBLE INTEGER

Description BOOL_TO_DINT converts a value of the data type BOOL into a value of the data type DINT.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- BOOL TO DINT -

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of BOOL_TO_DINT (see page 1318)

Data types Data type I/0 Function
BOOL input input data type
DINT output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Inikial |
0 Boolean_walue EBOOL FALSE
1 VAR DIMT _walue DIMT 0O

In this example the input variable (Boolean_value) has been declared. Instead, you may enter a
constant directly at the input contact of a function.

Body The Boolean_value of the data type BOOL is converted into a DOUBLE INTEGER value. The
converted value is written into DINT _value.

LD Eoolean_wvalue

L] BOOL TO_DINT |——DINT_value =1

ST When programming with structured text, enter the following:
| F Bool ean_val ue THEN
DI NT_val ue: =BOOL_TO DI NT(Bool ean_val ue) ;
END | F;

168

Conversion instructions

WORD TO DINT WORD in DOUBLE INTEGER

Description WORD_TO_DINT converts a value of the data type WORD into a value of the data type DINT.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- WORD TO DINT L

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part 1l

PLC types Availability of WORD_TO_DINT (see page 1333)

Data types Data type 1/0 Function
WORD input input data type
DINT output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Type | Initial |
1] CINT walue DINT O
1 YAR WORD value WORD 0O

This example uses variables. You can also use a constant for the input variable.

Body WORD_value of the data type WORD is converted into a value of the data type INTEGER. The
result will be written into DINT_value.

LD

WORD _value = 16200FF — WORD_TO_DINT ——DINT_value = 255

ST When programming with structured text, enter the following:
DI NT_val ue: =WORD _TO DI NT(WORD val ue) ;

169

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

DWORD BCD TO Binary coded DWORD value into DOUBLE INTEGER

DINT

Description

PLC types

Data types

Example

POU header

Body

LD

ST

DWORD_BCD_TO_DINT converts a binary coded value of the data type DWORD into a binary
value of the data type DINT in order to be able to process a BCD value in double word format.

- DWWORD BCD TO DINT |

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of DWORD_BCD_TO_DINT (see page 1319)

Data type 1/0 Function
DWORD_BCD Input input data type
DINT Output | conversion result

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Initial
1] VAR DINT_walue DINT 1]
1 VAR BCD_walue_32bit DWORD 0

This example uses variables. You can also use a constant for the input variable.

BCD constants can be indicated in Control FPWIN Pro as follows:
2#00011001100101010001100110010101 or
16#19951995

BCD_value_32bit of the data type DOUBLE WORD is converted into a DOUBLE INTEGER value.
The converted value is written into DINT_value.

BCOD_value_32bit = 16#19951995 — DWWORD BCD TO DINT ——DINT value = 19951995

When programming with structured text, enter the following:
DI NT_val ue: =DWORD_BCD _TO DI NT(BCD val ue_32bit);

170

Conversion instructions

DWORD TO DINT DOUBLE WORD in DOUBLE INTEGER

Description DWORD_TO_DINT converts a value of the data type DOUBLE WORD into a value of the data type
DOUBLE INTEGER.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- DWORD TO DINT L

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DWORD_TO_DINT (see page 1319)

= The bit combination of the input variable is assigned to the output variable.
Data types Data type 1/0 Function
DWORD input input data type
DINT output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Idertifier | Tvpe | Initial |
0 DWORD value DWORD 0
1 WOR DINT _walue DIMT]

This example uses variables. You can also use a constant for the input variable.

Body DWORD_value of the data type DOUBLE WORD is converted into a DOUBLE INTEGER value.
The converted value is written into DINT _value.

LD
DWORD_value = 16#0000FFFF — DW/ORD_TO_DINT ——DINT _value = 65535

ST When programming with structured text, enter the following:
DI NT_val ue: =DWORD_TO DI NT(DWORD _val ue) ;

171

Conversion instructions

INT TO DINT INTEGER into DOUBLE INTEGER

Description INT_TO_DINT converts a value of the data type INT into a value of the data type DINT.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- INT TO DINT L

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of INT_TO_DINT (see page 1327)

Data types Data type 1/0 Function
INT input input data type
DINT output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Twpe | Inikial |

0 INT walue INT O

1 YAR DIMT value DINT O
This example uses variables. You can also use a constant for the input variable.

Body INT_value of the data type INTEGER is converted into a value of the data type DOUBLE
INTEGER. The result will be written into DINT_value.

LD
INT walue=1—— INT TO DINT ——DINT walug =1

ST When programming with structured text, enter the following:
DI NT_val ue: =I NT_TO DI NT(I NT_val ue) ;

172

Conversion instructions

UINT TO DINT Unsigned INTEGER into DOUBLE INTEGER

Description UINT_TO_DINT converts a value of the data type Unsigned INTEGER into a value of the data type
DINT.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

~ UINT TO DINT -

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UINT_TO_DINT (see page 1332)

Data types Data type 1/0 Function
UINT Input input data type
DINT Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class Identifier | Twpe | Initial
] VAR LIMT _walue UINT - 48345
1 VAR DIMT walue DINT 0
LD LIMT walue = 45345 - UINT TO DINT Ir ~OIMT walue = 45345

ST DINT_val ue: = U NT_TO DI NT(U NT_val ue);

173

Conversion instructions

UDINT TO DINT Unsigned DOUBLE INTEGER into DOUBLE INTEGER

Description UDINT_TO_DINT converts a value of the data type Unsigned DOUBLE INTEGER into a value of
the data type DINT.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- UDINT TO DINT -

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_DINT (see page 1332)

Data types Data type I/O Function
UDINT Input input data type
DINT Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class Identifier | Type | Inikial
0 VAR LDIMT walue UDINT 21474833647
1 VAR, DINT _walue DINT 1]
LD LIDINT _value = 21474556847 - LDINT T DIrMT Ir SDIMT _walue = 2147455647

ST When programming with structured text, enter the following:
DI NT_val ue : = UDI NT_TO DI NT(UDI NT _val ue) ;

174

Conversion instructions

REAL TO DINT REAL into DOUBLE INTEGER

Description REAL_TO_DINT converts a value of the data type REAL into a value of the data type DOUBLE
INTEGER. The result is rounded off to the nearest whole number for the conversion.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

REAL_TO_DINT |
- EN ENO |
I

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of REAL_TO_DINT (see page 1330)

= Since REAL numbers only have a resolution of about 7 digits, information for
large numbers will be lost.

Data types Data type 1/0 Function
REAL input input data type
DINT output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Type | Initial |
] VAR REAL walue RESL 0.0
1 VAR DIMT walue DINT 0O

This example uses variables. You can also use a constant for the input variable.

Body REAL_value of the data type REAL is converted into a value of the data type DOUBLE INTEGER.
The converted value is stored in DINT _value.

LD

ST When programming with structured text, enter the following:
DI NT_val ue: = REAL_TO DI NT(REAL_val ue) ;

175

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

Truncate (cut off) decimal digits of REAL input variable, convert to
TRUNC—TO—DINT DOUBLE INTEGER

Description TRUNC_TO_DINT cuts off the decimal digits of a REAL number and delivers an output variable of
the data type DOUBLE INTEGER.

- TRUMC TO DINT -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TRUNC_TO_DINT (see page 1332)

= |f the decimal digits are cut off, positive numbers will be decreased towards zero and

= negative numbers will be increased towards zero.
= Since REAL numbers only have a resolution of about 7 digits, information for large numbers
will be lost.
Data types Data type I/O Function
REAL input input data type
DINT output conversion result
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently » input variable does not have the data
type REAL
R9008 %MX0.900.8 for an instant = output variable is greater than a 32-bit
DOUBLE INTEGER
R9009 %MX0.900.9 for an instant = output variable is zero
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Type | Initial | Commert |
0 REAL value REAL 0.0 number bebw, -Z147483,000 ... +2147483,000
1 WaR DINT walue DINT 0 number betw, -2147485 ... +2147455

This example uses variables. You can also use a constant for the input variable.

Body The decimal digits of REAL_value are cut off. The result is stored as a 32-bit DOUBLE INTEGER
in DINT _value.

LD
REAL_value =123 45— TRUNC _TO_DINT ——DINT _walue =123

ST When programming with structured text, enter the following:
DI NT_val ue: =TRUNC_TO DI NT(REAL_val ue) ;

176

Conversion instructions

TIME TO DINT TIME into DOUBLE INTEGER

Description TIME_TO_DINT converts a value of the data type TIME into a value of the data type DINT. The
time 10ms corresponds to the value 1, e.g. an input value of T#1m0s is converted to the value
6000.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

-~ TIME T DINT -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TIME_TO_DINT (see page 1331)

Data types Data type 1/0 Function
TIME input input data type
DINT output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Type | Inikial
] VAR time_walue TIME T100ms
1 VAR DINT walue DINT 0

This example uses variables. You can also use a constant for the input variable.

Body time_value of the data type TIME is converted to value of the data type DOUBLE INTEGER. The
result is written into the output variable DINT_value.

LD
time_value = T#100ms —— TIME_TO_DINT ——DINT _walue =10

ST When programming with structured text, enter the following:
DI NT_val ue: =TI ME_TO DI NT(ti me_val ue) ;

177

Conversion instructions

STRING TO DINT STRING (Decimal Format) to DOUBLE INTEGER

Description This function converts a string in decimal formal to a value of the data type DINT.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- STRING TO DINT -

Part Il

At first the string is converted to a value of the data type STRING[32]. Finally this is converted to a
value of the data type DINT in a subprogram of approximately 270 steps, which is also used by the
functions STRING_TO_INT, STRING_TO_WORD, STRING_TO_DINT and
STRING_TO_DWORD.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Example with and without EN/ENO:

String1 = ' 1234' —— STRING_TO_DINT | Dint1 = 1234
Enable STRING_TO_DINT
—|m| EN END —
String2 = ' 2222 —— Dint2 = 2222

Acceptable Format:

'[Space][Sign][Decimal number][Space]' e.g.' 123456 '

Acceptable characters:

Space Space “ “

Signs Plus “+” and minus “-*
Decimal Decimal numbers "0* - "9*
Numbers

The analysis ends with the first non-decimal number.

PLC types Availability of STRING_TO_DINT (see page 1331)

Data types Data type Comment
STRING Input variable
DINT Output variable

178

Conversion instructions

STRING TO DINT STRING (Decimal Format right-justified) to DOUBLE INTEGER

STEPSAVER

Description

Example

PLC types

Data types

This function converts a right-justifed decimal number in a string to a value of the data type DINT.

- STRING_TO_DINT STEPSAWER |

The basic instruction F78 _DA2BIN (see page 643) with approx. 11 steps is used. The PLC delivers
an operation error especially when a character appears that is not a decimal number “0 - 9”7, not a
“+” or “-“ or not a space.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

String1 =' 1234 ——_ STRIMG_TO_DINT STEPS&VER ——Dint1= 1234

Acceptable Format:

'[Space][Sign][Decimal number]' e.g.' 123456

Acceptable characters:

Space Space “‘*

Signs Plus "+ and minus "-"
Decimal Decimal numbers "0* - "9*
Numbers

Availability of STRING_TO_DINT_STEPSAVER (see page 1331)
Data type Comment
STRING Input variable
DINT Output variable

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

179

Part 1l

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

BOOL TO UDINT BOOL into Unsigned DOUBLE INTEGER

Description BOOL_TO_UDINT converts a value of the data type BOOL into a value of the data type Unsigned
DOUBLE INTEGER.

- BOOL TO UDINT -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of BOOL _TO_UDINT (see page 1318)

Data types Data type I/0 Function
BOOL Input input data type
UDINT Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.

Class | Identifier | Type | Inikial |
] VAR LIDINT _value UDIMNT 100546
1 YWAR, Boolean_walue BOOL FALSE

LD [Boolean_valud—— BOOL TO UDINT —UDINT value =0

ST When programming with structured text, enter the following:
UDI NT_val ue : = BOOL_TO _UDI NT(Bool ean_val ue) ;

180

Conversion instructions

WORD TO UDINT WORD in Unsigned DOUBLE INTEGER

Description WORD_TO_UDINT converts a value of the data type WORD into a value of the data type
Unsigned DOUBLE INTEGER.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- WORD TO UDINT L

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of WORD_TO_UDINT (see page 1333)

Data types Data type 1/O Function
WORD Input input data type
UDINT Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Type | Inikal
0 VAR UDINT walue UDINT O
1 VAR WORD_value WORD 16#FFFF
LD WORD value = 16#FFFF —— WWORD TO UDINT ——UDINT wvalue = 65535

ST When programming with structured text, enter the following:
UDI NT_val ue : =WORD_TO_UDI NT(WORD_val ue) ;

181

Conversion instructions

DWORD_TO_UD|NT I DOUBLE WORD in Unsigned DOUBLE INTEGER

Description DWORD_TO_UDINT converts a value of the data type DWORD into a value of the data type
Unsigned DOUBLE INTEGER.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- DWYORD TO UDINT -

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DWORD_TO_UDINT (see page 1319)

Data types Data type I/0 Function
DWORD Input input data type
UDINT Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Tvpe | Initial |
0 VAR LDINT _value LDIMT 0
1 VAR CWORD_value DWORD 16#A000B7SF
LD OWORD value = 1E&A000BYSF - DWWORD TO UDINT Ir =UDINT walue = 2654401551

ST When programming with structured text, enter the following:
UDI NT_val ue : = DWORD _TO _UDI NT(DWORD val ue) ;

182

Conversion instructions

DWORD BCD TO Binary value of DOUBLE WORD in Unsigned INTEGER

UDINT

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Description DWORD_BCD_TO_UDINT converts a binary value of the data type DWORD into a value of the
data type Unsigned DOUBLE INTEGER.

- DWORD BCD TO UDINT -

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DWORD_BCD_TO_UDINT (see page 1319)

Data types Data type 1/0 Function
DWORD_BCD Input input data type
UDINT Output conversion result
Example In this example the function is programmed in ladder diagram (LD).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Tvpe | Initial
1] VAR LIDINT _value LIDIMT 419976246
1 VAR BCD_walue_32bit DWORD 16419085436

LD BCD_value_32bit = 16419085436 —_ DWORD_BCD TO UDINT |——UDINT value = 19085436

183

Conversion instructions

INT TO UDINT INTEGER into Unsigned DOUBLE INTEGER

Description INT_TO_UDINT converts a value of the data type INT into a value of the data type Unsigned
DOUBLE INTEGER.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

~INT TO UDINT -

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of INT_TO_UDINT (see page 1327)

Data types Data type I/0 Function
INT Input input data type
UDINT Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Tvpe | Initial
0 VAR LDIMT walue UDIMT O
1 VAR INT _wvalue INT 32767
LD INT walue = 32767 - INT T LIDINT Ir ~UDINT _value = 32767

ST When programming with structured text, enter the following:
UDI NT_val ue : = I NT_TO _UDI NT(I NT _val ue) ;

184

Conversion instructions

UINT TO UDINT Unsigned INTEGER to Unsigned DOUBLE INTEGER

Description UINT_TO_UDINT converts a value of the data type Unsigned INTEGER into a value of the data
type Unsigned DOUBLE INTEGER.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- UINT TO _UDINT

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UINT_TO_UDINT (see page 1332)

Data types Data type 1/0 Function
UINT Input input data type
UDINT Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class Identifier | Tvpe | Inikial |
1] WAR, INT _wvalue LIMT 45345
1 VAR LIDINT walue UDIMT 0
LD — | _ o
LIMT walue = 45345 - UINT TO UDINT - ——LUDINT walue = 455345

ST UDI NT_val ue: = Ul NT_TO_UDI NT(Ul NT_val ue) ;

185

Conversion instructions

DINT TO UDINT DOUBLE INTEGER into Unsigned DOUBLE INTEGER

Description DINT_TO_UDINT converts a value of the data type DINT into a value of the data type Unsigned
DOUBLE INTEGER.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- DINT T UDINT -

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DINT_TO_UDINT (see page 1319)

Data types Data type I/O Function
DINT Input input data type
UDINT Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Type | Initial

1] WAR LDINT walue UDINT O
1 WAR. DINT walue DIMT 2147483647
LD DINT walue = 2147453647 —— DINT_TO_UDINT ——UDINT value = 2147483647

ST When programming with structured text, enter the following:
UDI NT_val ue : = DI NT_TO _UDI NT(DI NT_val ue) ;

186

Conversion instructions

REAL TO UDINT REAL into unsighed DOUBLE INTEGER

Description REAL_TO_UDINT converts a value of the data type REAL into a value of the data type Unsigned
DOUBLE INTEGER. The result is rounded off to the nearest whole number for the conversion.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

See also: TRUNC_TO_UDINT (see page 187)

Part 1l

- REAL TO UDIMT L

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of REAL_TO_UDINT (see page 1330)

= Since REAL numbers only have a resolution of about 7 digits, information for
large numbers will be lost.
Data types Data type 1/0 Function
REAL Input input data type
UDINT Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Type | Inikial |

0 VAR UDIMT _walue UDIMT 0O
1 VAR REAL walue REAL 958123.39
LD REAL value = 95123 391 —— REAL TO _UDINT —UDINT value = 5512

ST When programming with structured text, enter the following:
UDI NT_val ue : = REAL_TO _UDI NT(REAL_val ue) ;

187

Conversion instructions

Truncate (cut off) decimal digits of REAL input variable, convert to
TRUNC—TO—UDINT Unsigned DOUBLE INTEGER

Description TRUNC_TO_UDINT cuts off the digits following the decimal of a REAL number and delivers an
output variable of the data type Unsigned DOUBLE INTEGER.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

- TRUNGC TO UDINT -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TRUNC_TO_UDINT (see page 1332)

= = |f the decimal digits are cut off, positive numbers will be decreased towards zero and
negative numbers will be increased towards zero.

= Since REAL numbers only have a resolution of about 7 digits, information for large numbers

will be lost.
Data types Data type I/O Function
REAL Input input data type
UDINT Output conversion result
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = the input variable is not of the data type
REAL
R9008 %MX0.900.8 for an instant = the output variable is greater than a
32-bit DOUBLE INTEGER
R9009 %MX0.900.9 for an instant = the output variable is zero
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Tvpe | Inikial |

] VAR | UDINT value UDINT 0
1 VAR REAL_value REAL 78497.79
LD REAL value = 754597 789 —— TRUNC TO_UDINT |——UDINT value = 75457

ST When programming with structured text, enter the following:
UDI NT_val ue : = TRUNC _TO _UDI NT(REAL val ue) ;

188

Conversion instructions

STRING TO UDINT STRING (Decimal Format) into Unsigned DOUBLE INTEGER

Description STRING_TO_UDINT converts a string in decimal format to a value of the data type Unsigned
DOUBLE INTEGER.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- STRING TO UDINT |

Part 1l

First, the string is converted to a value of the data type STRING[32], which is subsequently
converted to a value of the data type UDINT in a subprogram with approximately 270 steps. This
subprogram is also used by the functions STRING_TO_INT, STRING_TO_WORD,
STRING_TO_UDINT and STRING_TO_DWORD.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Acceptable Format:

'[Space][Sign][Decimal number][Space]’, e.g.' 123456 '

Acceptable characters:

Space Space “ “

Signs Plus “+” and minus “-*
Decimal Decimal numbers "0* - "9*
numbers

The analysis ends with the first non-decimal number.

PLC types Availability of STRING_TO_UDINT (see page 1331)

Data types Data type Comment
STRING Input
UDINT Output
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Tvpe | Initial
] VAR LIDINT _value LDIMT 1]
1 VAR STRIMG walue STRIMG[... ‘3147483647
LD STRIMG walue = 31474553647 —— STRING TO LIDINT Ir ~UDINT _walue = 3147455647

ST When programming with structured text, enter the following:
UDI NT_val ue : = STRI NG_TO_UDI NT(STRI NG _val ue) ;

189

Conversion instructions

DATE TO UDINT DATE into Unsigned DOUBLE INTEGER

Description DATE_TO_UDINT converts a value of the data type DATE into a value of the data type Unsigned
DOUBLE INTEGER according to its internal format, which is seconds elapsed since "2001-01-01".

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- DATE TO UDINT -

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DATE_TO_UDINT (see page 1319)

Data types Data type I/O Function
DATE Input input data type
UDINT Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Type | Initial
0 YR UDINT walue UDINT 0
1 VAR DATE walue DATE D#20053-05-12
LD DATE walue = D#F20058-05-12 - DATE TO LIDINT Ir =UIDIMT walue = 2322453200

ST When programming with structured text, enter the following:
UDI NT_val ue : = DATE_TO _UDI NT(DATE val ue) ;

190

Conversion instructions

DT TO UDINT DATE_AND_TIME into Unsigned DOUBLE INTEGER

Description DT_TO_UDINT converts a value of the data type DATE_AND_TIME into a value of the data type
Unsigned DOUBLE INTEGER according to its internal format, which is seconds elapsed since
"2001-01-01-00:00:00".

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- DT TO UDINT -

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DT_TO_UDINT (see page 1319)

Data types Data type I/O Function
DT Input input data type
UDINT Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Tvpe | Iitial
] VAR LDIMT _value UDIMT]
1 VAR DT_walue DATE AMD_TIME DT#2016-07-04-16:30:30
LD DT wvalue = DT#2016-07-04-16:30:30 —— DT _TO_UDINT |——UDINT value = 489342530

ST When programming with structured text, enter the following:
UDI NT_val ue : = DT_TO_UDI NT(DT _val ue) ;

191

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

TOD TO UDINT TIME_OF_DAY into Unsigned DOUBLE INTEGER

Description

PLC types

Data types

Example

POU header

LD

ST

TOD_TO_UDINT converts a value of the data type TIME_OF_DAY into a value of the data type
Unsigned DOUBLE INTEGER according to its internal format, which is seconds elapsed since
"00:00:00".

- TOD TO UDINT -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of TOD_TO_UDINT (see page 1332)

Data type I/0 Function
TOD Input input data type
UDINT Output conversion result

In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Type | Initial
0 VAR UDIMT walue UDI,, 0O
1 VAR TOD _value TOD TOD#21:56:38
TOD walue = TOD#E:56:38 - TOD T LDINT Ir =LIDIMT walue = 75953

When programming with structured text, enter the following:
UDI NT_val ue : = TOD_TO_UDI NT(TOD_val ue) ;

192

Conversion instructions

Do - IR M-Iz '\l DWORD into REAL

Description DWORD_TO_REAL moves the bitset information of a DWORD variable to a REAL variable. The
same functionality can be obtained using DWORD_OVERLAPPING_DUT.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- DWWVORD TO REAL -

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DWORD_TO_REAL (see page 1319)

Data types Data type 1/0 Function
DWORD Input input data type
REAL Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Type | Inikial
] VAR REAL_walue REAL 0.0
1 VAR DWiORD _walue DWORD 16#4007FE00
LD DWWORD walue = 1684007 FE00 —— DWORD TO REAL L ~REAL value =2 1245143

ST When programming with structured text, enter the following:
REAL val ue : = DWORD TO REAL(DWORD val ue) ;

193

Conversion instructions

INT TO REAL INTEGER into REAL

Description INT_TO_REAL converts a value of the data type INTEGER into a value of the data type REAL.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- INT TO REAL -

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of INT_TO_REAL (see page 1327)

Data types Data type I/O Function
INT input input data type
REAL output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

Class | Identifier | Tvpe | Initial
] VAR INT _value INT]
1 VAR REAL_walue RE&L 0.0

In this example the input variable (INT_value) has been declared. Instead, you may enter a
constant directly at the input contact of a function.

Body INT value of the data type INTEGER is converted into a value of the data type REAL.The
converted value is stored in REAL_value.

LD
INT walue — |NT_TO_REAL I—-HE.ﬂ.L_'u'alue

ST When programming with structured text, enter the following:
REAL_val ue: =I NT_TO REAL(I NT val ue) ;

194

Conversion instructions

DINT TO REAL DOUBLE INTEGER into REAL

Description DINT_TO_REAL converts a value of the data type DOUBLE INTEGER into a value of the data type
REAL.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- DINT TO REAL -

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DINT_TO_REAL (see page 1319)

Data types Data type 1/O Function
DINT input input data type
REAL output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Type | Initial |
] VAR REAL walue RESL 0.0
1 VAR DIMT walue DINT 0O

This example uses variables. You may also use a constant for the input variable

Body DINT_value of the data type DOUBLE INTEGER is converted into a value of the data type REAL.
The converted value is stored in REAL_value.

LD
DINT _value = 123 —— DINT_TO_REAL |——REAL_walue = 123.0

ST When programming with structured text, enter the following:
REAL_val ue: =DI NT_TO REAL(DI NT _val ue) ;

195

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

UINT TO REAL Unsigned INTEGER into REAL

Description UINT_TO_REAL converts a value of the data type Unsigned INTEGER into a value of the data
type REAL.

- UINT TO REAL -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UINT_TO_REAL (see page 1332)

= Since REAL numbers only have a resolution of about 7 digits, information for
large numbers will be lost.

Data types Data type I/O Function
UINT Input input data type
REAL Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class Identifier | Twpe | Initial
] VAR UIMT walue UINT 123
1 VAR REAL walue REAL 0.0
LD JIMT value = 123 —— UINT TO_REAL - —REAL value = 1230

ST REAL_val ue: = U NT_TO REAL(U NT_val ue);

196

Conversion instructions

UDINT TO REAL Unsigned DOUBLE INTEGER into REAL

Description UDINT_TO_REAL converts a value of the data type Unsigned DOUBLE INTEGER into a value of
the data type REAL.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- UDINT TO REAL -

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_REAL (see page 1332)

= Since REAL numbers only have a resolution of about 7 digits, information for
large numbers will be lost.

Data types Data type 1/0 Function
UDINT Input input data type
REAL Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class Identifier | Tvpe | Initial |
] VAR UDIMT wvalue UDIMT 98123
1 VAR REAL walue REAL 0.0
LD DINT value = 95123 —— UDINT TO REAL - —REAL value = 951230

ST When programming with structured text, enter the following:
REAL_val ue : = UDI NT_TO_REAL(UDI NT_val ue) ;

197

Conversion instructions

TIME TO REAL TIME into REAL

Description TIME_TO_REAL converts a value of the data type TIME to a value of the data type REAL. 10ms of
the data type TIME correspond to 1.0 REAL unit, e.g. when TIME = 10ms, REAL = 1.0; when TIME
=1s, REAL = 100.0. The resolution amounts to 10ms.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

- TIME TO REAL

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TIME_TO_REAL (see page 1331)

Data types Data type I/0 Function
TIME input input data type
REAL output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Twpe | Initial | Comment |
0 input_kime TIME T#1lhimls
1 WAR result_time REAL 0.0 result: here 366100.0

This example uses variables. You can also use a constant for the input variable.

LD
input_time = T#himls——_ TIME TO BEAL I result time = 3661000

ST When programming with structured text, enter the following:
result_real : =TI ME_TO REAL(i nput _tine);

198

Conversion instructions

STRING TO REAL STRING to REAL

Description function converts a STRING in floating-point format into a value of the data type REAL.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- STRING T REAL L

Thereby the attached string is first converted to a value of the data type STRING[32]. Finally this is
converted to a value of the data type REAL via a sub-program that requires approximately 290
steps.

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Example with and without EN/ENO:

Stringd = '[-122 456) ——_ STRING_TO_REAL | ——Reall =-122 456
STRING_TO_REAL |
S —— EN EMD r
String 10 ="'12245 BT —— —— Real2 = 12245 £72

Permissible format:

'[Space][Sign][Decimal numbers].[Decimal numbers][Space]' e.g.' -123.456

Permissible characters:

Space All characters except for "+* (plus), "-" (minus) and all decimal numbers
Decimal Decimal numbers "0*-"9"
numbers

The analysis ends with the first non-decimal number.

PLC types Availability of STRING_TO_REAL (see page 1331)

Data types Data type Comment
STRING input variable
REAL output variable

199

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

WORD_TO_TIME WORD in TIME

Description

PLC types

Data types

Example

POU header

Body

LD

ST

WORD_TO_TIME converts a value of the data type WORD into a value of the data type TIME.

- WORD TO TIME -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of WORD_TO_TIME (see page 1333)

Data type 1/0 Function
WORD input input data type
TIME output conversion result

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

Examples: Input variable Output variable
12345 T#123.45s
16#0012 T#180.00ms

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Initial |
0 WORD walue WORD 0
1 VAR kime_walue TIME T#0s

This example uses variables. You can also use a constant for the input variable.

WORD_value of the data type WORD (16-bit) is converted into a value of the data type TIME
(16-bit). The result will be written into the output variable time_value.

WORD value = 16#0012 — WORD_TO_TIME ——time_wvalue = T#180ms

When programming with structured text, enter the following:
time_val ue: =WORD_TO_TI ME(WORD_val ue) ;

200

Conversion instructions

DV e b e IunlV|=ll DOUBLE WORD in TIME

Description DWORD_TO_TIME converts a value of the data type DWORD into a value of the data type TIME.
A value of 1 corresponds to a time of 10ms, e.g. the input value 12345 (16#3039) is converted to a
TIME T#2m3s450.00ms.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- DWWORD TO TIME L

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DWORD_TO_TIME (see page 1319)

Data types Data type I/O Function
DWORD input input data type
TIME output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
1] WAR DWORD_walue DWORD 0 example value: 1643039
1 WAR Eime_value TIME T#0s resulk: T#2m3s450,00ms

This example uses variables. You can also use a constant for the input variable.

Body DWORD_value of the data type DWORD (32-bit) is converted to value of the data type TIME
(16-bit). The result is written into the output variable time_value.

LD
DWORD_value = 16#00003039 —— DWORD_TO_TIME |——time_value = T#2m3s450ms

ST When programming with structured text, enter the following:
ti me_val ue: =DWORD_TO TI ME(DWORD _val ue) ;

201

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

INT TO TIME INTEGER into TIME

Description

PLC types
Data types

Example

POU header

Body

LD

ST

INT_TO_TIME converts a value of the data type INT into a value of the data type TIME. The
resolution is 10ms, e.g. when the INT value = 350, the TIME value = 3s500ms.

- INT TO TIME -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of INT_TO_TIME (see page 1327)

Data type I/0 Function
INT input input data type
TIME output conversion result

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Initial |

0 INT walue INT O

1 WaR time_walue TIME T#0s
This example uses variables. You can also use a constant for the input variable.

INT_value of the data type INTEGER is converted into a value of the data type TIME. The result
will be written into the output variable time_value.

IMNT _walue = 350 —— [INT_TO_TIME ——time_walue = T#3s500ms

When programming with structured text, enter the following:
time_val ue: =I NT_TO TI ME(| NT_val ue);

202

Conversion instructions

DINT TO TIME DOUBLE INTEGER into TIME

Description DINT_TO_TIME converts a value of the data type DINT into a value of the data type TIME. A value
of 1 corresponds to a time of 10ms, e.g. an input value of 123 is converted to a TIME
T#15230.00ms.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- DINT TO TIME -

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DINT_TO_TIME (see page 1319)

Data types Data type I/O Function
DINT input input data type
TIME output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Initial | Comment |

1] DIMT wvalue DINT O

1 WOR, TIME_walue TIME TH#0s result: T#1s230.00ms

This example uses variables. You can also use a constant for the input variable.

Body DINT_value of the data type DOUBLE INTEGER is converted to value of the data type TIME. The
result is written into the output variable time_value.

LD
OINT walue =123 —— DINT_TO_TIME I—-time_value =T#1s230ms

ST When programming with structured text, enter the following:
time_val ue: =DI NT_TO_TI ME(DI NT_val ue) ;

203

Conversion instructions

REAL TO TIME REAL into TIME

Description REAL_TO_TIME converts a value of the data type REAL to a value of the data time TIME. 10ms of
the data type TIME correspond to 1.0 REAL unit, e.g. when REAL = 1.0, TIME = 10ms; when
REAL = 100.0, TIME = 1s. The value of the data type real is rounded off to the nearest whole
number for the conversion.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

- REAL TO TIME -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of REAL_TO_TIME (see page 1330)

Data types Data type I/0 Function
REAL input input data type
TIME output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help. Since constants are entered directly at the
function's input contact pins, only the output variable need be declared in the header.

POU header All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Type | Inital |
0 VAR | result_time TIME T#0s

Body
By clicking on the monitor icon 6’ while in the online mode, you can see the result 0.00ms

immediately. Since the value at the REAL input contact is less than 0.5, it is rounded down to 0.0.

LD
0.499—— REAL TO_TIME ——result_time = T#0ms

ST When programming with structured text, enter the following:
result_tinme: = REAL_TO TI ME(0. 499) ;

204

Conversion instructions

UDINT TO DT Unsigned DOUBLE INTEGER into DATE_AND_TIME

Description UDINT_TO_DT converts a value of the data type Unsigned DOUBLE INTEGER into a value of the
data type DATE_AND_TIME.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- UDINT TO DT -

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_ DT (see page 1332)

Data types Data type I/0 Function
UDINT Input input data type
DATE_AND_TIME Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class Identifier | Tvpe | Initial
] VAR LIDIMT walue UDIMT 439342630
1 WaR DT _walue DATE_AMD_TIME DT#2001-01-01-00:00:00
LD LDIMNT walue = 489342650 - UDINT TO 0T Ir =0T walue = DT#E01E-07-04-16:30:30

ST When programming with structured text, enter the following:
DT _val ue : = UDI NT_TO DT(UDI NT _val ue) ;

205

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

DT TO DATE DATE_AND_TIME to DATE

Description

PLC types

Data types

Example

DT_TO_DATE converts a value of the data type DATE_AND_TIME to a value of the data type
DATE.

- DT TO DATE -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of DT_TO_DATE (see page 1319)

Data type 1/0 Function
DATE_AND_TIME input date and time
DATE output date

In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

LD

ST

header.
Class | Identifier | Tvpe | Initial |
] VAR DT_walue DATE_AMD_TIME DT#2011-12-24-15:29:59
1 VAR DATE value DATE D2001-01-01
OT walue = DTFZO11-12-24-158: 2908 — OT TO DATE I—'D.ﬂ-.TE_'I.I'EHLIE = OE2011-12-24

When programming with structured text, enter the following:
DATE val ue : = DT_TO DATE(DT val ue);

206

Conversion instructions

UDINT TO DATE Unsigned DOUBLE INTEGER into DATE

Description UDINT_TO_DATE converts a value of the data type Unsigned DOUBLE INTEGER into a value of
the data type DATE.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- UDINT T DATE L

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_DATE (see page 1332)

Data types Data type 1/0 Function
UDINT Input input data type
DATE Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

Class | Idenkifier | Type | Inikial

0 VAR LUDINT value UDIMNT - 232301234
1 WAR. DATE_walue DATE D#2001-01-01
LD UDINT value = 232301234 —— UDINT TO_DATE |——DATE value = D#2005-05-12

ST When programming with structured text, enter the following:
DATE val ue : = UDI NT_TO DATE(UDI NT_val ue) ;

207

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

DT TO TOD DATE_AND_TIME to TIME_OF_DAY

Description

PLC types

Data types

Example

POU header

LD

ST

DT_TO_TOD converts a value of the data type DATE_AND_TIME to a value of the data type
TIME_OF_DAY.

- DT 7O TOD -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of DT_TO_TOD (see page 1319)

Data type 1/0 Function
DATE_AND_TIME input input data type
TIME_OF_DAY output conversion result

In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Tvpe | Iitial |
] VAR DT_value DAaTE_AMD_TIME DT#2011-12-24-15:29:59
1 VAR TOD _walue TOD TOD#O0:00:00

DT value = DT#2011-12-24-18:29:59 —— DT _TO TOD |——TOD value = TOD#13:29:59

When programming with structured text, enter the following:
TOD val ue : =DT_TO TOD(DT _val ue);

208

Conversion instructions

UDINT TO TOD Unsigned DOUBLE INTEGER into TIME_OF_DAY

Description UDINT_TO_TOD converts a value of the data type Unsigned DOUBLE INTEGER into a value of
the data type TIME_OF_DAY.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- UDINT TO TOD L

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_TOD (see page 1332)

Data types Data type I/O Function
UDINT Input input data type
TIME_OF_DAY Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class Identifier | Tvpe | Inikial
] VAR DIMT _walue UDIMT 165393
1 VAR TOD_walue T ToD#00:00:00
LD LDINT walue = 165353 - UDINT TO ToD Ir ~TOD walue = TOD#!T:56:33

ST When programming with structured text, enter the following:
TOD val ue : = UDI NT_TO TOD(UDI NT _val ue);

209

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

=Yolo|REO IR IIN[el BOOL into STRING

Description

PLC types
=

Data types

Example 1

Result string
=" 1or'0Q

POU header

Body

LD

ST

The function BOOL_TO_STRING converts a value of the data type BOOL to a value of the data
type STRING[2]. The resulting string is represented by ' 0" or ' 1'.

— BOOL TO STRING

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of BOOL_TO_STRING (see page 1318)

* When using the data type STRING with small PLCs like FP-e or FPO,
make sure that the length of the result string is equal to or greater than
the length of the source string.

* For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data type I/0 Function
BOOL input input data type
STRING output conversion result

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Type | Initial | Comment |
1] input_value BOOL TRUE example value
1 W AR result_string STRIMG[Z] " resulk: here '1'

The input variable input_value of the data type BOOL is intialized by the value TRUE. The output
variable result_string is of the data type STRINGIZ2]. It can store a maximum of two characters.
You can declare a character string that has more than one character, e.g. STRING[5]. From the 5
characters reserved, only 2 are used.

Instead of using the variable input_value, you can write the constants TRUE or FALSE directly to
the function’s input contact in the body.

The input_value of the data type BOOL is converted into STRING[2]. The converted value is
written to result_string. When the variable input_value = TRUE, result_string shows ' 1".

input_walue BOOL TO STRIMG I—-result_string =7

When programming with structured text, enter the following:
| F Bool ean_val ue THEN

out put _val ue: =BOOL_TO _STRI NG(i nput _val ue);
END | F;

210

Conversion instructions

%)

c

h=

Example 2 If you wish to have the result " TRUE' or 'FALSE' instead of ' 0' or ' 1', you cannot use the function %
Result string BOOL_TO_STRING. This example illustrates how you create a STRING[5] that contains the *u:i
='"TRUE' or characters 'TRUE' or 'FALSE' from an input value of the data type BOOL. <
FALSE The same POU header is used for all programming languages. @]

L

POU header | Class | Iderkifier | Tvpe | Initial | Comment | _
0 input_value BOOL TRUE example value -

1 WOR, result_skring STRIMG[S] result: here ‘TRLUE' <

o

In this example, both an input variable input_value of the data type BOOL and an output variable
result_string of the data type STRING[5] are declared.

Body In order to realize the intended operation, the standard function MOVE is used. It assigns the value
of its input to its output unchanged. At the input, the STRING constant "TRUE' or 'FALSE' is
attached. In essence a "BOOL to STRING" conversion occurs, since the Boolian variable
input_variable at the enable input (EN) contact decides the output of STRING.

LD J input_talue kA O4E
| EN EHO —
'TRUE' —— ——result_string
b4 0%W'E
> EN ENO =
'FALSE —— ——result_string

21

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

We = IRre A=l \fel WORD into STRING

Description

Explanation

PLC types
==

Data types

Example 1

POU header

Body

The function WORD_TO_STRING converts a value of the data type WORD to a value of the data
type STRING.

Generates a result string in right-aligned decimal representation, filled with leading spaces up to
the predefined maximum number of characters.

- WORD TO STRIMG -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Input Output defined as Results in

16#ABCD STRING[1] ‘D’
STRING[2] 'CD
STRING[3] 'BCD'
STRING[4] 'ABCD’
STRING[5] '0ABCD'
STRING[6] '00ABCD’
and so on...

Availability of WORD_TO_STRING (see page 1333)

* When using the data type STRING with small PLCs like FP-e or FPO,
make sure that the length of the result string is equal to or greater than
the length of the source string.

* For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data type I/O Function
WORD input input data type
STRING output conversion result

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Initial | Comment |
0 input_walue WORD 1] example value
1 WAR result_string STRIMG[E] result: here '00ABCD!

The input variable input_value of the data type WORD is intialized by the value 16#ABCD. The
output variable result_string is of the data type STRINGI[6]. It can store a maximum of 6
characters. Instead of using the variable input_value, you can enter a constant directly at the
function’s input contact in the body.

The input_value of the data type WORD is converted into STRING[6]. The converted value is
written to result_string. When the variable input_value = 16#ABCD, result_string shows
'00ABCD".

212

Conversion instructions

LD

WORD_value = 16#4BC0 — WORD_TO_STRING |——result_string = '004BCD"

ST When programming with structured text, enter the following:
result_string: =WORD TO STRI NG i nput _val ue) ;

Example 2

POU header

Body

LD

This example illustrates how you create STRING[4] out of the data type WORD in which the
leading part of the string '16#' is cut out.
The example is programmed in LD and IL. The same POU header is used for both programming

languages.
Class Identifier | Tvpe | Initial | Comment
1] VAR input_value WORD 16#1234 example value
1 WOR, result_stringl STRING[Y] " result: here ‘0001234
z WAR, result_string STRIMG[4] " result: here 1234

In this example, both an input variable input_value of the data type WORD and an output variable
result_string of the data type STRING[4] are declared.

In carrying out the operation in question, the standard function RIGHT is attached to the function
WORD_TO_STRING. RIGHT creates a right-justified character string of length L.

In the example, the output string of WORD_TO_STRING function is added at the input of the
RIGHT function. At the L input of RIGHT, the INT constant 4 determines the length of the STRING
to be replaced. Out of the variable input_value = 0001234, the result_string 1234 results from the
data type conversion and the RIGHT function.

input_value = 1681234 — WORD TO STRING |——result_string! = 0001234

result_stringl = 00071234"— [N

4— L

RIGHT |

result_string = "1234'

213

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

Conversion instructions

DWORD TO STRING DOUBLE WORD into STRING

Description The function DWORD_TO_STRING converts a value of the data type DWORD to a value of the
data type STRING.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Generates a result string in right-aligned decimal representation, filled with leading spaces up to
the predefined maximum number of characters.

Part Il

- DWORD TO STRING |

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Explanation Input Output defined as Results in
16#ABCDEFFE STRINGI2] 'FE'

STRING[4] 'EFFE'
STRINGI6] 'CDEFFE'
STRINGI8] 'ABCDEFFE'
STRINGI[10] '00ABCDEFFE'
STRINGI[12] '0000ABCDEFFE'
and so on...

PLC types Availability of DWORD_TO_STRING (see page 1319)

= * When using the data type STRING with small PLCs like FP-e or FPO,
make sure that the length of the result string is equal to or greater than
the length of the source string.

* For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data types Data type I/O Function
DWORD input input data type
STRING output conversion result

Example 1 In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
1] WAR WORD walue DWORD 0 example value: 16#8ECDEFFE
1 YAR, result_skring STRIMG[10] " result: '00ABCDEFFE'

The input variable DWORD_value of the data type DWORD is intialized by the value

16#ABCDEFFE. The output variable result_string is of the data type STRING[10]. It can store a
maximum of 10 characters. Instead of using the variable DWORD_value, you can enter a constant
directly at the function’s input contact in the body.

Body The DWORD_value of the data type DWORD is converted into STRING[10]. The converted value
is written to result_string. When the variable DWORD _value = 16#ABCDEFFE, result_string
shows '00ABCDEFFE'.

214

Conversion instructions

LD
DWORD_wvalue = 16#ABCOEFFE — DWORD_TO_STRING ——result_string = '00ABCOEFFE!

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

ST When programming with structured text, enter the following:
result_string: =DWORD_TO_STRI NG i nput _val ue) ;

Part 1l

Example 2 This example illustrates how you create STRING[10] out of the data type DWORD in which the
leading part of the string '16#' is replaced by the string '0x'.
The example is programmed in LD and IL. The same POU header is used for both programming

languages.

POU header | Class | Identifier | Twpe | Initial | Carment |
1] input_value DAWORD 16#12345678 example value
1 WOR, result_skring STRIMG[1O] result: here '0x12345678"

In this example the input variables input_value of the data type DWORD and an output variable
result_string of the data type STRING[10] are declared.

Body In carrying out the operation in question, the standard function REPLACE is attached to the
function DWORD_TO_STRING. REPLACE replaces one section of a character string with another.

In the example, the output string of DWORD_TO_STRING function is added at input IN1 of the
REPLACE function. At input IN2, the STRING constant '0x' is added as the replacement STRING.
At the L input of REPLACE, the INT constant 3 determines the length of the STRING to be
replaced. The P input determines the position at which the replacement begins. In this case it is the
INT number 1. From the variable input_value = 16#12345678, the result_string = '0x12345678'
results after undergoing the data type conversion and REPLACE function.

LD REPL&CE |
input_walue —_ DYWORD_TO_STRIMG —] result_string
N —— N2
I— L

1— P

215

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

NI Ee BN\l DATE into STRING

Description

PLC types
==

Data types

Example

DATE_TO_STRING converts a value of the data type DATE into a value of the data type
STRING[10].

The range for the input date is from D#2001-01-01 to D#2099-12-31.

- DATE TO STRING -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of DATE_TO_STRING (see page 1319)

All character spaces in the result string will be filled.

Data type I/O Function
DATE input input data type
STRING output conversion result STRING[10]

In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

LD

ST

header.
Class | Idertifier | Tvpe | Initial |
] VAR DATE wvalue DATE D#z011-12-24
1 VAR STRING_value STRING[10] "
DATE walue = DE2011-12-24 —— DATE TO STRING I—‘STRWG_‘-«'EHLIE = 2011-12-24°

When programming with structured text, enter the following:
STRI NG _val ue : = DATE_TO_STRI NG DATE_val ue) ;

216

Conversion instructions

DT TO STRING DATE_AND_TIME into STRING

Description DT_TO_STRING converts a value of the data type DATE_AND_TIME into a value of the data type
STRING[19].

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

The range for the input date is from DT#2001-01-01-00:00:00 to DT#2099-12-31-23:59:59.

Part 1l

- DT 7O STRING -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DT_TO_STRING (see page 1319)

= All character spaces in the result string will be filled.
Data types Data type I/O Function
DATE_AND_TIME input input data type
STRING output conversion result STRING[19]
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class Identifier | Type | Inikial |
] VAR DT_value DATE_AMD_TIME DT#2011-12-24-15:29:59
1 VAR STRING wvalue STRIMS[19] "
LD OT value = DT#2011-12-24-18:29.589 —— DT_TO_STRING |——STRING valug = ‘20711-12-24-15 29.63'

ST When programming with structured text, enter the following:
STRI NG val ue : = DT_TO _STRI NG DT _val ue) ;

217

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

INT TO STRING INTEGER into STRING

Description The function INT_TO_STRING converts a value of the data type INT to a value of the data type
STRING.

Generates a result string in right-aligned decimal representation, filled with leading spaces up to
the predefined maximum number of characters.

- INT TO STRIMG -

Explanation Function used String1 Result

defined as
String1:=INT_TO_STRING(-12345) STRING[1] '5'

STRINGI2] '45'
STRING[3] '345'
STRING[4] '2345'
STRINGI5] 12345’
STRINGI6] '-12345'
STRINGI7] '1-12345'
STRINGI8] 'a-12345'
and so on...

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of INT_TO_STRING (see page 1327)

= * When using the data type STRING with small PLCs like FP-e or FPO,
make sure that the length of the result string is equal to or greater than
the length of the source string.

* For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data types Data type I/O Function
INT input input data type
STRING output conversion result

Example 1 In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header In the POU header, input and output variables are declared that are used in the function.

| Class | Identifier | Tvpe | Imitial | Cornmert |
0 INT waloe INT -12345 example value
1 WAR, result_sktring STRING[E] " result; here '-12345'

The input variable INT_value of the data type INT is intialized by the value -12345. The output
variable result_string is of the data type STRINGI8]. It can store a maximum of 8 characters.
Instead of using the variable INT_value, you can enter a constant directly at the function’s input
contact in the body.

218

Conversion instructions

Body The INT_value of the data type INT is converted into STRING[8]. The converted value is written to
result_string. When the variable INT_value = -12345, result_string shows '_...-12345'".

LD

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

INT wvalue = -12345 —— INT_TO_STRING Ir—-result_string ="' -12345"

Part 1l

ST When programming with structured text, enter the following:
result _string: = I NT_TO STRI NG i nput val ue) ;

Example 2 This example illustrates how you create a STRINGJ[2] that appears right justified out of the data

type INT.
POU header Class | Identifier | Twpe | Initial | Comment
1] YA, INT_wvalue IMT 12 example value
1 WAR result_string STRING[Z] " result: here '12'

In this example, both an input variable INT_value of the data type INT and an output variable
result_string of the data type STRING[2] are declared.

Body In carrying out the operation in question, the standard function RIGHT (see page 265) is attached
to the function INT_TO_STRING. RIGHT creates a right-justified character string with the length L.
In the example, the variable INT_variable = 12 is converted by INT_TO_STRING to the dummy
string '=...12". The function RIGHT then creates the result_string '"12".

LD
input_walue ——__ INT TO_STRING “result_string
RIGHT
result_string! —— IM ——iresult_string
2—1L

ST When programming with structured text, enter the following:
result _string: =RIGHT(I N =I NT_TO STRI NG i nput _val ue), L:=2);

219

Conversion instructions

INT TO STRING INTEGER into STRING

LEADING_ZEROS

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Description The function INT_TO_STRING_LEADING_ZEROS converts a value of the data type INT (positive
values) to a value of the data type STRING.

Part Il

Generates a result string in right-aligned decimal representation, filled with leading spaces up to
the predefined maximum number of characters.

- INT TO_STRING LEADING ZEROS |

Example: “IZDocu_INT_TO_STRING_LEADING_ZERDS 101 =l
| lass | 1dentifier | Tvpe | Initial | Commer
0 Ink1 INT 1234 i
1 YAR StringZ STRING[Z] 2

z YaR Shringé STRING[E] 1]
3 YAR =

1| | i
Antl =123 — INT TO STRING LEADING FERODS I—-String2 =B 5 op o o z
Antl =123 — INT TO STRING LEADING FERODS I—-Stringﬁ = [00123" - S
[« | HE

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Data types Data type 1/0 Function
INT input input data type
STRING output conversion result
Explanation | gction used String1 Result
defined as
String1:=INT_TO_STRING(25) STRINGI[1] '5'
STRING|2] '25'
STRINGI3] '025'
STRING[4] '0025'
STRINGI5] '00025'
STRINGI6] '000025'
STRING[7] '0000025'
STRINGI8] '00000025'
and so on...

PLC types Auvailability of INT_TO_STRING_LEADING_ZEROS (see page 1327)

= * When using the data type STRING with small PLCs like FP-e or FPO,
make sure that the length of the result string is equal to or greater than
the length of the source string.

* For further information refer to the online help: Upgrade Problems with
Data Type STRING

220

Conversion instructions

DINT TO STRING DOUBLE INTEGER into STRING

Description The function DINT_TO_STRING converts a value of the data type DINT to a value of the data type
STRING.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Generates a result string in right-aligned decimal representation, filled with leading spaces up to
the predefined maximum number of characters.

Part 1l

- DINT TO STRING L

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Explanation Function used String1 Result

defined as
String1:=DINT_TO_STRING(-12345678) | STRING[2] '78'

STRING[4] '5678'
STRINGI[6] '345678'
STRING[8] '12345678'
STRING[10] '1-12345678'
STRING[12] 'a-12345678'
and so on...

PLC types Availability of DINT_TO_STRING (see page 1319)

= * When using the data type STRING with small PLCs like FP-e or FPO,
make sure that the length of the result string is equal to or greater than
the length of the source string.

* For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data types Data type 1/0 Function
DINT input input data type
STRING output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header In the POU header, input and output variables are declared that are used in the function.

| Class | Identifier | Type | Initial | Commert |
1] input_skring DINT 12345678 example value
1 WAR result_string STRIMG[11] " result; here ‘12345678

The input variable input_value of the data type DINT is intialized by the value 12345678. The
output variable result_string is of the data type STRING[11]. It can store a maximum of 11
characters. Instead of using the variable input_value, you can enter a constant directly at the
function’s input contact in the body.

221

Conversion instructions

Body The input_value of the data type DINT is converted into STRING[11]. The converted value is
written to result_string. When the variable input_value = 12345678, result_string shows '_._..
12345678'.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

LD
DINT _value = 12345676 —— DINT_TO_STRING |——result_string ="' 12345678"

Part Il

ST When programming with structured text, enter the following:
result_string: =DI NT_TO STRI NG(i nput _val ue);

Example 2 This example illustrates how you create, from an input value of the data type DINT, a STRING[14]
that contains a DINT number representation with commas after every three significant figures.

The example is programmed in LD and IL. The same POU header is used for both programming

languages.
POU header = g
| Class | Identifier | Tvpe | Initial | Comment |
0 input_string DINT 1234567890 example value
1 WAR result_string STRIMG[14] " result: here '1,234,567,890'

In this example, both an input variable input_value of the data type DINT and an output variable
result_string of the data type STRING[14] are declared.

Body In carrying out the operation in question, three standard functions INSERT are attached
successively to the function DINT_TO_STRING. Each INSERT function inserts the attached
character string at input IN2 into the character string at input IN1. The position at which the
character string is to be introduced is determined by INT value at input P.

In the example all three INSERT functions insert the assigned STRING constant ', after each three
significant figures at input IN2. The correct position of each comma is determined by an INT
constant at each respective P input. Out of the variable input_value = 1234567890, the
result_string 1,234,567,890 results from the data type conversion and the three INSERT

functions.
LD
input_walue DIMT_TO_STRING l—l
INSERT INSERT INSERT |
= IM1 1M1 1M1 result_string
et L e N2 INZ
g—F 5—PF z F

222

Conversion instructions

UDINT TO STRING Unsigned DOUBLE INTEGER into STRING

Description The function UDINT_TO_STRING converts a value of the data type UDINT to a value of the data
type STRING.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Generates a result string in right-aligned decimal representation, filled with leading spaces up to
the predefined maximum number of characters.

Part 1l

~ UDINT TO _STRING |-

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Explanation Function used String1 Result

defined as

String1:=UDINT_TO_STRING(-1234567 | STRING[2] '78'

8) STRING[4] '5678'
STRINGI6] '345678'
STRING[8] '12345678'
STRING[10] '1-12345678'
STRING[12] 'a-12345678'
and so on...

PLC types Availability of UDINT_TO_STRING

= * When using the data type STRING with small PLCs like FP-e or FPO,
make sure that the length of the result string is equal to or greater than
the length of the source string.

* For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data types Data type 1/0 Function
UDINT Input Input data type
STRING Output Conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| lass | Identifier | Tvpe | Initial | Comment
1] VAR | input_skring LDINT 12345678 example value
1 VAR result_string STRIMNG[11] " result: here '12345678"

The input variable input_value of the data type UDINT is intialized by the value 12345678. The
output variable result_string is of the data type STRING[11]. It can store a maximum of 11
characters. Instead of using the variable input_value, you can enter a constant directly at the
function’s input contact in the body.

223

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

Body The input_value of the data type DINT is converted into STRING[11]. The converted value is
written to result_string. When the variable input_value = 12345678, result_string shows '_._..
12345678'.

LD
input_string = 12 345 B78——_ UDINT_TO_STRING l—-result_string ="' 12345673

ST When programming with structured text, enter the following:
result_string: =UDI NT_TO STRI NG i nput _val ue) ;

224

Conversion instructions

DINT TO STRING DOUBLE INTEGER into STRING

LEADING_ZEROS

Description This function converts a value of the data type DINT (positive value) to a value of the data type
STRING. It generates a result string in decimal representation that is right aligned. It is filled with
leading zeros up to the maximum number of characters defined for the string.

— DINT TO_STRING_LEADING ZERQS -

Example

U2 Docu_DINT_TO_STRING_LEADING_ZERDS B [w] |
| Class | 1dentifier | Type | Initial | Comment T
0 DInti DINT 123456
1 VAR Stringd STRIMG[4] .
2 WAR Stringa STRING[E] t =
< | »
- -Dint1 =123466—— DINT TO STRING LEADING FEROS | Stringd = 3456' - - . . . g
- -Dint1 =123466—— DINT TO STRING LEADING FEROS | Stringd = 00123456' - - i
| ;I_I
Explanation Function used String1 Result
defined as
String1:=DINT_TO_STRING(12345678) | STRING[2] '78'
STRING[4] '5678'
STRING[6] '345678'
STRING[8] '12345678'
STRING[10] '0012345678'
STRING[12] '000012345678'
and so on...

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DINT_TO_STRING_LEADING_ZEROS (see page 1319)

* When using the data type STRING with small PLCs like FP-e or FPO,
make sure that the length of the result string is equal to or greater than
the length of the source string.

* For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data types Data type 1/0 Function
DINT input input data type
STRING output conversion result

225

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

Conversion instructions

UDINT TO STRING Unsigned DOUBLE INTEGER into STRING

_LEADING_ZEROS

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Description This function converts a value of the data type UDINT (positive value) to a value of the data type
STRING. It generates a result string in decimal representation that is right aligned. It is filled with
leading zeros up to the maximum number of characters defined for the string.

Part Il

— UDINT TO_STRING LEADING ZEROS |-

Example

| Class | Identifier | Type | Irikial | Commenkt |
0 VAR IDIMTL LIDIMT 123456
1 VAR, Skring4 STRING[4]
Z VAR, SErings STRING[S]
1
1 ‘ LIDIMTT = 123486 —— UDINT TO STRING LEADING FEROS l—'Stringd = "345E'
2 ‘ LDIMNTY = 123456 —— UDINT TO STRIMNG LEADING FEROS l—'StringB = 10123456
Explanation Function used String1 Result
defined as

String1:=UDINT_TO_STRING(12345678) | STRING[2] | '78'
STRING[4] | '5678'
STRING[6] | '345678'
STRING[8] | '12345678'
STRING[10] | '0012345678'
STRING[12] | '000012345678'

and so on...

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UDINT_TO_STRING_LEADING_ZEROS (see page 1319)

* When using the data type STRING with small PLCs like FP-e or FPO,
make sure that the length of the result string is equal to or greater than
the length of the source string.

* For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data types Data type I/O Function
UDINT input input data type
STRING output conversion result

226

Conversion instructions

UINT TO STRING Unsigned INTEGER into STRING

Description UINT_TO_STRING converts a value of the data type Unsigned INTEGER into a value of the data
type STRING.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Generates a result string in right-aligned decimal representation, filled with leading spaces up to
the predefined maximum number of characters.

Part 1l

- UINT TO STRING L

See also: y|NT_TO_STRING_LEADING_ZEROS (see page 227)

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UINT_TO_STRING (see page 1332)

= The result is not specified when the range of the input values does not match the
range of the output values.

Data types Data type 1/0 Function
UINT Input input data type
STRING Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.

Class Identifier | Type | Initial
1] VAR IMT _value INT 49152
1 VAR STRIMG value STRIMGE[E] "

LD UINT value = 49152 —— UIMT TO _STRING |——STRING value =" 49152

ST STRING val ue: = U NT_TO _STRI NG Ul NT_val ue) ;

227

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

UINT TO STRING Unsigned INTEGER into STRING

LEADING_ZEROS

Description

PLC types
==

Data types

Example

POU header

LD

ST

UINT_TO_STRING_LEADING_ZEROS converts a value of the data type Unsigned INTEGER into
a value of the data type STRING.

Generates a result string in right-aligned decimal representation, filled with leading spaces up to
the predefined maximum number of characters.

UINT TO STRING LEADING ZERQS |

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of UINT_TO_STRING_LEADING_ZEROS (see page 1332)

The result is not specified when the range of the input values does not match the
range of the output values.

Data type I/O Function
UINT Input input data type
STRING Output conversion result

In this example the function is programmed in ladder diagram (LD).

All input and output variables used for programming this function have been declared in the POU
header.

Class Identifier | Type | Inikial
0 VAR UIMT _value JINT 49152
1 VAR STRING value STRING[S]
LIMT walue = 49152 - UINT T STEING LEADIMG ZEROS lr =STRING walue = 00045752

STRI NG _val ue: = Ul NT_TO_STRI NG_LEADI NG_ZERGCS(Ul NT_val ue) ;

228

Conversion instructions

TN ERro Il |l REAL into STRING

Description The function REAL_TO_STRING converts a value from the data type REAL into a value of the data
type STRING[15], which has 7 spaces both before and after the decimal point. The resulting string
is right justified within the range '-999999.0000000' to '9999999.0000000'. The plus sign is omitted
in the positive range. Leading zeros are filled with empty spaces (e.g. out of -12.0 the STRING '_..
-12.0".

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

REAL TO_STRING |
~EN ENO |
I

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

= * The function requires approximately 160 steps of program memory.
For repeated use you should integrate it into a user function that is
only stored once in the memory.

* When using the data type STRING with small PLCs like FP-e or FPO,
make sure that the length of the result string is equal to or greater than
the length of the source string.

* For further information refer to the online help: Upgrade Problems with
Data Type STRING

PLC types Availability of REAL_TO_STRING (see page 1330)

Data types Data type 1/0 Function
REAL input input data type
STRING output conversion result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header In the POU header, input and output variables are declared that are used in the function.

| Class | Identifier | Tvpe | Initial | Comment |
1] input_skring REAL -123.4560166 example value
1 WOR, result_skring STRIMG[1S] result; here '-123.4560166'

The input variable input_value of the data type REAL is intialized by the value -123.4560166. The
output variable result_string is of the data type STRING[15]. It can store a maximum of 15
characters. Instead of using the variable input_value, you can enter a constant directly at the
function’s input contact in the body.

Body The input_value of the data type REAL is converted into STRING[15]. The converted value is
written to result_string. When the variable input_value = 123.4560166, result_string shows'
-123.4560165'.

LD
input_value =-123.456 — REAL_TO_STRING ——result_sting ="' -123.4560089"

229

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

Example 2

POU header

Body

LD

This example illustrates how you create a STRING[7] with 4 positions before and 2 positions after
the decimal point out of the data type REAL.

The example is programmed in LD and IL. The same POU header is used for both programming
languages.

| Clasz | 1dentifier | Type | Iritial | Carmert |
1] inpuk_skring REAL -123.4560166 example value
1 WAOR result_string STRING[F] " result; here '-123,45"

In this example, both an input variable input_value of the data type REAL and an output variable
result_string of the data type STRING[7] are declared.

In carrying out the operation in question, the standard function MID is attached to the function
REAL_TO_STRING. MID creates a central sector in the character string from position P (INT
value) with L (INT value) characters.

In the example, the INT constant 7 is entered at the L input of MID, which determines the length of
the result string. The INT constant 4 at input P determines the position at which the central sector
begins. Out of the variable input_value = -123.4560166, the STRING' -123.4560166' results
from the data type conversion. The MID function cuts off the STRING at position 4 and yields the
result_string '-123.45'".

bAIL
input_value —— REAL TO_STRING — IM —result_string
T—L
d—F

230

Conversion instructions

TIME TO STRING RESLEENHNE

Description The function TIME_TO_STRING converts a value of the data type TIME to a value of the data type
STRINGJ[20]. In accordance with IEC-1131, the result string is displayed with a short time prefix
and without underlines. Possible values for the result string’s range are from
"T#000d00h00mMO0s000ms' to 'T#248d13h13m56s470ms'.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

- TIME TO STRING -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

= When using the data type STRING with small PLCs like FP1 or FP-M, make
sure that the length of the result string is equal to or greater than the length of
the source string.

PLC types Availability of TIME_TO_STRING (see page 1331)

Data types Data type 1/0 Function
TIME input input data type
STRING output conversion result

Example 1 In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header In the POU header, input and output variables are declared that are used in the function.

| Class | Identifier | Twpe | Initial | Commert |
1] input_walue TIME T#1h30m45s example value
1 WAR result_skring STRIMG[ZO] " result; here 'T#000d01 h30m45s000m:s"

The input variable input_value of the data type TIME is intialized by the value T#1h30m45s. The
output variable result_string is of the data type STRING[20]. It can store a maximum of 20
characters. Instead of using the variable input_value, you can enter a constant directly at the
function’s input contact in the body.

Body The input_value of the data type TIME is converted into STRING[20]. The converted value is
written to result_string. When the variable input_value = T#1h30m45s, result_string shows
"T#000d01h30m45s000ms'.

LD
input_walue — TIME_TD_STRING I—-result_ﬂring

ST When programming with structured text, enter the following:
result_string: =TI ME_TO STRI NG i nput _val ue) ;

231

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

Example 2

POU header

Body

LD

This example shows how, from an input value of the data type TIME, a TIME STRING[9] with the
format 'xxhxxmxxs' is created (only hours, minutes and seconds are output).

The example is programmed in LD and IL. The same POU header is used for both programming
languages.

| Class | Identifier | Tvpe | Initial | Comment |
0 input_value TIME T#1h30m45s example value
1 AR result_skring STRIMG[9] " result: here '01h30m45s"

In this example, both an input variable input_value of the data type TIME and an output variable
result_string of the data type STRING[9] are declared.

In carrying out the operation in question, the standard function MID is attached to the function
TIME_TO_STRING. MID creates a central sector in the character string from position P (INT value)
with L (INT value) characters.

In the example, the INT constant 9 is entered at the L input of MID, which determines the length of
the result string. The INT constant 7 at input P determines the position at which the central sector
begins. Out of the variable input_value = T#1h30m45s, the STRING "T#000d01h30m45s000ms'
results from the data type conversion. The MID function cuts off the STRING at position 7 and
yields the result_string '01h30m45s'.

b 11
input_walue —— TIME_TO_STRING — IM result_string
89— L ‘
7 — R

232

Conversion instructions

IPADDR TO STRING IP Address to STRING

Description This function converts a binary IP address of the data type DWORD into a STRING in IP address
format.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- IPADDR_TO STRING |

-
.
©
Example o
IpAddr = 16804030201 — IPADDR_TO_STRING |——StingS = '001.002 003 004"
IPADDR_TO_STRING |
BEE— En ENO [~
IpAddr1 = 16R0G070605 — —— Stringf = "005 006 007 005"

Permissible format:

'Octet1.0ctet2.0ctet3.0ctetd’, e.g.: '192.168.206.004'

Permissible characters:

Octets 1-4 Decimal numbers "0“-"9%, maximal 3 positions, without leading zeros in
the range 0-255

The conversion is such that the highest byte of the ET-LAN address represents the fourth octet and
lowest byte of the IP address the first octet. The format of the IP address corresponds to the
standard format as used in "Standard Socket Application Interfaces", for example.

233

Conversion instructions

%)
c
=
©
g IPADDR TO STRING IP Address to STRING
s T —
£ NO_ LEADING_ZEROS
&
- Description This function converts a binary IP address of the data type DWORD into a STRING in IP address
= format.
T
o - IPADDE_TO_STRING WO _LEADING ZEROS |
Example | :
Ip&ddrl = 16804020201 —_ |IP&ADDRE _TO _STRING MO _LEADING _ZEROS ——StringOut1="1,
Enable1 Enablaz IFPADDRE_TO_STRIMG_MWO_LEADING_ZEROS
[| En ENO |~
Et Lanaddr? = 16804030201 —— — String Qurd ="1,

Permissible format:

'Octet1.0ctet2.0ctet3.0ctetd’, e.g.: '192.168.206.4'

Permissible characters:

Octets 1-4 Decimal numbers "0“-"9%, maximal 3 positions, without leading zeros in
the range 0-255

The conversion is such that the highest byte of the ET-LAN address represents the fourth octet and
lowest byte of the IP address the first octet. The format of the IP address corresponds to the
standard format as used in "Standard Socket Application Interfaces", for example.

234

Conversion instructions

ETLANADDR TO ETLAN Address to STRING

STRING

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Description This function converts a binary ETLAN address of the data type DWORD into a STRING in ETLAN
address format.

- ETLANADDR TO_STRING |

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Example Etlznaddr = 16401020304 —— _ETLANADDR_TO_STRING | String? = 001,002,003 004
ETLANADDR_TO_STRING
EH ENO
Etlanaddr1 = 16H0S060708 —— [——Stringe = 005 006 007 00F

Permissible format:

'Octet1.0ctet2.0ctet3.0ctetd’, e.g.: "192.168.206.004'

Permissible characters:

Octets 1-4 Decimal numbers "0“-"9%, maximal 3 positions, with leading zeros in the
range 0-255

The conversion is such that the highest byte of the ET-LAN address represents the first octet and
lowest byte of the IP address the fourth octet. This format for ET-LAN addresses is used, for
example, by the FP Serie's ET-LAN modules.

235

Conversion instructions

=XV "B relEap={I\[el ETLAN Addressto STRING

_NO_LEADING_ZEROS

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Description This function converts a binary ETLAN address of the data type DWORD into a STRING in ETLAN
address format.

Part Il

- ETLANADDR_TO_STRING MO _LEADING ZEROS |

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Example Etfansddri = 16404020201 — ETLANADDR_TO_STRING_MO_LEADING ZEROS | StringOut2 ='4.3.2.1
Enable! Enable2 ETLANADDR_TO_STRING_NO_LEADING_ZEROS |
[} [} EM END [~
IpAddr2 = 1604030201 — | String Outd ='4.3.2.1

Permissible format:

'Octet1.0ctet2.0ctet3.0ctetd’, e.g.: '192.168.206.4'

Permissible characters:

Octets 1-4 Decimal numbers "0“-"9%, maximal 3 positions, without leading zeros in
the range 0-255

The conversion is such that the highest byte of the ET-LAN address represents the first octet and
lowest byte of the IP address the fourth octet. This format for ET-LAN addresses is used, for
example, by the FP Serie's ET-LAN modules.

236

Conversion instructions

TOD TO STRING TIME_OF_DAY into STRING

Description top TO STRING converts a value of the data type TIME_OF_DAY into a value of the data type
STRING[8].

The range for the input time of day is from TOD#00:00:00 to TOD#23:59:59.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

- TOD TO STRING -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of TOD_TO_STRING (see page 1332)

= All character spaces in the result string will be filled.
Data types Data type 110 Function
TIME_OF_DAY input input data type
STRING output conversion result
STRINGI8]
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.

Class | Identifier | Tvpe | Inikial |
] VAR TOD_walue TIME_OF DAY TOD#15:29:59
1 VAR STRIMG value STRIMG[19]

LD TOD_value = TOD#15:29:59 — TOD _TO _STRING |——STRING value = 15:29:59°

ST When programming with structured text, enter the following:
STRI NG val ue : = TOD _TO_STRI NG TOD val ue) ;

237

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

WORD_TO_BOOL16 MRSt

Description This function copies data of the data type WORD at the input to an array with 16 elements of the

Data types

data type BOOL at the output.

- WORD TO BOOLIE -

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of WORD_TO_BOOL16 (see page 1333)

Data type Comment

WORD input variable

ARRAY of BOOL | ARRAY with 16 elements

POU header:

| Class | Identifier | Tvpe | Initial |
0 Enable BOOL FALSE
1 WaAR Wiord_1 WORD]
z2 WaAR Word_Z WORD]
3 VAR ArrayleOfBocll ARRAY [0..15] OF BOOL [16{FALSEY]
4 VAR Arrayl6OfBool2 ARRAY [0..15] OF BOOL [16(FALSE)]

Body with and without EN/ENO:

Word_1——_ WORD TO _BOOL1E I—-.ﬂ-.rra_I,-1EIIIfE-:n:-I1
WORD_TO_BOOLIE

Enable —— EM EMO —

Yiord 2 —— —&rrap 16 0f Boal?

238

Conversion instructions

e reN:1oo) Iyl DOUBLE WORD to BOOL32

Description This function copies data of the data type DWORD at the input to an array with 32 elements of the
data type BOOL at the output.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

— DWWORD TO BOOL32 -

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DWORD_TO_BOOL32 (see page 1319)

Datatypes | paia type Comment

DWORD input variable
ARRAY of BOOL | ARRAY with 32 elements

POU header:

| Class | Identifier | Type | Initial |
0 Enable BOOL FALSE
1 VR Array3zOfBooll ARRAY [0,.31 OF BOOL [FALSE]
2 VAR Arrav3z20fBool2 ARRAY [0..31 OF Bl
3 VAR Dh'ardl DWWORD]
4 VAR Dht'ordz DWORD 1]

Body with and without EN/ENO:

Dord] —_ DWORD TO_BOOLIE - Araps20fBooll
DWORD_TO_BOOL3E |
Enable —— EM ENO —
Dord? —— a3 0F Bool?

239

Conversion instructions

WORD TO BOOLS WORD to 16 variables of the data type BOOL

Description This function converts a value of the data type WORD bit-wise to 16 values of the data type BOOL.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

WWORD TO BOOLS
- In BoolD -
Booll -

Bool2 -

Bool3 -

Boold -

Boold -

Boolb -

Bool? -

Bool3 -

Boold -

Bool10 -

Bool11 -

Bool12 -

Bool13 -

Boolld -

Boolls -

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

The outputs BoolO to Bool15 need not be allocated in LD or FBD, or used explicitly in the ST
editor's formal list of parameters. Program code is only generated for those outputs that are truly
used.

PLC types Availability of WORD_TO_BOOLS (see page 1333)

Data types Variable | Datatype Function
In WORD input variable
BOOLO ... | BOOL 16 output variables of the data type BOOL
BOOL15

POU | Class | 1dentifier | Type | Initial |
header: 0 Wordd WORD 0

1 YAR, Bl BOOL FALSE

2 MAR Booll BOOL FALSE

3 YOR Bool2 BOOL FALSE

4 WAR, Bool3 BOOL FALSE

=) YAR, Bioold BOOL FALSE

& MAR Bools BOOL FALSE

7 YOR Bools BOOL FALSE

g YAR, Bool? BOOL FALSE

s VAR, Eoold Bool FALSE
10 VAR Bool? BOOL FALSE
11 VAR, Eool10 BOoL FALSE
12 VAR, Booll1 BooL FALSE
13 VAR, Eooll2 Bool FALSE
14 VAR Booll3 BOOL FALSE
15 VAR, Booll4 BOoL FALSE
1a VAR, BoollS BooL FALSE

240

Conversion instructions

Body:

WORD_TO_BOOLS

“Wiord) —— In

Boold
Boali
Bool2
Bool3
Boold
Bool5
Boole
Bool?
Boold
Boold
Booli0
Boolii
Booll2
Booll3
Boolid
Bool15

—— Bool Quti

.

.

—— Bool Out?3
——— Bool Outd
—— Bool Outk
——BoolOut’?
—— Bool Outd
——Bool Qut 10
——BoolCOut11
——Bool Qut13
——BoolOut14

——BoolOut13

241

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

Conversion instructions

DWORD TO BOOLS DOUBLE WORD to 32 variables of the data type BOOL

Description This function converts a values of the data type DWORD bit-wise to 32 values of the data type
BOOL.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

DWORD TO _BOOLS

- In Boold -
Booll -

Bool? -

Bool3 -

Boold -

Bools -

Part Il

Bool30 -
Bool31 +

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

The outputs BoolO to Bool31 need not be allocated in LD or FBD, or used explicitly in the ST
editor's formal list of parameters. Program code is only generated for those outputs that are truly
used.

PLC types Availability of DWORD_TO_BOOLS (see page 1319)

Data types Variable | Datatype Function
In DWORD input variable
BOOLO ... | BOOL 32 output variables of the data type BOOL
BOOL31
POU header:

| Class | Identifier | Twpe | Initial |

1] YAR Dwordl DWoORD O

1 YAR Boold Bl FaLSE
Z YAR Booll Bl FaL3E
3 YAR Boolz Bl FaLSE
4 YAR Bool3 Bl FALSE
5 YAR Boold BoOoL FaLSE
f YAR Bools BooL FaLSE
7 YAR Boold Bl FaLSE
& YAR Bool? Bl FALSE
g YAR Boold Bl FaLSE
10 YAR Booll0 BooL FaLsE

etc. to Bool31

242

Conversion instructions

Body:

Cvord! —— In

DyWORD_TO_BOOLS
Baold
Bool1
Baoolz
Boold
Boold
BoolS
Baoolg
Bool7
Boold
Boold

Boalio
Baoall1
Boal1z
Bool13
Bool1d
Bool15
Boaol1g
Baol17
Bool13
Bool13
Boal2o
Boalz1
Boal2z
Bool23
Bool2d
Bool25
Bool2g
Bool27
Bonol2s
Bool23
Boal30
Bool3 1

— Boal Qutd

—— Bioual Ot
—— Boal Qutd
— Boal Qutk
——— Bl Oty

—r?

— Boal Jut 10
—— Boal Ot 11
—— Bool Out 13
— Boal Qut 14
—— Bool Out 15

—— Bool Out27

—— Boal Ot

243

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Conversion instructions

INT TO BCD WORD INTEGER into BCD value of WORD

Description

PLC types
=

Data types

Example

POU header

Body

LD

ST

INT_TO_BCD_WORD converts a binary value of the data type INT into a binary coded decimal
integer (BCD) value of the type WORD in order to be able to output BCD values in word format.

- INT TO BCD WORD L

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of INT_TO_BCD_WORD (see page 1327)

Since the output variable is of the type WORD and is therefore comprised of 16
bits, the value for the input variable is limited to 4 digits and must be between 0
and 9999.

Data type 1/0 Function

INT Input input data type

BCD_WORD Output | conversion result

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | 1dentifier | Tvpe | Initial |
0 BCD_walue_16hit WORD 0
1 VAR, INT _walue IMNT 1]

This example uses variables. You can also use a constant for the input variable.

INT_value of the data type INTEGER is converted into a BCD value of the data type WORD. The
converted value is written into BCD_value_16bit.

INT_value = 1——_INT TO_BCD WORD |——BCD_value_16hit = 16#0001

When programming with structured text, enter the following:
BCD val ue_16bit: =1 NT_TO BCD WORD(| NT_val ue) ;

244

Conversion instructions

DINT TO BCD DWORD DOUBLE INTEGER into BCD DOUBLE WORD

Description DINT_TO_BCD_DWORD converts a value of the data type DINT into a BCD value of the data type
DWORD.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

~ DINT_TO BCD DWORD |-

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DINT_TO_BCD_DWORD (see page 1319)

= The value for the input variable should be between 0 and 999,999,999.
Data types Data type 1/0 Function
DINT Input input data type

BCD_DWORD Output conversion result

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial
] VAR DINT _value DINT]
1 VAR BCD_walue_32bit DWORD 0

This example uses variables. You can also use a constant for the input variable.

Body DINT_value of the data type DOUBLE INTEGER is converted into a BCD value of the data type
DOUBLE WORD. The converted value is written to BCD_value_32bit.

LD
DINT value = 123—— DINT _TO_BCD DWORD |——BCD value_32bit = 16400000123

ST When programming with structured text, enter the following:
BCD _val ue_32bi t: =DI NT_TO BCD DWORD(DI NT_val ue) ;

245

Conversion instructions

UINT TO BCD WORD Unsigned INTEGER into BCD value of WORD

Description UINT_TO_BCD_WORD converts a value of the data type Unsigned INTEGER into a BCD value of
the data type WORD.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- UINT TO_BCD WWORD |

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of UINT_TO_BCD_WORD (see page 1332)

Data types Data type 1/0 Function
UINT Input input data type
BCD_WORD Output conversion result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Type | Inikial
0 VAR | UINT value UIMT 1270
1 YAR BCD _walue _1ébit WORD 1640000
LD LIMT walue = 1270 - UINT TO BCD WORD Ir ~BCD _walue 1Bbit = 16#1270

ST BCD _val ue_16bi t: =U NT_TO BCD WORD(Ul NT_val ue);

246

Conversion instructions

UDINT TO BCD Unsigned DOUBLE INTEGER into BCD DOUBLE WORD

DWORD

Description

PLC types

Data types

Example

POU header

LD

ST

UDINT_TO_BCD_DWORD converts a value of the data type Unsigned DOUBLE INTEGER into a
BCD value of the data type D WORD.

— UDINT TO BCD DWORD |-

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of UDINT_TO_BCD_DWORD (see page 1332)

Data type I/0 Function

UDINT Input input data type

BCD_DWORD Output | conversion result

In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Type | Initial
] VAR DIMT _wvalus LDINT 164190854
1 VAR BCD_walue_32bit DWORD

UDINT value = 1640532 —— UDINT TO BCD DWORD |——BCD value 32bit = 164016540532

When programming with structured text, enter the following:
BCD val ue_32bit: = UDI NT_TO BCD DWORD(UDI NT_val ue) ;

247

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

Conversion instructions

STRING TO IPADDR STRING to IP Address

Description This function converts a STRING in IP address format into a value of the data type DWORD.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- STRING TO IPADDR |

Part Il

Thereby the attached string is first converted to a value of the data type STRING[32]. Finally this is
converted to a value of the data type DWORD via a sub-programm of approx. 330 steps that is also
used in the functions STRING_TO_IPADDR and STRING_TO_ETLANADDR.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

See also: STRING_TO_IPADDR_STEPSAVER (see page 248)
Example: String3="[1.2.3.4] — STRING_TO_IFADDE ——lpaddr = 16804020201

STRIMG_TO_IPADDR

EM ENO
String4 =" 05.008.007 008" —— —— IpAddr1 = 16402070805

Permissible format:

'[Space]Octet1.0Octet2.0ctet3.Octet4[Space], e.g.:' [192.168.206.4] '

Permissible characters:

Space All characters except for decimal numbers

Octets 1-4 Decimal numbers "0“-"9%, maximal 3 positions, with or without leading
zeros in the range 0-255

PLC types Availability of STRING_TO_IPADDR (see page 1331)
= * The analysis ends with the first non-decimal number after the 4th octet
or in case of a format error.
* If the format is wrong the result is 0.

* The conversion is such that the first octet represents the lowest byte
of the IP address and the fourth octet the highest byte of the ET-LAN
address. The format corresponds to the standard format as used in
"Standard Socket Application Interfaces"”, for example.

Data types Data type Comment
STRING input variable
DWORD output variable

248

Conversion instructions

STRING_TO_IPADDR

_STEPSAVER

STRING (IP-Address Format 00a.0bb.0cc.ddd) to DWORD

Description This function converts a STRING in IP address format into a value of the data type DWORD.

PLC types
==

Data types

- STRING TO IPADDR_STEPSAVER |

The function uses for approx. 50 steps of generated code the basic instruction F76_A2BIN (see
page 637). The instruction expects that each octet consists of three characters with leading zeros.
Otherwise the PLC delivers an operation error.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Example:

String1 =001 002 003.004' — STRING_TO_IPADDP_STEPSAVER ——IpAddr = 16#04030201

Permissible format:

'Octet1.0ctet2.0ctet3.0Octet4[Space]’, e.g.: ' [192.168.206.4] '

Permissible characters:

Octets 1-4

Decimal numbers "0“-"9*,
zeros in the range 0-255

maximal 3 positions, with or without leading

Availability of STRING_TO_IPADDR_STEPSAVER (see page 1331)
* If the format is wrong the result is 0.

* The conversion is such that the first octet represents the lowest byte
of the IP address and the fourth octet the highest byte of the ET-LAN
address. The format corresponds to the standard format as used in
"Standard Socket Application Interfaces", for example.

Data type Comment
STRING input variable
DWORD output variable

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

249

Part 1l

Conversion instructions

STRING TO ETLAN STRING to ETLAN Address

ADDR

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Description This function converts a STRING in IP address format into a value of the data type DWORD.

- STRING_TO_ETLAMADDR |

Part Il

Thereby the attached string is first converted to a value of the data type STRING[32]. Finally this is
converted to a value of the data type DWORD via a sub-programm of approx. 330 steps that is also
used in the functions STRING_TO_IPADDR and STRING_TO_ETLANADDR.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

See also: STRING_TO_ETLANADDR_STEPSAVER

Example with and without EN/ENO:

Stingl=' 1234 '— STRING_TO_ETLANADDR |——Etlanéddr = 16401020304

STRING_TO_ETLANADDR
EEl— En END -
Sting2 ="' [005.005.007 008] ' — L EtLanaddr] = 16H0SOG070S

Permissible format:

'[Space]Octet1.0ctet2.0ctet3.Octetd4[Space], e.g.:' [192.168.206.4] '

Permissible characters:

Space All characters except for decimal numbers

Octets 1-4 Decimal numbers "0“-"9%, maximal 3 positions, with or without leading
zeros in the range 0-255

= * The analysis ends with the first non-decimal number after the 4th octet
or in case of a format error.

* If the format is wrong the result is 0.

* The conversion is such that the highest byte of the ET-LAN address
represents the first octet and lowest byte of the IP address the fourth
octet. This format for ET-LAN addresses is used, for example, by the
FP Serie's ET-LAN modules.

250

Conversion instructions

STRING TO ETLAN STRING (IP-address format 00a.0bb.0cc.ddd) to ETLAN Address

ADDR_STEPSAVER

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Description This function converts a STRING in IP address format into a value of the data type DWORD.

STRING TO ETLANADDR _STEPSAVER |

Part 1l

The function uses for approx. 50 steps of generated code the basic instruction F76_A2BIN (see
page 637). The instruction expects that each octet consists of three characters with leading zeros.
Otherwise the PLC delivers an operation error.

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Example:
bEnzble STRIMG_TO_ETLANADRDR_STEPSAWER
m} EN END
String1 ="001.002.002.001" — —— Dviord 1 = 1ER01020201

Permissible format:

'Octet1.0ctet2.0ctet3.0Octet4[Space], e.g.:' [192.168.206.4] '

Permissible characters:

Octets 1-4 Decimal numbers "0“-"9%, maximal 3 positions, with or without leading
zeros in the range 0-255

= If the format is wrong the result is 0.

The conversion is such that the highest byte of the ET-LAN address
represents the first octet and lowest byte of the IP address the fourth
octet. This format for ET-LAN addresses is used, for example, by the FP
Serie's ET-LAN modules.

251

Chapter 8

Selection instructions

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Selection instructions

MAX

Maximum value

Description MAX determines the input variable with the highest value.

PLC types

=

Data types

Example

POU header

Body

LD

ST

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of MAX (see page 1328)
The number of input contacts lies in the range of 2 to 28.

Data type I/O Function

all except 1st input value 1

STRING

all except 2nd input value 2

STRING

all except output as input result, whichever input variable's value is greater

STRING
In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Initial | Comment |
1] value_1 INT 0O all bypes allowed
1 WOR, value_Z INT 0O all types allowed
Z WOF, maximum_value INT 0 all types allowed

In this example the input variables (value_1 and value_2) have been declared. Instead, you may
enter a constant directly at the input contact of a function.

Value_1 and value_2 are compared with each other. The maximum value of all input variables is
written in maximum_value.

value 1=114—— kax ' rhaximum_value = 228
value_¢ = 228 —— r

When programming with structured text, enter the following:
maxi mum val ue: =MAX(val ue_1, value_2);

254

Selection instructions

Description MIN detects the input variable with the lowest value.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of MIN (see page 1328)

= The number of input contacts lies in the range of 2 to 28.

Data types Data type 1/0 Function
all except 1st input value 1
STRING
all except 2nd input value 2
STRING
all except output as input result, whichever input variable's value is smallest
STRING

Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Inital | Comment |
1] value_1 INT 0 all bypes allowed
1 WOR valug_7 INT 0O all types allowed
Z WAR, minimum_value INT 0 all types allowed

In this example the input variables (value_1 and value_2) have been declared. Instead, you may
enter a constant directly at the input contact of a function.

Body Value_1 and value_2 are compared with each other. The lower value of the two is written into
minimum_value.

LD
value 1 =228— KIM I—--r’ninir’ﬂur’n_value =114

value 2=114— ,:l

ST When programming with structured text, enter the following:
m ni mum val ue: =M N(val ue_1, val ue_2);

255

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Selection instructions

Select value from multiple channels

Description The function Multiplexer selects an input variable and writes its value into the output variable. The
1st input variable determines which input variable (IN1or IN2 ...) is to be written into the output
variable. The function MUX can be configured for any desired number of inputs.

ML |
K

- MO {
- 1M1 p
To add an enable input and enable output to the instruction, select [With EN/ENO] from the

"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of MUX (see page 1328)

= * When using the data type STRING with small PLCs like FP-e or FPO,
make sure that the length of the result string is equal to or greater than
the length of the source string.

* For further information refer to the online help: Upgrade Problems with
Data Type STRING

e The difference between the functions MUX and SEL (see page 257) is
that in MUX with an integer value you can select between plural
channels, and in SEL with a Boolean value only between two channels.

* The number of input contacts lies in the range of 2 to 28.

Data types Data type I/O Function
INT 1st input selects channel for 2nd or 3rd input value to be written to
all data types | 2nd input value 1
all data types | 3rd input value 2
all data types | output as 2nd and | result
3rd input

The 2nd and 3rd input variables must be of the same data type.

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
0 charmel_select INT 0 walue 0 ko 'R’
1 WAR channel_D INT 0 all tvpes allowed
z WAR, channel_1 INT 0 all types allowed
3 AR oukput INT 0 all types allowed

In this example the input variables (channel_select, channel_0 and channel_1) have been
declared. Instead, you may enter a constant directly at the input contact of a function.

256

Selection instructions

Body In channel_select you find the integer value (0, 1...n) for the selection of channel_0 or
channel_1. The result will be written into output.

LD

MUK |
channel_select=1— K ——output = 222

channel_0=111—— [0
channel_1 = 222 —— N1 4

ST When programming with structured text, enter the following:
out put: =MJX(K: = channel _select , I NO:= channel 0 ,
I N1: = channel _1);

257

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

Selection instructions

SEL Select value from one of two channels

Description With the first input variable (data type BOOL) of SEL you define which input variable is to be written
into the output variable. If the Boolean value = 0 (FALSE), the input variable INO will be written into
the output variable, otherwise IN1.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

SEL }

- 5
- IMO
- 1M1

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of SEL (see page 1330)

= * When using the data type STRING with small PLCs like FP-e or FPO,
make sure that the length of the result string is equal to or greater than
the length of the source string.

* For further information refer to the online help: Upgrade Problems with
Data Type STRING

* The difference between the functions SEL and MUX (see page 255) is
that in case of SEL a Boolean value serves for the channel selection,
and in case of MUX an integral number (INT). Therefore, you can
choose between more than two channels with MUX.

Data types Data type I/0 Function
BOOL G selects between input value INO or IN1
all data types | INO value is written into the output variable if G = FALSE
all data types | IN1 value is written into the output variable if G = TRUE
all data types | output result value as INO or IN1
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the

POU header.
Class | Idenkifier | Tvpe | Inikial |
1] WAR, channel_select BOOL FALSE
1 WAR channel_0 INT n
Z WAR, channel_1 INT 0
3 WaR oubput INT]

In this example the input variables (channel_select, channel 0 and channel 1) have been
declared. Instead, you may enter a constant directly at the input contact of a function.

Body If channel_select has the value 0, channel_0 will be written into output, otherwise channel 1.

258

Selection instructions

(72}

c

§=)

LD S
channel _select =

|| | SEL =

— G ——autput = 222 <

channel _0=1117—— M0
channel_1 = 222 —— |MT

c
o

ST When programming with structured text, enter the following:
output : = SEL(G : = channel_select, INO : = channel_0, IN1: = channel_1) ;

259

Chapter 9

String instructions

String instructions

=N String Length

Description LEN calculates the length of the input string and writes the result into the output variable.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- LEM |

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of LEN (see page 1328)

= * If the string is longer than the length defined for the input variable
(input_string) in the field "Type", an error occurs (see Special Internal
Relays for Error Handling).

* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

* When using the data type STRING with small PLCs like FP-e or FPO,
make sure that the length of the result string is equal to or greater than
the length of the source string.

* For further information refer to the online help: Upgrade Problems with
Data Type STRING

Data types Data type 1/0 Function
STRING input input data type
INT output length of string
Error flags No. IEC address | Set If
R9007 | %MX0.900.7 permanently = input string is longer than the length
defined for the input variable in the field
R9008 | %MX0.900.8 for an instant "Type"
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
0 input_skring STRIMG[12] 'Panasonic’ sample skring
1 WAR ouktput_walue INT 1] result: here 9

In this example the input variable (input_string) has been declared. Instead, you may enter the
string (‘Panasonic') directly into the function. The string has to be put in inverted commas, both in
the POU header and in the function.

Body The length (9) of input_string (‘Panasonic’) is written into output_value.

262

String instructions

LD
input_string = 'Panasonic'—_ LEN ——output_value = 9

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

ST When programming with structured text, enter the following:
out put _val ue: =LEN(i nput _val ue) ;

Part 1l

263

String instructions

LEFT Copy characters from the left

Description LEFT copies, starting from the left, n characters of the string of the first input variable to the output
variable. You define the number of characters to be delivered n by the second input variable.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

LEFT |
- M
- L
To add an enable input and enable output to the instruction, select [With EN/ENO] from the

"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of LEFT (see page 1328)

* If the number of characters to be delivered is greater than the input
= 9 P
string, the complete string will be copied to the output variable
(output_string).

* If the output string is longer than the length defined for the output
variable in the field "Type", only as many characters are copied from
the left as the output variable can hold. The special internal relay
R9009 (%6MX0.900.9) is set.

* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Data types Data type I/O Function
STRING 1st input input string
INT 2nd input number of input string's characters that are copied, from the left
STRING output copied string
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = input string is longer than the length
R9008 %MX0.900.8 for an instant d_?;gsd for the input variable in the field
R9009 %MX0.900.9 for an instant = output string is longer than the length
defined for the output variable in the field
"Type"
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Type | Initial | Comment |
0 input_string STRIMG[15] 'Ideas Forl... sample string
1 WAR oukput_string STRIMG[S] " resulk: here 'Ideas'
2 YA, characker_number IMT 5 characters ko be delivered

264

String instructions

In this example the input variables (input_string and character_number) have been declared.
Instead, you may enter the string (‘Ideas for life') and the number of characters to be delivered
directly into the function. The string has to be put in inverted commas, both in the POU header and
in the function.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Body Starting from the left, character_number (5) of input_string (‘ldeas for life’) is copied to
output_string (‘ldeas’).

Part 1l

LD

LEFT |
Input_string = 'ideas for life' —— M
character_number=5— L

~output_string = 'ideas’

ST When programming with structured text, enter the following:
output _string: =LEFT(IN: =i nput_string, L:=character_nunber);

265

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

String instructions

RIGHT Copy characters from the right

Description RIGHT copies, starting from the right, n characters of the string of the first input variable to the
output variable. You define the number of characters to be delivered n by the second input
variable.

RIGHT |
- M
- L
To add an enable input and enable output to the instruction, select [With EN/ENO] from the

"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of RIGHT (see page 1330)

= * If the number of characters to be delivered is greater than the input
string, the complete string will be copied to the output variable
(output_string).

* If the output string is longer than the length defined for the output
variable in the field "Type", only as many characters are copied from
the left as the output variable can hold. The special internal relay
R9009 (%6MX0.900.9) is set.

* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.
(up to 200 steps)

Data types Data type I/0 Function
STRING 1stinput | input string
INT 2nd number of input string's characters that are copied, from the right
input
STRING output copied string
Error flags No. IEC address | Set If
R9007 | %MX0.900.7 permanently = input string is longer than the length
o - defined for the input variable in the field
R9008 %MX0.900.8 for an instant "Type"
R9009 | %MX0.900.9 for an instant = output string is longer than the length
defined for the output variable in the field
"Type"
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the

POU header.

| Class | Identifier | Tvpe | Initial | Comment |
0 input_skring STRING[15] ‘ideas For life' sample skring
1 WAR, character_number INT 4 characters to be delivered
z WA, output_skring STRING[4] " result here: ‘life’

266

String instructions

In this example the input variables (input_string and character_number) have been declared.
Instead, you may enter the string (‘Ideas for life') and the number of characters to be delivered
directly into the function. The string has to be put in inverted commas, both in the POU header and
in the function.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Body Starting from the right, character_number (4) of input_string (‘Ideas for life’) is copied to
output_string (‘life’).

LD E
RIGHT |
input_string = 'ldeas for life' —— [N ——output_string = 'life’
character_number=4—— L

267

String instructions

Copy characters from a middle position

Description MID copies L characters of the string IN starting at position P with 1 denoting the first character of
the string. The result is written into the output variable.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types
==

Availability of MID (see page 1328)

* The sum of start position and number of characters to be delivered
should not be greater than the input string. If you want to receive for
example 5 characters of a 10-character string, starting from position 7,
only the last 4 characters are delivered.

* If the output string is longer than the length defined for the output
variable (output_string) in the field "Type", only as many characters
are copied from the start position as the output variable can hold. The
special internal relay R9009 (%MX0.900.9) is set.

* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.
(up to 200 steps)

Data types Function

Data type 1/0
STRING 1st input

INT 2nd input

input string

number of input string's characters that are copied

INT 3rd input
STRING

position where copying begins

output copied string

Error Flags No.

Example

IEC address

Set

R9007

%MX0.900.7

permanently

R9008

%MX0.900.8

for an instant

input string is longer than the length
defined for the input variable in the field
"Type" or start position is greater than
the input string

R9009

%MX0.900.9

for an instant

output string is longer than the length
defined for the output variable in the field
"Type"

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

268

String instructions

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class Identifier | Type | Initial | Comment
1] WAR. input_string STRIMG[15] 'Tdeas for life' sample string
1 WA, characker_number INT g characters ta be delivered
z2 WaR sktart_position INT] position o skart copying
3 WAFR, oukput_string STRING[S] " result here: ‘far life’

In this example the input variables (input_string, character_number and start_position) have

been declared. Instead, you may enter the string (‘ldeas for life'), the number of characters to be

delivered and the start position directly into the function. The string has to be put in inverted
commas, both in the POU header and in the function.

Body Starting from start_position (7), character_number (8) of input_string (‘Ideas for life’) is copied

to output_string (‘for life’).
LD
kAl
input_string = 'ldeas for lite' —— [N ——output_string = 'for life’
character_number=40— L
start_position =/ — F

ST When programming with structured text, enter the following:

output _string: =M D(I N =i nput _string, L:=character_nunber,
P: =start_position);

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

269

Part 1l

String instructions

CONCAT Concatenate (attach) a string

Description CONCAT concatenates (attaches) the second and the following input strings (IN1 + IN2 + ...) to the
first input string and writes the resulting string into the output variable.

— COMNCAT 'r
- £

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

PLC types Availability of CONCAT (see page 1318)

= * If the output string is longer than the length defined for the output
variable (output_string) in the field "Type", only as many characters
are copied, starting from the left, as the output variable can hold. The
special internal relay R9009 (%MX0.900.9) is set.

* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.

Datatypes Data type I/O Function
STRING 1st input beginning input string
STRING 2nd input string that will be attached to the beginning string
STRING output resulting string
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = input string is longer than the length
R9008 %MX0.900.8 for an instant d_?;gsd for the input variable in the field
R9009 %MX0.900.9 for an instant = output string is longer than the length
defined for the output variable in the field
"Type"
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Initial | Comment |
1] WAR input_stringl STRIMG[32] 'Ideas' sample string
1 YAR, input_stringz STRIMG[32] 'for' sample string
2 YAR input_string3 STRIMG[32] 'life' sample string
3 WO, outpub_string STRIMG[3Z] result; here 'Tdeas For life'

In this example the input variables (input_stringl, input_string2 and input_string3) have been
declared. However, you may enter the strings (‘'ldeas’, ' for' and ' life') directly into the function.
The strings have to be put in inverted commas, both in the POU header and in the function.

Body Input_string3 (‘ life’) is attached to input_string2 (‘ for’) and this string is attached to
input_stringl (‘ldeas'). The resulting string (‘Ideas for life’) is written into output_string.

270

String instructions

"

c

o

3]

input_stringl ='ideas'—— COMCAT ——output_string = 'ideas for life' g
input_string? =" far'— @
input_string3 = ' life' — - G
L

ST When programming with structured text, enter the following:
out put _string: =CONCAT(i nput _stringl, input_string2, input_string3);

c
o

271

String instructions

DELETE Delete characters from a string

Description DELETE deletes L characters in the string IN starting at position P with 1 denoting the first
character of the string. The result is written into the output variable.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

DELETE |

i |

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part Il

PLC types Availability of DELETE (see page 1319)
= * If the output string is longer than the length defined for the output
variable (output_string) in the field "Type", only as many characters
are copied, starting from the left, as the output variable can hold. The
special internal relay R9009 (%MX0.900.9) is set.
* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.
(up to 200 steps)
Data types Data type I/O Function
STRING 1st input input string
INT 2nd input number of input string's characters that are deleted
INT 3rd input position where deletion begins
STRING output resulting string
Error flags No. IEC address Set If
R9007 %MX0.900.7 permanently = input string is longer than the length
R9008 %MX0.900.8 for an instant d_?;E:d for the input variable in the field
R9009 | %MX0.900.9 for an instant = output string is longer than the length
defined for the output variable in the field
"Type"
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
1] WAR, input_skring STRIMNG[15] ‘'Ideas far life' sample string
1 WAR, character_number INT g characters to be deleted
2 WAR start_position INT f position ko start deleting
3 WAR, output_skring STRIMG[S] " result; here 'Tdeas'

In this example the input variables (input_string, character_number and start_position) have
been declared. Instead, you may enter the string (‘ldeas for life'), the number of characters to be

272

String instructions

0)

c

2

deleted and the start position directly into the function. The string has to be put in inverted commas, ‘5’

both in the POU header and in the function. =

n

c

Body Starting from start_position (6), character_number (8) is deleted from input_string (‘ldeas for G

life’). The resulting string (‘ldeas’) is written into output_string. w

LD =

DELETE -

input_string = 'ldeas for life'—— M ——output_string = 'ldeas’ G

character_number=58—— L a
star_position=—F

ST When programming with structured text, enter the following:
out put _string: =DELETE(i nput _string, character_nunber, start_position);

273

String instructions

=INIp) Find string's position

Description FIND returns the position at which the second input string first occurs in the first input string. The
result is written into the output variable. If the second input string does not occur in the first input
string, the value ZERO is returned.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

FIND |
- 1M1
- IMZ
To add an enable input and enable output to the instruction, select [With EN/ENO] from the

"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of FIND (see page 1326)

= » If the strings are longer than the length defined for the input variables
(input_string_1 and input_string_2) in the field "Type", an error occurs
(see Special Internal Relays for Error Handling).

* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.
(up to 200 steps)

Data types Data type I/0 Function
STRING 1st input input string
STRING 2nd input string that is searched for in the input string
INT output position at which the string searched for is found
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = input strings are longer than the length
R9008 | %MX0.900.8 for an instant d_(re;g]:d for the input variables in the field
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Initial | Cammert |
0 input_skring_1 STRIMG[1S] ‘ideas for ... sample string
1 WoF input_skring_2 STRIMG[Z] 'for' searched string
2 YAR output_walue IMWT n 1st position Found

In this example the input variables (input_string_1 and input_string_2) have been declared.
Instead, you may enter the strings (‘ldeas for life' and 'for') directly into the function. The strings
have to be put in inverted commas, both in the POU header and in the function.

Body Input_string_2 (‘for’) is searched in input_string_1 (‘Ideas for life’). The position of the first
occurrence (7) is written into output_value.

274

String instructions

wn

[

©

=

LD E
FIMD | 7

=

O

LD

input_string_1 = 'ldeas for life' —— M1 ——output_wvalue = 7
Input_string_2 = 'for' —— [ME |

ST When programming with structured text, enter the following:
out put _value: = FIND(i nput_string_ 1, input_string_2);

c
o

275

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

String instructions

INSERT Insert characters

Description

PLC types
=

Data types

Error flags

Example

INSERT inserts the string IN2 into the string IN1 beginning after the character position P, where 0
denotes the beginning of the string, 1 the position after the first string character, etc. The result is
written into the output variable.

INSEHT|

I
.
P

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of INSERT (see page 1327)

* If the strings are longer than the length defined for the input variables
(input_string_1 and input_string_2) in the field "Type", an error occurs
(see Special Internal Relays for Error Handling).

* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.
(up to 200 steps)

Data type I/0 Function

STRING 1st input input string

STRING 2nd input string to be inserted into input string

INT 3rd input position at which string is inserted

STRING output result string

No. IEC address | Set If

R9007 %MX0.900.7 permanently = input strings are longer than the length
R9008 | %MX0.900.8 for an instant d_(re;g]:d for the input variables in the field

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Initial | Cammert |
0 input_stringl STRING[32] ‘ideas life' sample string
1 WAR, input_stringz STRIMNG[Z2] ‘'faor' sample string
2 VAR position INT &
3 YAR output_string STRIMG[32] " resulk: here 'Ideas For life'

276

String instructions

Body In this example the input variables input_stringl, input_string2 and position have been
declared. However, you may enter the values directly at the function's input contact pins instead.
The STRING values have to be put in inverted commas, both in the POU header and at the contact
pins. input_string?2 (‘for ') is inserted into input_string1 ('Ideas life') after character position 6. The

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

result ('ldeas for life') is returned at output_value. In the LD example, 6 (Monitoring) icon was
activated while in online mode, hence you can see the results immediately.

LD S
INSERT -
input_string_1 ='ldeas life' —— M1 autput_string = 'ldeas far life’
input_string_2 = 'for '—— [NE

position=h— F

ST When programming with structured text, enter the following:
out put _val ue: =I NSERT(| N1: =i nput _stringl, |N2:=input_string2, P:=6);

277

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

String instructions

REPLACE Replaces characters

Description REPLACE replaces the characters in the string IN1 with P denoting the first position to be replaced
and L denoting the number of characters to be replaced with the characters specified by IN2. The
result is written into the output variable.

REPLACE
1N

- IN2

i

P

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of REPLACE (see page 1330)

= » If the strings are longer than the length defined for the input variables
(input_string_1 and input_string_2) in the field "Type", an error occurs
(see Special Internal Relays for Error Handling).

* The number of steps may vary depending on the PLC and parameters
used, see also Table of Code Intensive Instructions in the online help.
(up to 200 steps)

Data types Data type 1/0 Function
STRING 1st input input string
STRING 2nd input replacement string
INT 3rd input the number of characters in the input string to be replaced
INT 4th input position at which characters begin to be replaced
STRING output resulting string
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = input strings are longer than the length
R9008 | %MX0.900.8 for an instant 9Te)f/|;:?:"d for the input variables in the field

Example

In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables which are required for programming the function are declared in the

POU header.
| Class | Identifier | Tvpe | Initial | Comment |
n VAR | output_value STRING[3Z2] " result: MrSpook!

Body In this example constant values are entered directly at the function's input contact pins. However,
you may declare variables in the POU header. The STRING values have to be put in inverted
commas, either in the POU header or at the contact pins. Here the 'c' in the STRING 'MrSpock' has
been replaced with an 'o', yielding 'MrSpook'.

278

String instructions

LD

FEFLACE
"Mir Spock’ —— N1
o' —— N2
1— L
E— F

——utput_walue

%)
c
o

=
o
>
S

e
0
c

O

L

279

Part 1l

Chapter 10

Date and time instructions

Date and time instructions

ADD DT TIME Add TIME to DATE_AND_TIME

Description ADD_DT_TIME adds the value of a variable of the data type TIME to the date and time stored in
the variable of the data type DATE_AND_TIME. The result is stored in a variable of the data type
DATE_AND_TIME.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

- ADD_DT _TIME '[

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of ADD_DT_TIME (see page 1318)

Data types Data type I/O Function
DATE_AND_TIME 1st input augend
TIME 2nd input addend
DATE_AND_TIME output sum
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Tvpe | Initial
0 VAR DT _walue DATE_AMD_TIME DT#2011-12-24-18:29:59
1 VaR TIME_walug TIME T#2h35m38s560ms
2 VaR DT _resul DATE_AaMD_TIME DT#2001-01-01-00:00:00

LD
OT_value = DT#2011-12-24-158:29:859 — ADD_DT TIME ——DT_result = DT#2011-12-24-21:05.57

TIME _walue = Té#h35m38s560ms —

ST When programming with structured text, enter the following:
DT result : = ADD DT _TI ME(DT val ue, TI ME val ue);

282

Date and time instructions

ADD TOD TIME Add TIME to TIME_OF_DAY

Description ADD_TOD_TIME adds a variable of the data type TIME to the time of day. The result is stored in a
variable of the data type TIME_OF_DAY.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

ADD_TOD_TIME

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of ADD_TOD_TIME (see page 1318)

Data types Data type 1/0 Function
TIME_OF_DAY 1st input augend
TIME 2nd input addend
TIME_OF_DAY output sum
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Tvpe | Initial |
1] WAR, TOD _walue TIME_OF D@y TOD#18:29:59
1 VAR TIME_walue TIME T#2h35m38s560ms
2 WaR TOD _result TIME_OF_DAY TOD#00:00:00
LD TOD value = TOD#5: 2955 — ADD TOD_TIME ——TOD result = TOD#21 0537

TIME_value = T#h35m358s560ms —

ST When programming with structured text, enter the following:
TOD result : =ADD TOD Tl ME(TOD val ue, TI ME_val ue) ;

283

Date and time instructions

CONCAT DATE INT Concatenate INT values to form a date

Description CONCAT_DATE_INT concatenates the INTEGER values of year, month, and day.The result is
stored in the output variable of the data type DATE. The Boolean output ERROR is set if the input
values are invalid date or time values.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

5 CONCAT DATE_INT |
- YEAR [
- MONTH ERROR
- DAY |

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Inverse instruction: SPLIT_DATE_INT (see page 295)

PLC types Availability of CONCAT_DATE_INT (see page 1318)

Data types Data type 110 Function
1st input year
INT 2nd input month
3rd input day
DATE output result
BOOL output The Boolean output ERROR is set if the input values
are invalid date or time values.
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.

Class | Identifier | Type | Initial |
0 VAR | DATE_ wvalue DATE D#2001-D1-01
1 WAR YEAR_walue INT 2011
z VAR MOMTH_value INT 12
3 VAR DAY_value INT 24
4 WAR ERRCR BOOL FALSE

LD
COMCAT DATE INT
YEAR walue = 2011 —— YEAR ——DATE walue = D#2011-12-24
MOMNTH_value = 12 —— MONTH ERROR —ERROR|
DAY value = 24 —— DAY

ST When programming with structured text, enter the following:
DATE_val ue : = CONCAT_DATE_| NT(YEAR : = YEAR val ue,
MONTH : = MONTH val ue,
DAY : = DAY_val ue,
ERROR => ERROR);

284

Date and time instructions

CONCAT DATE TOD Concatenate date and time of day

Description CONCAT_DATE_TOD concatenates a value of the data type DATE with a value of the data type
TIME_OF_DAY.The result is stored in the output variable of the data type DATE_AND_TIME.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- CONCAT DATE_TOD '[

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of ADD_TIME CONCAT_DATE_TOD (see page 1318)

Data types Data type I/O Function
DATE 1st input date
TIME_OF_DAY 2nd input time of day
DATE_AND_TIME output result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Iderkifier | Tvpe | Inikial |
1] VAR, DT_walue DATE _AMND_TIME DT#2001-01-01-00;00;00
1 VAR DATE _walue DATE D#2011-12-24
Z VaR TOD _walue TOD TODF18:29:59
LD DATE wvalue = D#EE2011-12-24 —— COMCAT DATE TOD ——DT walue = DT#E2011-12-24-15:259:59

TOD walue = TOD#15: 29558 ——

ST When programming with structured text, enter the following:
DT _val ue : = CONCAT_DATE_TOD(DATE val ue, TOD val ue) ;

285

Date and time instructions

CONCAT DT INT Concatenate INT values to form date and time

Description CONCAT_DT_INT concatenates the INT values of year, month, day, hour, minute, second, and
millisecond. The result is stored in the output variable of the data type DATE_AND_TIME. The
Boolean output ERROR is set if the input values are invalid date or time values.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

CONCAT_DT_INT
- YEAR i
“MONTH ERROR
- DAY
- HOUR
- MINUTE
- SECOND
- MILLISECOND

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Inverse instruction: SPLIT_DT_INT (see page 296)

PLC types Availability of CONCAT_DT_INT (see page 1318)

Data types Data type 110 Function
1st input year
2nd input month
3rd input day
INT 4th input hour
5th input minute
6th input second
7th input millisecond
DATE_AND_TIME output result
BOOL output The Boolean output ERROR is set if the input values
are invalid date or time values.
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Tvpe | Iritial |
] ViR DT_walue DATE_AMND_TIME DT#2001-01-01-00:00:00
1 VaR YEAR_value INT 2011
2 VAR MOMTH value INT 12
3 VR DAy _walue INT 24
4 VR HOUR_value INT 18
5 VaR MIMNUTE _walue INT 29
& VAR SECOMND_wvalue INT oo
7 VR MILLISECOMD walue INT]
g VR ERROR B2l FALSE

286

Date and time instructions

MOMTH_value = 12— MONTH ~ ERROR ——{ERROR]
DAY walue = 24 —— DAY
HOUR_value = 15— HOUR
MINUTE _value = 29— MINUTE
SECOMND_value = 59— SECOMD
MILLISECOND value = 0 —— MILLISECOND

wn

[

©

LD e
CONCAT DT INT S

YEAR wvalue = 2011 —— YEAR —— DT walue = DTEO11-12-24-18:29:59 I

[

O

L

c
o

ST When programming with structured text, enter the following:
DT _val ue : = CONCAT_DT | NT(YEAR : = YEAR val ue,
MONTH : = MONTH val ue,
DAY : = DAY_val ue,
HOUR : = HOUR val ue,
M NUTE : = M NUTE_val ue,
SECOND : = SECOND val ue,
M LLI SECOND : = M LLI SECOND val ue,
ERROR => ERROR) ;

287

Date and time instructions

CONCAT TOD INT Concatenate INT values to form the time of day

Description CONCAT_TOD_INT concatenates the INTEGER values for hour, minute, second, and millisecond.
The result is stored in the output variable of the data type TIME_OF_DAY. The Boolean output
ERROR is set if the input values are invalid date or time values.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

CONCAT TOD_INT |
- HOUR [
- MINUTE ERROR [

- SECOND
- MILLISECOND

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Inverse instruction: SPLIT_TOD_INT (see page 298)

PLC types Availability of CONCAT_TOD_INT (see page 1318)

Data types Data type 1/0 Function
1st input hour
2nd input minute
INT)
3rd input second
4th input millisecond
TIME_OF_DAY output result
BOOL output The Boolean output ERROR is set if the input values
are invalid date or time values.
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Tvpe | Initial
] VAR TOD _value TIME_OF_DaY TOD#Eo0:00:00
1 VaR HOUR,_value INT 15
2 VAR MIMUTE _value INT 29
3 VaR SECOMND_value INT =1
4 VAR MILLISECOMD walue INT]
5 VaR ERROR Bl FaL3E

b CONCAT TOD_INT

HOUR value = 18— HOUR ——T0D value = TODH13:29:59
MINUTE _value = 29 —— MINUTE ERROR ——ERROR]
SECOND_value = 59— SECOND
MILLISECOMD value = 0 —— MILLISECOND

ST When programming with structured text, enter the following:
TOD val ue : = CONCAT_TOD I NT(HOUR : = HOUR val ue,
M NUTE : = M NUTE val ue,
SECOND : = SECOND val ue,
M LLI SECOND : = M LLI SECOND val ue,
ERROR => ERROR);

288

Date and time instructions

DAY OF WEEK1 Return the day of the week

Description DAY_OF_WEEK1 returns the day of the week for any date as an INT. The number 1 corresponds
to Monday; 7 corresponds to Sunday.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

— D&Y OF WEEKD

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types see page 1319

Datatypes Data type I/0 Function
DATE input date
ANY16 output 1 (Monday) — 7 (Sunday)
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.

| lass | Identifier | Type | Inikial |
] VAR DATE value DATE D#2012-05-15
1 WAR DAY _OF WEEK walue INT o

LD DATE value = D#2012-05-15 ——_ DAY _OF WEEK1 |——iDAY OF WEEK value = 2

The value iDAY_OF_WEEK_value = 2 corresponds to Tuesday.

ST When programming with structured text, enter the following:
i DAY_OF_WEEK val ue : = DAY_OF_WEEK1(DATE_val ue) ;

289

Date and time instructions

%)
c

=

3]

= GET RTC DT Read the Real-Time Clock

2 — —

O Description GET_RTC_DT reads the PLC's real-time clock value for the clock/calendar function. If the PLC has
L no real-time clock or if the real-time clock is not functioning, the result is an invalid date and time

_ value.

s GET RTC DT |

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of GET_RTC_DT (see page 1326)

Data types Data type 1/0 Function
DATE_AND_TIME output date and time
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Twpe | Initial
] VAR b3etEdge BOOL FALSE
1 VAR DT _walue DT DTR2001-01-01-00;00:00

LD GET RTC DT DT value = DT#2010-06-30-11:15:00

ST When programming with structured text, enter the following:
DT _val ue : = CGET_RTC DT();

290

Date and time instructions

IS VALID DATE INT Check whether a DATE is valid

Description IS_VALID_DATE_INT checks whether the combination of the INT values for the year, month, and
day is a valid DATE value. The Boolean output flag is set if the date is valid.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

IS_VALID_DATE_INT |

- YEAR 5
- MOMNTH o
- DAY

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of IS_VALID_DATE_INT (see page 1327)

Data types Data type 1/0 Function
1st input year
INT 2nd input month
3rd input day
BOOL output set to TRUE if the resulting date value is valid
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Tvpe | Initial |
] VAR | YEAR_walue INT 2011
1 VAR MOMNTH waluoe INT 12
Z WoR DAY _value INT 24
K] VaR YaLID BOOL FALSE

LD IS WALID_DATE_INT

YEAR_value = 2011 —— YEAR — Y

FONTH value = 12— MONTH
DAY value = 24 —— DAY

ST When programming with structured text, enter the following:
VALID : = | S_VALI D_DATE_| NT(YEAR : = YEAR val ue,
MONTH : = MONTH val ue,
DAY : = DAY val ue);

291

Date and time instructions

IS VALID DT INT Check whether DATE_AND_TIME is valid

Description IS_VALID_DT checks whether the combination of INT values for year, month, day, hour, minute,
second, and millisecond is a valid date and time value. The Boolean output flag is set if the date
and time value is valid.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

I5_vALID_DT_INT
- YEAR i
- WMONTH

- DAY

- HOUR

- MINUTE

- SECOND

- MILLISECOND

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of IS_VALID_DT_INT (see page 1327)

Data types Data type 1/0 Function
1st input year
2nd input month
3rd input day
INT 4th input hour
5th input minute
6th input second
7th input millisecond
BOOL output set to TRUE if the resulting date and time value is valid
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Type | Inikial
] VAR YEAR _value IMNT 2011
1 VAR MOMTH value IMT 12
2 VAR DAY _value IMNT 24
3 VAR HOLUR,_walue IMNT 15
4 VAR MIMNUITE _walue IMT 29
5 VAR SECOMND_walue IMNT 50
& VAR MILLISECOMD walue INT]
7 VAR MALID Bl FALSE

LD IS_VALID_DT_INT

YEAR_value = 2011 — YEAR —)
MOMTH_value = 12 —— MOMTH
DAY walue = 24 —— DAY
HOUR_value = 18— HOUR
MINUTE _value = 259 —— MINUTE
SECOND_value = 59— SECOND
MILLISECOMD_value = 0 —— MILLISECOND

292

Date and time instructions

ST When programming with structured text, enter the following:
VALID : = I S_VALI D DT_I NT(YEAR : = YEAR val ue,
MONTH : = MONTH val ue,
DAY : = DAY_val ue,
HOUR : = HOUR val ue,
M NUTE : = M NUTE val ue,
SECOND : = SECOND val ue,
M LLI SECOND : = M LLI SECOND val ue) ;

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

293

Date and time instructions

IS VALID TOD INT Check whether the TIME_OF_DAY is valid

Description IS_VALID_TOD_INT checks whether the combination of INT values for hour, minute, second, and
millisecond is a valid time of day value. The Boolean output flag is set if the time of day value is
valid.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

IS_ALID_TOD_INT
- HOUR

- MINUTE

- SECOND

- MILLISECTND

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of IS_VALID_TOD_INT (see page 1328)

Data types Data type 110 Function
1st input hour
2nd input minute
INT .
3rd input second
4th input millisecond
BOOL output set to TRUE if the resulting time of day value is valid
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Tvpe | Initial |
0 YR, HZIUR _value INT 15
1 VAR MINUTE _walue IMNT 29
2 VR SECOMD_value IMNT 59
3 VAR MILLISECOMD walue INT]
4 YR, YaLID BEOOL FALSE

LD IS wALID_TOD_INT

HOUR_value = 18— HOUR — N
MINUTE value = 29 —— MINUTE
SECOND_value = 55— SECOND
MILLISECOND value = 0—— MILLISECOND

ST When programming with structured text, enter the following:
VALID : = | S_VALI D _TOD | NT(HOUR : = HOUR val ue,
M NUTE : = M NUTE_val ue,
SECOND : = SECOND val ue,
M LLI SECOND : = M LLI SECOND val ue) ;

294

Date and time instructions

%)
c
2
SET RTC DT Set the Real-Time Clock (:'—,)
—— z
Description SET_RTC_DT sets the real-time clock value in the PLC for the clock/calendar function. If the PLC G
has no real-time clock or if the real-time clock is not functioning, the result is an invalid date and w
time value. -
SET _RTC_DT | T
- EM ENO o
- 1 |-

PLC types Availability of SET_RTC_DT (see page 1330)

Data types Data type I/0 Function
DATE_AND_TIME input date and time
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Twpe | Initial

i VAR | bSetEdge BOOL FALSE
1 VAR DT_value DT DT#2010-06-30-11:15:00
z VAR bEno BOOL FALSE
LD ‘ he
etEdge SET_RTC_DT bEnn
=l EN ENO I
| DT_value = DT#2010-05-30-11:15:00 —— IN

ST When programming with structured text, enter the following:
| F DF(bSet Edge) THEN
SET_RTC DT(DT val ue);
END | F;

295

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Date and time instructions

SPLIT DATE INT Split a date into INTEGER values

Description

PLC types

Data types

Example

POU header

LD

ST

SPLIT_DATE_INT splits a value of the data type DATE into INT values for year, month, and day.

SPLIT_DATE_INT |
I YEAR |
MONTH |

DAY |

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Inverse instruction: CONCAT_DATE_INT (see page 283)

Availability of SPLIT_DATE_INT (see page 1331)

Data type 1/0 Function
DATE input date

1st output year
INT 2nd output month

3rd output day

In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Type | Initial

VAR DATE_walue DATE D#2011-12-24
VAR YEAR._wvalue INT 0

VAR PIONTH value INT 0

YAR DAY _wvalue INT 0

L I S e e |

SPLIT_DATE_IMT
DATE walue = D#2011-12-24 —— |1 YEAR ——YEAR _value = 2011
MONTH ——WOMNTH_value = 12

DAY ——DAY walue = 24

When programming with structured text, enter the following:
SPLI T_DATE_I NT(I N : = DATE val ue,

YEAR => YEAR val ue,

MONTH => MONTH val ue,

DAY => DAY _val ue);

296

Date and time instructions

%)
c
h=
SPLIT DT INT Split a date and time into INTEGER values E‘—,’
—— 2
Description SPLIT_DT_INT splits a value of the data type DATE_AND_TIME into INT values for year, month, G
day, hour, minute, second, and millisecond. |
SPLT DT INT f
=N YEAR — <
MOMNTH — a5
DAY —
HOUR —
MIMNUTE —
SECOND —
MILLISECOMND —

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions” pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Inverse instruction: CONCAT_DT_INT (see page 285)

PLC types Availability of SPLIT_DT_INT (see page 1331)

Data types Data type I/O Function
DATE_AND_TIME input date and time
1st output year
2nd output month
3rd output day
INT 4th output hour
5th output minute
6th output second
7th output millisecond
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Tvpe | Initial

] WAR | DT_walue DATE_aND_TIME DT#2011-12-24-15:29
1 WAR YEAR_walue IMT 0

2 WAR MOMTH_walue IMT 0

3 WAR DAY walue IMT 1]

4 WAR HOUR_walue IMT 0

o YWAR MINUTE wvalue IMT 0

& WAR SECOMD walue IMT 1]

i WAR MILLISECOMD walue IMT 1]

297

Date and time instructions

LD SPLIT_OT_INT

OT value = DTE0T1-12-24-15:29:59 —— |1 YEAR ——Y¥EAR _value = 2011
MIONMTH ——MOMNTH _value = 12
DAY ——DAY walue = 24
HOUR ——HOUR_value = 15
MIMUTE ——MINLUTE value = 29
SECOMND ——SECOMD_walue = 55
MILLISECORND (——MILLISECOND value =10

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

ST When programming with structured text, enter the following:
SPLIT DT_INT(IN := DT val ue,

YEAR => YEAR val ue,
MONTH => MONTH val ue,
DAY => DAY _val ue,
HOUR => HOUR val ue,
M NUTE => M NUTE_val ue,
SECOND => SECOND val ue,
M LLI SECOND => M LLI SECOND val ue);

298

Date and time instructions

SPLIT TOD INT Split the time of day into INT values

Description SPLIT_TOD_INT splits a value of the data type TIME_OF_DAY into INT values for hour, minute,

PLC types

Data types

Example

POU header

LD

ST

second, and millisecond.

SPUT_TOD_INT |
M HOUR ¢
MINUTE |

SECOND |
MILLISECOND

To add an enable input and enable output to the instruction, select [With EN/ENO] from the

"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the

context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Inverse instruction: CONCAT_TOD _INT (see page 287)

Availability of SPLIT_TOD_INT (see page 1331)
Data type I/O Function
TIME_OF_DAY input time of day

1st output hour

2nd output minute
INT

3rd output second

4th output millisecond

In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Type | Initial
0 YAR [TOD_walue TIME_CF_DAY TOD#18:29:59
1 YAR HOUR_value IMT 0
i VAR MINUTE_ value INT 0
3 YAR SECCMD_wvalue INT 0
4 YAR MILLISECOND walue INT 0

SPLT TOD MT
TOD walue = TOD#E S 2985 —— [N HOLIR ——HOUR_value = 15
MIMUTE ——MINUTE walue = 29
SECOND ——SECONMD value = 55
MILLISECOMND ——MILLISECOND walue =1

When programming with structured text, enter the following:

SPLIT TOD INT(IN := TOD val ue,
HOUR => HOUR val ue,
M NUTE => M NUTE val ue,
SECOND => SECOND val ue,
M LLI SECOND => M LLI SECOND _val ue) ;

299

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

Date and time instructions

SUB DATE DATE Subtracts a date from another date

Description SUB_DATE_DATE subtracts a value of the data type DATE from another DATE value. The result
is stored in the output variable of the data type TIME.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

- SUB_DATE_DATE '[

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of SUB_DATE_DATE (see page 1331)

= The TIME result is only valid if the difference between the minuend and
subtrahend is smaller than or equal to the maximum TIME duration allowed.
Otherwise an overflow of the TIME result variable occurs and the CARRY flag is

set.
Data types Data type I/0 Function
DATE 1st input minuend
DATE 2nd input subtrahend
TIME output result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Tvpe | Initial |
0 VAR, CATE_waluel DATE D#2010-06-30
1 VAR DATE_waluez DATE D#2010-01-01
2 VAR TIME_result TIME T#0s

b DATE_waluel = D#2010-06-30 — SUE_DATE_DATE ——TIME_result = T#1504d

DATE waluel = DFE2010-01-01 —

ST When programming with structured text, enter the following:
TIME_result := SUB_DATE_DATE(DATE val uel, DATE val ue2);

300

Date and time instructions

SUB DT DT Subtract date and time from date and time

Description SUB_DT_DT subtracts a value of the data type DATE_AND_TIME from another DATE_AND_TIME
value. The result is stored in the output variable of the data type TIME.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- SUB DT DT '[

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of SUB_DT_DT (see page 1331)

= The TIME result is only valid if the difference between the minuend and
subtrahend is smaller than or equal to the maximum TIME duration allowed.
Otherwise an overflow of the TIME result variable occurs and the CARRY flag is

set.
Data types Data type I/0 Function
DATE_AND_TIME 1st input minuend
DATE_AND_TIME 2nd input subtrahend
TIME output result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Type | Inikial |
0 VAR, DT _wvaluel DATE_AMD_TIME DT#2011-12-24-15:29:59
1 VAR DT _valuez DATE_AND_TIME DT#2011-12-06-05:21:25
2 VAR TIME_result TIME TH#0s
LD

OT waluel = DTHEO11-12-24-18: 2958 — SUB_DT_DT
OT_walue2 = DTHFE011-12-06-05:21 258 —

TIME_result = T#158d13h8m31=

ST When programming with structured text, enter the following:
TIME result : =SUB _DT_DT(DT _val uel, DT_val ue2);

301

Date and time instructions

SUB DT TIME Subtracts time from date and time

Description SUB_DT_TIME subtracts a value of the data type TIME from a value of the data type
DATE_AND_TIME. The result is stored in the output variable of the data type TIME_OF_DAY.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

- SUB_DT_TIME '[

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of SUB_DT_TIME (see page 1331)

Data types Data type I/O Function
DATE_AND_TIME 1st input minuend
TIME 2nd input subtrahend
DATE_AND_TIME output result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Twpe | Inikial

0 VAR DT_walue DATE_AMD _TIME DT#2011-12-24-15:29:59
1 VAR TIME_walue TIME T#2h35m3gs560ms

2 VaR DT_resul: DATE_AMD_TIME DT#2001-01-01-00:00:00

LD DT yalue = DT#2011-12-24-18.29:69 — SUB_DT_TIME

TIME_value = T#2h35m38=2560ms —

DT _result = DT#2011-12-24-15:54:21

ST When programming with structured text, enter the following:
DT result : =SUB DT _TI ME(DT _val ue, Tl ME val ue);

302

Date and time instructions

SUB TOD TIME Subtracts a TIME value from the time of day

Description SUB_TOD_TIME subtracts a TIME value from a value of the data type TIME_OF_DAY. The result
is stored in the output variable of the data type TIME_OF_DAY.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

- SUB_TOD_TIME '[

Part 1l

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of SUB_TOD_TIME (see page 1331)

Data types Data type 1/0 Function
TIME_OF_DAY 1st input | minuend
TIME 2nd subtrahend
input
TIME_OF_DAY output result
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Twpe | Initial
] VAR TOD walue TIME_OF_DAY TOD#18:29:59
1 VAR TIME_walue TIME T#2h35m38s560ms
2 VAR TOD_result TIME_OF_DAY ToDa00:00:00
LD TOD_value = TOD#I8:29:55 — SUB_TOD.TIME |—TOD_result = TOD#15:54:21

TIME_walue = T#2h30m35s860ms —

ST When programming with structured text, enter the following:
TOD result : =SUB TOD Tl ME(TOD val ue, TI ME_val ue) ;

303

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Date and time instructions

SUB TOD TOD Subtract Time of Day from Time of Day

Description

PLC types

Data types

Example

POU header

LD

ST

SUB_TOD_TOD subtracts a value of the data type TIME_OF_DAY from another TIME_OF_DAY
value. The result is stored in the output variable of the data type TIME.

- SUB_TOD_TOD '[

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Availability of SUB_TOD_TOD (see page 1331)

Data type I/O Function
TIME_OF_DAY 1st input minuend
TIME_OF_DAY 2nd input subtrahend
TIME output result

In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

All input and output variables used for programming this function have been declared in the POU
header.

Class | Identifier | Twpe | Initial
] VEER TOD waluel TIME_OF_DaY TOD#15:29:59
1 VAR TOD_waluez TIME_OF_DaY TODH0S:21:28
2 VR TIME result TIME T#0s

TOD_waluel = TOD# 5:29:59 —— SUB_TOD_TOD ——TIME_result = T# 3h8m31s
TOD walue?2 = TODHDS: 2128 —

When programming with structured text, enter the following:
TIME result : =SUB TOD TOD(TOD val uel, TOD val ue2);

304

Chapter 11

Bistable instructions

Bistable instructions

"
c
=
©
=]
"
k=
8 Description The function block SR (set/reset) allows you to both set and reset an output.
Instance
=R

@
¥

- 31 oM |r

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For SR declare the following:

SET (S1) Set
The output Q is set for each rising edge at SET
RESET (R) reset

The output Q is reset for each rising edge detected at RESET, except
when SET is set (see time chart)

Q (Q1) signal output

is set if a rising edge is detected at SET,; is reset if a rising edge is
detected at RESET if SET is not set.

== * The names in brackets are the valid parameter names of the ST-editor.
* Qis setifarising edge is detected at both inputs (Set and Reset).

* Upon initialising, Q always has the status zero (reset).

Time chart

SET

RESET L

PLC types Availability of SR (see page 1331)

Data types Data type I/O Function
1st input Set
BOOL 2nd input reset
output set or reset depending on inputs
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

306

Bistable instructions

)

c

§=)

POU header All input and output variables which are used for programming the function block SR are declared %
in the POU header. This also includes the function block (FB) itself. By declaring the FB you create <U:)
a copy of the original FB. This copy is saved under copy_name, and a separate data area is c
reserved. O
— o L

| Class | Identifier | Twpe | Initial | Comment | -

1] copy_name SR ¥ under this identifier a copy of —
1 VAR set BOOL FALSE set input +
s VAR reset BOOL FALSE reset inpuk ©
3 VAR, signal_output BOOL FALSE a5

Body If set is set (status = TRUE), signal_output will be set. If only reset is set, the signal_output will
be reset (status = FALSE). If both set and reset are set, signal_output will be set.

LD
set COpY_Hame,

| | | R | signal CLLpLE

reset =51 a1 f_)"
| } R _.|

ST When programming with structured text, enter the following:
copy_name(SET: = set, RESET: = reset);
si gnal _out put: = signal out put;

307

Bistable instructions

"
c
=
©
=]
"
k=
(uj Description The function block RS (reset/set) allows you to both reset and set an output.
Instance
R=

@
¥

- G’I|
- R

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For RS declare the following:

SET (S1) Set

The output Q is set for each rising edge at SET if RESET is not set.
RESET (R) reset

The output Q is reset for each rising edge at RESET.
Q (Q1) signal output

is set if a rising edge is detected at SET and if RESET is not set; is reset if
a rising edge is detected at RESET.

= * The names in brackets are the valid parameter names of the ST-editor.

* Qisresetifarising edge is detected at both inputs.

Time chart

SET

RESET

PLC types Availability of RS (see page 1330)

Data types Data type I/O Function
1st input Set
BOOL 2nd input reset
output set or reset depending on inputs
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

308

Bistable instructions

POU header All input and output variables which are used for programming the function block RS are declared
in the POU header. This also includes the function block (FB) itself. By declaring the FB you create
a copy of the original FB. This copy is saved under copy_name, and a separate data area is

Body

LD

ST

reserved.
| Class | Identifier | Tvpe | Initial | Comment |
1] copy_name RS Funder this identifier a copy of
1 VAR set BOOL FALSE setinput
2 WYaR, resekt EOOL FALZE reset inpuk
3 VAR signal_output BOOL FALSE

If set is set (status = TRUE) the signal_output will be set. If only reset is set, the sighal_output
will be reset (status = FALSE). If both set and reset are set, the signal_output will be reset to

FALSE.

et

COpY_name

]

]

reset

| Exs
— % 01
R1

signal_output
-

-1

When programming with structured text, enter the following:
copy_name(
si ghal _out put: = signal out put;

SET: = set,

RESET: = reset);

309

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

Chapter 12

Edge detection instructions

Edge detection instructions

%)
c

=

©

= R TRIG Rising edge trigger

2 —

8 Description The function block R_TRIG (rising edge trigger) allows you to recognize a rising edge at an input.
- Instance

E F_TRIG

© — CLK &

o

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For R_TRIG declare the following:
CLK signal input

the output Q is set for each rising edge at the signal input (CLK = clock)
Q signal output

is set when a rising edge is detected at CLK.

PLC types Availability of R_TRIG (see page 1330)

= The output Q of a function block R_TRIG remains set for a complete PLC cycle
after the occurrence of arising edge (status change FALSE -> TRUE) at the CLK
input and is then reset in the following cycle.

Data types Data type I/O Function
input CLK detects rising edge for clock
BOOL
output Q set when rising edge detected
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block R_TRIG are
declared in the POU header. This also includes the function block (FB) itself. By declaring the FB
you create a copy of the original FB. This copy is saved under copy_name, and a separate data
area is reserved.

| Class | Identifier | Tvpe | Initial |
0 copy_name R_TRIG
1 WAR signal_input Bl FaLSE
2 VAR signal_output BOOL FALSE

Body Signal_output will be set, if a rising edge is detected at signal_input.

LD
COpY_NEme
zignal_input R_TRIG signal_output
CLE Y b

J |
| d
ST When programming with structured text, enter the following:

copy_nanme(CLK: = signal _input ,
Q=> signal output);

312

Edge detection instructions

0)
c
2
F TRIG Falling edge trigger ‘:‘—,’
= B
Description The function block F_TRIG (falling edge trigger) allows you to recognize a falling edge at an input. G
L
Instance
F_TRIG =
— CLK [+
©
(ol

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For F_TRIG declare the following:
CLK signal input
the output Q is set for each falling edge at the signal input (clk = clock)

Q signal output
is set if a falling edge is detected at CLK.

PLC types Availability of F_TRIG (see page 1320)

= The output Q of a function block F_TRIG remains set for a complete PLC cycle
after the occurrence of a falling edge (status change TRUE -> FALSE) at the CLK
input and is then reset in the following cycle.

Data types Data type I/O Function
input CLK detects falling edge at input clock
BOOL output Q is set if falling edge is detected at
input
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block F_TRIG are
declared in the POU header. This also includes the function block (FB) itself. By declaring the FB
you create a copy of the original FB. This copy is saved under copy_name, and a separate data
area is reserved.

lass | Identifier | Tvpe | Initial |
] VAR COpY_Marnme F_TRIG
1 VAR signal_input Bl FALSE
z VAR signal_ouktput BOOL FALSE

Body Signal_output will be set, if a falling edge is detected at signal_input.

LD
COpY_Name
zignal_input F_TRIG signal_output
CLK ! h

J |
| d
ST When programming with structured text, enter the following:

copy_name(CLK: = signal _input ,
Q=> signal _output);

313

Chapter 13

Counter instructions

Counter instructions

%)
[

=

3]

= CTU Up counter

=

8 Description The function block CTU (count up) allows you to program counting procedures.
— Instance

= CTU |

© -

F ~CU Gl |—-

- R oV
~ Py

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For CTU declare the following:

CuU clock generator

the value 1 is added to CV for each rising edge at CU, except when RESET is
set

RESET (R) reset
CV is reset to zero for each rising edge at RESET
PV set value
if PV (preset value) is reached, Q is set
Q signal output
is set if CV is greater than/equal to PV
Ccv current value
contains the addition result (CV = current value)

= The names in brackets are the valid parameter names of the ST-editor.

PLC types Availability of CTU (see page 1319)

Time chart | | | | | | | | | | | |
cu

o
RESET
Cv
i
I
P ;
Py SEESL -t Rl S i) e o R S HEE D < S B !
:
! ——
Data types Data type I/O Function
input CU detects rising edge, adds 1 to CV
BOOL
input RESET | resets CV to 0 at rising edge
INT input PV set value
BOOL output Q set if CV >= PV
INT output CV current value

316

Counter instructions

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block CTU are declared
in the POU header. This also includes the function block (FB) itself. By declaring the FB you create
a copy of the original FB. This copy is saved under copy_name. A separate data area is reserved
for this copy.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

—
-
| Class | Identifiet | Type | Initial | Comment | 5_5

0 COpY_name Tl under this identifier a copy of the

1 W AR, clock, BOOL FALSE upward counter input

2 AR resek BOOL FALSE reset input {reset to O)

3 WAR set_walue INT 0 defaulk (P¥=preset valug)

4 VAR signal_oukpuk BOOL FALSE

=] VAR current_walue IMT 1] current counter walue

& MAR (EV=elapsed valug)

Body If reset is set (status = TRUE), current_value (CV) will be reset. If a rising edge is detected at
clock, the value 1 will be added to current_value. If a rising edge is detected at clock, this
procedure will be repeated until current_value is greater than/equal to set_value. Then,
signal_output will be set.

LD
clock COpY_harme
/) | cTu signal_output
reset =
cl F Cv ——curent_value =5
set_walue =5 —— P

ST When programming with structured text, enter the following:

copy_name(CU: = cl ock, RESET: =reset, PV: =set_val ue, Q=>signal _out put, Cv=>
current val ue);

317

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Counter instructions

CTD Down counter

Description The function block CTD (count down) allows you to program counting procedures.

Instance
CTD
—Ch il |—-

LD v
- PV

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For CTD declare the following:

CD clock generator input

the value 1 is subtracted from the current value CV for each rising edge
detected at CD, except when LOAD is set or CV has reached the value zero.

LOAD (LD) Set
with LOAD the counter state is reset to PV
PV preset value

is the value subjected to subtraction during the first counting procedure
Q signal output

is set if CV = zero
Ccv current value

contains the current subtraction result (CV = current value)

= The names in brackets are the valid parameter names of the ST-editor.

PLC types Availability of CTD (see page 1319)

Time chart

[]]

o [|

[

318

Counter instructions

(72}
c
(@)
=
Data types . S
Data type I/0 Function g
input CD subtracts 1 from CV at rising edge [%2]
BOOL c
input LOAD resets counter to PV G
INT input PV preset value wl
BOOL output Q signal output, set if CV =0
INT output CV current value :
G
Example In this example, the same POU header is used for all programming languages. For an example a

using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block CTD are declared
in the POU header. This also includes the function block (FB) itself. By declaring the FB you create
a copy of the original FB. This copy is saved under copy_name, and a separate data area is

reserved.
| Class | Identifier | Tvpe | Initial | Comment |
1] COPY _name CTD Funder this identifier a copy of the
1 WoR clock BOOL FALSE dowrnwward counker input
Z WOR sek BOOL FALSE set input (sek bo preset value (PY)
3 WaR oubpub_value INT n minend
4 WAR signal_output BOOL FALSE
5 WAR current_walue INT 0 current counter value

Body If set is set (status = TRUE), the preset_value (PV) is loaded in the current_value (CV). The
value 1 will be subtracted from the current_value each time a rising edge is detected at clock.
This procedure will be repeated until the current_value is greater than/equal to zero. Then,
signal_output will be set.

LD
clock. COpy_harme

J.J— CTD signal_output
et |— -
JDJ C% ——current_walue = 0

output_walue =5 — PV

ST When programming with structured text, enter the following:

| F set THEN (* first cycle *)

| oad: =TRUE; (* load has to be TRUE,

to set current_value to output_val ue *)

cl ock: =FALSE;
END | F;
copy_name(CD: = cl ock, LOAD: = set, PV: = output_val ue, Q=> signal output, CV=>
current _val ue);

| oad: =FALSE; (* nowcurrent_val ue got the right value, |oad doesn't need
to be *)

(* TRUE any | onger *);

319

Counter instructions

CTUD Up/down counter

Description The function block CTUD (count up/down) allows you to program counting procedures (up and
down).

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Instance
CTUD
—-AZU QL —
-0 QD —
- R Ch
— LD
— P

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For CTUD declare the following:
CuU count up

the value 1 is added to the current CV for each rising edge detected at CU,
except when RESET and/or LOAD is/are set.

CD count down

the value 1 is subtracted from the current CV for each rising edge detected at
CD, except when RESET and/or LOAD is/are set and if CU and CD are
simultaneously set. In the latter case, counting will be upwards.

RESET (R) reset
if RESET is set, CV will be reset
LOAD (LD) Set

if LOAD is set, PV is loaded to CV. This, however, does not apply if RESET is
set simultaneously. In this case, LOAD will be ignored.

PV preset value

defines the preset value which is to be attained with the addition or subtraction
(PV = preset value)

QU signal output - count up
is set if CV is greater than/equal to PV
QD signal output - count down
is set if CV = zero
CcVv current value
is the addition/subtraction result (CV = current value)

= The names in brackets are the valid parameter names of the ST-editor.

PLC types Availability of CTUD (see page 1319)

320

Counter instructions

Time chart cu | | | ﬂ_ﬂ
o [y
RESET |—|
LOAD l—‘
a L]
w || [] L

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

| o

Part 1l

’_I_I

Data types Data type I/O Function
input CU count up
input CD count down
BOOL
input RESET | resets CV if set
input LOAD loads PV to CV
INT input PV set value
output QU signal output count u
BOOL put Q g p p
output QD signal output count down
INT output CV current value
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block CTUD are
declared in the POU header. This also includes the function block (FB) itself. By declaring the FB
you create a copy of the original FB. This copy is saved under copy_hame. A separate data area
is reserved for this copy.

| Class | Identifier | Tvpe | Initial | Comment |
n COpY_name CTUD ¥ under this identifier a copy of the
1 AR up_clock BOOL FALSE upwward counter input
Z WAOR, davn_clock, BOOL FALSE downward counker input
3 WOR, reset BOOL FALSE resek input (reset ko 0)
4 W AR set BOOL FALSE set inpuk {set to set_walue)
5 AR set_wvalue INT 0 default
& VAR output_up BOOL FALSE
7 VAR output_down BOOL FALSE
g VAR, current_wvalue IMT 1] current counter value
a VR enable BOOL FALSE

321

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Counter instructions

Body Count up:

LD

ST

If reset is set, the current_value (CV) will be reset. If up_clock is set, the value 1 is added to the
current_value. This procedure is repeated for each rising edge detected at up_clock until the
current value is greater than/equal to the set_value. Then output_up is set. The procedure is not
conducted, if reset and/or set is/are set.

Count down:

If set is set (status = TRUE), the set_value (PV = preset value) will be loaded in the current_value
(CV). If down_clock is set, the value 1 is subtracted from set_value at each clock. This procedure
is repeated at each clock until the current_value is smaller than/equal to zero. Then,
signal_output is set. The procedure will not be conducted, if reset and/or set is/are set or if CU
and CV are set at the same time. In the latter case, counting will be downwards.

up_clock
[m)
dowen_clock COpY_Narme output_up
/] CTUD Iig(j}
reset l output_down
ol -
st _— ——current_walue = 0
(m)
et value=h—FY

When programming with structured text, enter the following:

copy_name(CU. = up_cl ock, CD:= down_cl ock, RESET:= reset, LOAD = set, PV:=
set val ue,

QU=> out put _up, QD=> out put _down, CV=> current_val ue);

322

Chapter 14

Timer instructions

Timer instructions

Timer with switch-off delay

Description The function block TOF allows you to program a switch-off delay, e.g. to switch off the ventilator of
a machine at a later point in time than the machine itself.

0
c
)

=
o
S
P

=
0
c
O
Ll

Instance
TOF
—Ird] |—'

-PT_ ET

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For TOF declare the following:
IN timer ON

an internal timer is started if a falling edge is detected at IN. If a rising edge is
detected at IN before PT has reached its value, Q will not be switched off (see

time chart, section @)
PT switch-off delay

(16-bit value: 0 - 327.27s, 32-bit value: 0 - 21,474,836.47s; resolution 10ms
each) the switch-off delay is defined here (PT = preset time)

Q signal output
is reset if PT=ET
ET elapsed time

represents the current value of the elapsed time

Time
chart IN
to t b t3 ts
Q
t t; + PT N ts +PT
ET 0 °
PT
to t b t3 1 ts

@ Q is switched off with a delay corresponding to the time defined in PT. Switching on is
carried out without delay.

@ If IN (as in the time chart on top for t3 to t4) is set prior to the lapse of the delay time PT, Q
remains set (time chart for t2 to t3).

PLC types Availability of TOF (see page 1332)

324

Timer instructions

)
c
(@]
=
Data types S
yp Data type I/0 Function >
BOOL (IN) input internal timer on a falling edge z
TIME (PT) input switch off delay G
BOOL (Q) output signal output reset if PT = ET L
TIME (ET) output elapsed time
-
3
Example In this example, the same POU header is used for all programming languages. For an example o

using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block TOF are declared
in the POU header. This also includes the function block (FB) itself. By declaring the FB you create
a copy of the original FB. This copy is saved under copy_name. A separate data area is reserved
for this copy.

| Class | Identifier | Tvpe | Inikal |
COpY_MAame TOF
VAR stark BEDOL FALSE
WAR set_value TIME T#0s

VAR signal_oukput BOOL FALSE
WAR currenk_walue TIME T#0s

OO S I

Body If start is reset, this signal is transferred to signal_output with a delay corresponding to the period
of time set_value.

LD
COpy_hame
‘ start TOF signal_output
0] N @ O
‘ set value = T#10s—— FT ET ——current_wvalue = T#10s

ST When programming with structured text, enter the following:
copy_name(IN = start ,
PT: = set _val ue ,
Q=> signal _out put
ET=> current _val ue);

325

Timer instructions

%)
[
=
3]
= Timer with switch-on delay
=
8 Description The function block TON allows you to program a switch-on delay.
f Instance
< TOM
o — I Q |—'
-PT ETR-

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For TON declare the following:
IN timer ON

an internal timer is started for each rising edge detected at IN
PT switch-on delay

(16-bit value: 0 - 327.27s, 32-bit value: 0 - 21,474,836.47s; resolution 10ms
each) the switch-on delay is defined here (PT = preset time)

Q signal output
is setif PT=ET
ET elapsed time

indicates the current value of the elapsed time

Time
chart IN
to t4 to t3
//// ///J
Q % %/I %4
to + PT t1
ET
PT
t
to t4 t 13

® ®

@ Q is set delayed with the time defined in PT. Resetting is without any delay.

If the input IN is only set for the period of the delay time PT or even for a shorter period of time
(t3 - 12 < PT), Q will not be set.

PLC types Availability of TON (see page 1332)

326

Timer instructions

)
c
(@]
=
Data types S
yp Data type I/0 Function >
o
BOOL (IN) input internal timer starts at rising edge g
TIME (PT) input switch on delay G
BOOL (Q) output signal output setif PT= ET L
TIME (ET) output elapsed time
-
3
Example In this example, the same POU header is used for all programming languages. For an example o

using IL (instruction list), please refer to the online help.

POU header All input and output variables which are used for programming the function block TON are declared
in the POU header. This also includes the function block (FB) itself. By declaring the FB you create
a copy of the original FB. This copy is saved under copy_name. A separate data area is reserved
for this copy.

| Class | Identifier | Tvpe | Inikal |
0 COpY_name TN
1 VAR start BOOL FALSE
Z WAOR, set_walle TIME T#0s
K] VAR signal_oukput BOOL FALSE
4 W AR current_walue TIME T#0s

Body If start is set (status = TRUE), the input signal is transferred to signal_output with a delay by the
time period set_value.

LD
COpY_harme

start TOM signal_output

‘ J._! @ '.\""

set_walue = T#10s— FT ET ——-n::urrent_value1‘~= f#1 0=

ST When programming with structured text, enter the following:
copy_name(IN = start ,
PT: = set _val ue ,
Q=> signal output |,
ET=> current val ue);

327

Timer instructions

"
c
=
©
= Timer with defined period
=
8 Description The function block TP allows you to program a pulse timer with a defined clock period.
= Instance
< TF
o —r Gl |—'
-PT ETR-

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

For TP declare the following:

IN clock generator
if a rising edge is detected at IN, a clock is generated having the period
defined in PT

PT clock period

(16-bit value: 0 - 327.27s, 32-bit value: 0 -21,474,836.47s; resolution 10ms
each) a timer having the period PT is caused for each rising edge at IN. A
new rising edge detected at IN within the pulse period does not cause a new

timer (see time chart, section @)
Q signal output

is set for the period of PT as soon as a rising edge is detected at IN
ET elapsed time

contains the elapsed period of the timer. If PT = ET, Q will be reset

= FP2, FP2SH and FP10SH use a 32-bit value for PT.
Time m
chart IN
to to t3 ty ts5tg t7
Q
to t1 +PT t2 t2 +PT t4 t4 +PT
ET
PT
t
1o YipT to 3 17 tq + PT
@ " @ Independent of the turn-on period of the IN signal, a clock is generated at the output

Q having a length defined by PT. The function block TP is triggered if a rising edge
is detected at the input IN.

@ A rising edge at the input IN does not have any influence during the processing of

PLC types Availability of TP (see page 1332)

328

Timer instructions

n
c
(@]
=
Data types . S
Data type I/0 Function g
BOOL input IN clock generated according to clock period at rising edge g
TIME input PT clock period G
BOOL output Q signal output L
TIME output ET elapsed time
—
Example In this example, the same POU header is used for all programming languages. For an example <
using IL (instruction list), please refer to the online help. o

POU header All input and output variables which are used for programming the function block TP are declared
in the POU header. This also includes the function block (FB) itself. By declaring the FB you create
a copy of the original FB. This copy is saved under copy_name. A separate data area is reserved
for this copy.

Class | Identifier | Twpe | Inikial
] VAR COopY_name TP
1 VAR skart BOOL FALSE
z WAR, set_value TIME T#0s
3 VAR signal_output BOOL FALSE
4 WAOR current_walue TIME T#0s

Body If start is set (status = TRUE), the clock is emitted at signal_output until the set_value for the
clock period is reached.

LD
COpy_hame
sltart_ 1B | signal_q utput
] IN g o
set_wvalue = T#is—— FT ET ——current_value = T#is

ST When programming with structured text, enter the following:
copy_name(IN = start ,
PT: = set _val ue ,
Q=> signal _out put
ET=> current _val ue);

329

Timer instructions

ADD TIME Add TIME

Description ADD_TIME adds the times of the two input variables and writes the sum in the output variable.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

ADD_TIME |
- Time
- Time2
To add an enable input and enable output to the instruction, select [With EN/ENO] from the

"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part Il

PLC types Availability of ADD_TIME (see page 1318)

Data types Data type I/O Function
TIME 1st input augend
TIME 2nd input addend
TIME output sum
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Iritial |
0 birme_walue_1 TIME = T#0s
1 VaR kime_wvalue_# TIME T#0s
2 VAR kime_wvalue_3 TIME T#0s

In this example the input variables (time_value_1 and time_value_2) have been declared. Instead,
you may enter constants directly at the input contacts of a function.

Body Time_value_1 and time_value_2 are added. The result is written into time_value_3.

LD ADD_TIME
time_wvalue_1 = T#d=400ms —— Time1 —tirne_value_3 = T#10s
time_wvalue_2 = T#5sR00ms —— Time?

ST time_value_3:=ADD TI ME(tinme_value_1, tine_value 2);

330

Timer instructions

%)
c
h=
CONCAT TIME INT Concatenate INT values to form a time E‘—,’
—— 2
Description The highest non-zero time unit may be greater than its apparent limit, e.g. T#25h is a valid time G
value whereas T#1d25h is not. T
COMCAT TIME _INT f
— DAY — <
— HOURS ERROR — =
— MIMNLUTES
— SECONDS
— MILLIZECOMNDS

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of CONCAT_TIME_INT (see page 1318)

Data types Data type I/0 Function
1stinput days
2nd input hours
INT 3rd input minutes
4th input seconds
5th input milliseconds
TIME output result
BOOL output The Boolean output ERROR is set if the input values are invalid date or time values.
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Tvpe | Iritial

] VAR TIME _wvalue TIME T#0s

1 VAR DAYS wvalue IMNT 234

2 VAR HOURS _walue IMNT 15

3 VAR MIMUTES salue IMNT 58

4 WAR SECOMDS _value IMNT 57

5 VAR MILLISECOMDS walue IMT a0

& VAR ERROR BOOL FALSE

LD CONCAT _TIME_INT

DAYS walue = 234 —— DAYS ——TIME walue = T#234d15h58m57 s890ms
HOURS value = 15— HOURS ERROR ERROR

MINUTES value = 55 — MINUTES
SECONDE _value = 57 —— SECONDE
MILLISECONDE value = 850 —— MILLISECONDS

ST When programming with structured text, enter the following:
TI ME_val ue : = CONCAT_TI ME_|I NT(DAYS : = DAYS val ue,
HOURS : = HOURS val ue,
M NUTES : = M NUTES val ue,
SECONDS : = SECONDS val ue,
M LLI SECONDS : = M LLI SECONDS val ue,
ERROR => ERROR)

331

Timer instructions

DIV TIME INT Divide TIME by INTEGER

Description DIV_TIME_INT divides the value of the first input variable by the value of the second input variable
and writes the result into the output variable.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

D _TIME_INT |
- Time
- It |-

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DIV_TIME_INT (see page 1319)

Data types Data type I/O Function
TIME 1st input dividend
INT 2nd input divisor
TIME output result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial |
0 ktirme_walue_1 TIME T#0s
1 WaR time_value_# TIME T#0s
2 WAR INT _walue INT 1]

In this example the input variables (time_value_1 and INT_value) have been declared. Instead,
you may enter constants directly at the input contacts of a function.

Body time_value_1 is divided by INT_value. The result is written into time_value_2.

LD
O _TIME_INT
time_value_1 =T#ld—— Time ——ftime_wvalue_g = T#12h
INT value = 2—— Int |

ST When programming with structured text, enter the following:
time_value_2:=DIV_TI ME_I NT(tine_val ue_1, |NT_val ue);

332

Timer instructions

DIV TIME DINT Divide TIME by DOUBLE INTEGER

Description DIV_TIME_DINT divides the value of the first input variable by the value of the second and writes
the result into the output variable.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

DI _TIME_DINT |
— Time
— Dint r
To add an enable input and enable output to the instruction, select [With EN/ENO] from the

"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part 1l

PLC types Availability of DIV_TIME_DINT (see page 1319)

Data types Data type 1/0 Function
TIME 1st input dividend
DINT 2nd input divisor
TIME output result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header In the POU header, all input and output variables are declared that are used for programming this

function.
Class | Identifier | Type | Initial | Comment
n YAR. kime_walue_1 TIME T#2h
1 WOR, kime_wvalue_Z TIME T#0s resulk: TH20m
2 VaR DIMT walue DIMT &

In this example, the input variables (time_value_1, DINT_value) have been declared. However,
you can write a constant directly at the input contact of the function instead.

Body time_value_1 is divided by DINT_value. The result is written in time_value_2.

LD
Ol TIME_DINT
time_walue_1 =T#2h—— Time ——time_swalue_2 = T#20m
DIMT _walue = B —— Dint

ST When programming with structured text, enter the following:
time_value 2:=DIV_TIME DI NT(tinme_value_1, |INT_val ue);

333

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Timer instructions

DIV TIME REAL Divide TIME by REAL

Description DIV_TIME_REAL divides the value of the first input variable of the data type TIME by the value of
the second input variable of the data type REAL. The REAL value is rounded off to the nearest
whole number. The result is written into the output variable.

D _TIME_REAL |
- Tirme
- Real [

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of DIV_TIME_REAL (see page 1319)

Data types Data type I/0 Function
TIME 1st input dividend
REAL 2nd input divisor
TIME output result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Type | Initial |

1] VAR input_ktime TIME T#10s
1 WAR input_real REAL 2.4
Z VAR, div_result TIME T#0s

Body The value of variable input_time is divided by the value of the variable input_real. The result is
written in div_result. In this example the input variables have been declared in the POU header.
However, you may enter constants directly at the contact pins of the function.

LD
O _TIME_REAL
input_time = T#10s — Time ——div_result = T#ds170ms
input_real = 2.4000001 — Real

ST When programming with structured text, enter the following:
div_result:=DIV_TIME REAL(input tine, input_real);

334

Timer instructions

MUL TIME INT Multiply TIME by INTEGER

Description MUL_TIME_INT multiplies the values of the two input variables with each other and writes the
result into the output variable.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

Part 1l

MUL_TIME_INT |
- Tirne
- Int [

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of MUL_TIME_INT (see page 1328)

Data types Data type 1/O Function
TIME 1st input multiplicand
INT 2nd input multiplicator
TIME output result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Initial |
1] bme_walue_1 TIME T#0s
1 WOR mulkiplier INT 0O
z2 VAR kime_walue_2 TIME T#0s

In this example the input variables (time_value_1 and multiplier) have been declared. Instead,
you may enter constants directly at the input contacts of a function.

Body Time_value_1 is multiplied with multiplier. The result is written into time_value_2.

LD
FALL_TIME _IMT
time_wvalue_1 = T#ED0ms — Time ——time_wvalue_2 = T#3s
multiplier =5—— Int

ST When programming with structured text, enter the following:
time_value 2: =MJL_TIME_INT(tine_value_1, multiplier);

335

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

Part Il

Timer instructions

MUL TIME DINT Multiply TIME by DOUBLE INTEGER

Description MUL_TIME_DINT multiplies the values of the input variables and writes the result to the output
variable.

MUL_TIME_DINT |
- Tirmne
- Dint [

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of MUL_TIME_DINT (see page 1328)

Data types Data type I/0 Function
TIME 1stinput multiplicand
DINT 2nd input multiplicator
TIME output result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header In the POU header, all input and output variables are declared that are used for programming this

function.
| Class | Identifier | Tvpe | Inital | Comment |
0 kime_walue 1 TIME T#1s500ms
1 WAR multiplier DINT 5
z WAR, time_wvalue_2 TIME T#0s result: T#7s500ms

In this example, the input variables time_value and multiplier have been declared. However, you
can write a constant directly at the input contact of the function instead.

Body time_value_1 is multiplied by multiplier. The result is written in time_value_2.

LD
RMUL_TIME_DIMNT
time_walue_1 = T#1s500ms —— Time ——time_walue_2 = T#7s500ms
multiplicatar = 5 —— Dint

ST When programming with structured text, enter the following:
time_value_2: =MJL_TIME_DINT(time_value_1, nultiplier);

336

Timer instructions

MUL TIME REAL Multiply TIME by REAL

Description MUL_TIME_REAL multiplies the value of the first input variable of the data type TIME by the value
of the second input variable of the data type REAL. The REAL value is rounded off to the nearest
whole number. The result is written into the output variable.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

MUL_TIME_REAL | g
- Tirme
- Heal [

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of MUL_TIME_REAL (see page 1328)

Data types Data type 1/0 Function
TIME 1st input multiplicand
REAL 2nd input multiplicator
TIME output result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Initial |
n AR mul_result TIME T#0s

Body The constant T#1h30m is multiplied by the value 3.5. The result is written in mul_result. By

clicking on the e’ (Monitoring) icon while in the online mode, you can see the result
T#5h15m0s0.00ms immediately.

LD
tALIL_TIME_REAL
T#1h3lm—— Time ——nul_result = Ta#5h15m
35— Feal

ST When programming with structured text, enter the following:
mul _result:=MJL_TI ME_REAL(T#1h30m 3.5);

337

Timer instructions

SPLIT TIME INT Split atime into INTEGER values

Description The highest non-zero time unit may be greater than its apparent limit, e.g. T#25h is a valid time
value whereas T#1d25h is not.

%2}
c
@)
-
O
>
—_
)
%2}
c
O
L

SPLIT_TIME_INT
- IM DAYS
HOURS

MINUTES

SECONDS
MILLISECONDS

Part Il

To add an enable input and enable output to the instruction, select [With EN/ENO] from the
"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

PLC types Availability of SPLIT_TIME_INT (see page 1331)

Data types Data type 1/0 Function
TIME input time
1st output days
2nd output hours
INT 3rd output minutes
4th output seconds
5th output milliseconds
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Tvpe | Initial
0 VAR TIME _walue TIME T#234d15hS8mS57s890ms
1 VAR DS _walue INT 0O
2 VAR HOURS_wvalue INT 0O
3 VAR MIMUTES_walus IMNT 0O
4 VAR SECOMNDS _value INT 0O
LD
SPLIT_TIME IMT
TIME_walue = T#34d15h58ma7 =850ms —— M DAYS ——DAYS value = 234

HOURE ——HOURS _value = 15
MINUTES ——MINUTES value = 55
SECONDS ——3ECONDS_value = 57
MILLISECONDS ——MILLISECONDS _value = 550

ST When programming with structured text, enter the following:
SPLIT_TIME_INT(IN := TI ME_val ue,
DAYS => DAYS val ue,
HOURS => HOURS val ue,
M NUTES => M NUTES val ue,
SECONDS => SECONDS val ue,
M LLI SECONDS => M LLI SECONDS val ue) ;

338

Timer instructions

SUB TIME Subtract TIME

Description SUB_TIME subtracts the value of the second input variable from the value of the first input variable
and writes the result into the output variable.

(2]
c
(@)
=
(S]
>
—_
e
(2]
e
O
L

SUEB_TIME |
- Tirne1
- Tirne2
To add an enable input and enable output to the instruction, select [With EN/ENO] from the

"Instructions" pane (LD, FBD or IL editor). To reuse an instruction select "Recently used" from the
context menu or press <Ctrl>+<Shift>+<v> in the programming window.

Part 1l

PLC types Availability of SUB_TIME (see page 1331)

Data types Data type 1/0 Function
TIME 1st input minuend
TIME 2nd input subtrahend
TIME output result
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

| Class | dentifier | Twpe | Initial |

1] minuend TIME T#0s
1 W AR, subtrahend TIME T#0s

2 MAR resulk TIME T#0s

In this example the input variables (minuend and subtrahend) have been declared. Instead, you
may enter constants directly at the input contacts of a function.

Body Subtrahend is subtracted from minuend. The result will be written into result.

LD
SUB_TIME

minuend = T#400ms — Timel ——rasult = TROms
subtrahend = T#400ms — Timed

ST When programming with structured text, enter the following:
result:= SUB Tl ME(m nuend, subtrahend);

339

Chapter 15

Arithmetic instructions

2
c
@)

=
o
S
S

s
0

£

o

LL

Part Il

Arithmetic instructions

F20 ADD 16-bit addition

Description The 16-bit equivalent constant or 16-bit area specified by s and the 16-bit area specified by d are
added together if the trigger EN is in the ON-state. The result is stored in d. All 16-bit values are

PLC types

Data types

treated as integer values.

F20_ADD |
“EN T ENO |

-8 dr

Example value 27

Bit 15..12]10 .. 8

d 0000|0000

0001|1011

+

Example value 16

Bit 15..12110 .. 8

s 0000|0000

0001|0000

:

Result value 43 if trigger is ON

Bit 15..12110 .. 8

7. .4(3 0

d 0000 | 0000

0010|1011

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction ADD (see
page 61). Please refer also to Advantages of the IEC instructions in the online help.

When this instruction is used, the area for the augend d is overwritten by the
added result. If you want to avoid the overwrite, we recommend using the
instruction F22_ADD?2 (see page 345).

see see page 1322

Variable | Datatype

Function

S

d ANY16

addend

augend and result

The variables s and d have to be of the same data type.

342

Arithmetic instructions

(7]
c
o
=
Operands For Relay TIC Register Constant ‘5’
s WX | WY | WR | WL SV EV DT LD FL dec. or hex. *3
d - WY | WR | WL SV EV DT LD FL - £
ol
LL
Errorflags | o, IEC address | Set If —
R900B | %MX0.900.11 for an instant = the calculated result is 0. +
©
R9009 | %MX0.900.9 for an instant = the result exceeds the range of 16-bit o
data (overflow or underflow).

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
1] skart Bl FALSE ackivates the Funckion
1 W AR walue_in INT 27 Fthe value, that will be added
2 AR walue_in_out IMT 16 result after a 0->1 leading
3 W AR edge from stark: 43

Body When the variable start is set to TRUE, the function is carried out.

LD
star Fz0_ADD
[EFIl——— EN ENO |-
alue_in=27 — 5 d ——walue_in_out = 43

ST IF start THEN
F20_ADD(val ue_in, value_in_out);
END | F;

343

Arithmetic instructions

F21 DADD 32-bit addition

Description The 32-bit equivalent constant or 32-bit area specified by s and the 32-bit data specified by d are
added together if the trigger EN is in the ON-state. The result is stored in d. All 32-bit values are
treated as double integer values.

2
c
@)

=
o
S
S

s
0

£

o

LL

Part Il

F21_DADD |
“EN” ENO |

-8 dr

Example value 1312896

Bit 31..28(27..24(23..20(19..16 15..12|10 .. 8|7 . . 4|3 . .0
d 0000 | 0000 | 0001|0100 0000|1000 (1000|0000
< 32-bit area >

+

Example value 558144

Bit 31..28(27..24(23..20(19..16 15..12(10 .. 8|7 . . 4(3. .0
S 0000 | 0000 | 0000|1000 1000|0100 0100|0000

: 1

Result value 1871040 if trigger is on

Bit 31..28|27..24|23..20|19..16 15..12|10 .. 8|7 . . 4|3 . .0
d 0000 | 0000 | 0001|1100 1000|1100 (1100|0000

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction ADD (see
page 61). Please refer also to Advantages of the IEC instructions in the online help.

= When this instruction is used, the area for the augend d is overwritten by the
added result. If you want to avoid the overwrite, we recommend using the
instruction F23_DADD2 (see page 347).

PLC types Availability of F21_DADD (see page 1323)

Data types Variable | Datatype Function
addend
ANY32
d augend and result

The variables s and d have to be of the same data type.

344

Arithmetic instructio

ns

Operands For Relay TIC Register Constant
DWX |[DWY |DWR |DWL (DSV | DEV | DDT | DLD | DFL | dec. or hex.
- DWY |(DWR |DWL | DSV |DEV | DDT | DLD | DFL -

Error flags No. IEC address Set If
R900B | %MX0.900.11 for an instant = the calculated result is 0.
R9009 %MX0.900.9 for an instant = the result exceeds the range of 32-bit
data (overflow or underflow).
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
1] skart BOOL FALSE activates the Function
1 WOR, value DINT 1312896 khe value, that wil be added
Z WOR, output_walue DIMT 558144 |result after a 0-=1 leading
3 AR edge From stark: 1871040

Body When the variable start is set to TRUE, the function is carried out.

LD
start Fz1_DabD
=) EN ENO -
walue = 1312886 —— s d ——output_wvalue = 1871040

ST IF start THEN
F21 DADD(val ue, out put_val ue);
END | F;

0
c
(@)

=
o
S
S

s
0
£
a
LL

345

Part Il

Arithmetic instructions

F22 ADD?2 16-bit addition, destination can be specified

Description The 16-bit data or 16-bit equivalent constant specified by s1 and s2 are added together if the
trigger EN is in the ON-state. The result is stored in d. All 16-bit values are treated as integer
values.

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

F22_ADD2 |
“EN " ENO |

- 51 o
- 52
Example value 27

Bit 15..12110 .. 8|7 . .43 . .0
d 0000 | 0000|0001 (1011

+

Example value 16
Bit 15..12|10 .. 8|7 . . 4(3. .0
S 0000 | 0000 [OOO1 [0O0O00O

:

Result value 43 if trigger is ON
Bit 15..12|10 .. 8|7 . .43 . .0
d 0000 | 0000 | 0010|1011

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction ADD (see
page 61). Please refer also to Advantages of the IEC instructions in the online help.

PLC types Availability of F22_ADD2 (see page 1323)

Data types Variable | Datatype Function

sl augend

s2 ANY16 addend

d result

The variables s1, s2 and d have to be of the same data type.
Operands For Relay T/IC Register Constant
sl,s2 WX | WY WR WL SV EV DT LD FL dec. or hex.
d - wy WR WL SV EV DT LD FL -

346

Arithmetic instructions

(2}
c
(@)
S
Errorflags | o IEC address | Set If >
R900B | %MX0.900.11 for an instant = the calculated result is 0. g
R9009 | %MX0.900.9 for an instant = the result exceeds the range of 16-bit o
data (overflow or underflow). LL
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

Part Il

POU header All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Twpe | Imitial | Comment |

y skart BOOL FALSE activates the Function

1 WAOR walue_inl INT 27

Z WAR valug_jnz INT 16

3 W AR walue_out IMT n result after a 0-+1 leading
4 MAR edae From stark: 43

Body When the variable start is set to TRUE, the function is carried out.

LD
J start Fzz_aDD?
) =i B
value_inl = 27 —— 51 o ——walue_out =43
value_ing = 1h—— g2

ST I F start THEN
F22 ADD2(val ue_inl, value_in2, value out);
END | F;

347

2
c
@)

=
o
S
S

s
0

£

o

LL

Part Il

Arithmetic instructions

F23 DADD2 32-bit addition, destination can be specified

Description

PLC types

Data types

The 32-bit data or 32-bit equivalent constant specified by s1 and s2 are added together if the
trigger EN is in the ON-state. The added result is stored in d. All 32-bit values are treated as double
integer values.

F23_DADD?Z |
- EN ENO |
- 51 i
- 52 [

Example value 1312896

Bit 31..28(27..24(23..20(19..16 15..12|10 .. 8|7 . . 4|3 . .0
d 0000 | 0000 | 0001|0100 0000|1000 (1000|0000
< 32-bit area >

+

Example value 558144

Bit 31..28(27..24(23..20(19..16 15..12(10 .. 8|7 . . 4(3. .0
S 0000 | 0000 | 0000|1000 1000|0100 0100|0000

: 1

Result value 1871040 if trigger is on

Bit 31..28|27..24|23..20|19..16 15..12|10 .. 8|7 . . 4|3 . .0
d 0000 | 0000 | 0001|1100 1000|1100 (1100|0000

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction ADD (see
page 61). Please refer also to Advantages of the IEC instructions in the online help.

Availability of F23_DADD2 (see page 1323)

Variable | Datatype Function
sl augend
s2 ANY32 addend
d result

The variables s1, s2 and d have to be of the same data type.

348

Arithmetic instructio

ns

Operands For Relay TIC Register Constant
sl,s2 [DWX |DWY |DWR |[DWL | DSV |DEV |DDT |DLD | DFL [dec.or hex.
d - DwY (DWR |DWL | DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address Set If
R900B | %MX0.900.11 for an instant = the calculated result is 0.
R9009 %MX0.900.9 for an instant = the result exceeds the range of 32-bit
data (overflow or underflow).

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Twpe | Initial | Comment

0 start BOOL FALSE activates the Function

1 WOR, walue_jinl DIMT 1312896 Firsk summand

Z WOR, value_jnz DIMT 558144 second summand

3 WAR walue_out DIMT O result after a 0->1 leading
4 VAR, edae from skart: 1571040

Body When the variable start is set to TRUE, the function is carried out.

LD
start F23_DAaDD?Z
m EMN ENO -
wvalue_inl = 1312896 —— 51 d ——walue_out = 1871040
value_in? = 5EA144 —— 52

ST IF start THEN
F23 DADD2(val ue_inl, value_in2, value_ out);
END | F;

0
c
(@)

=
o
S
S

s
0

£

a
LL

349

Part Il

2
c
@)

=
o
S
S

s
0

£

o

LL

Part Il

Arithmetic instructions

F40 BADD 4-digit BCD addition

Description The 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by s and the
16-bit area for 4-digit BCD data specified by d are added together if the trigger EN is in the
ON-state. The result is stored in d.

PLC types

Data types

F40_BADD |

- EM - ENO

_ al

= 0T
Example value 16#2111 (BCD)

Bit 15..12[10 .. 8(7 . . 4|3 . .0
d 0010|0001 | 0001|0001
16# (BCD) 2 1 1 1

+

Example value 16#0011 (BCD)

Bit

15..1210 ..

8

)

0000 | 0000

0001|0001

16# (BCD)

0

0

.

Result value 16#2122 (BCD) if trigger is ON

Bit 15..12110 .. 8|7 . . 4(3. .0
d 0010|0001 (0010 (0010
16# (BCD) 2 1 2 2

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

When this instruction is used, the area for the augend d is overwritten by the
added result. If you want to avoid the overwrite, we recommend using the
instruction F41_DBADD (see page 351).

Availability of F40_BADD (see page 1325)

Variable | Datatype Function
S WORD addend, 16-bit area for 4-digit BCD data or equivalent
constant
d WORD augend and result, 16-bit area for 4-digit BCD data

350

Arithmetic instructions

(7]
c
(@)
=]
Operands For Relay TIC Register Constant ‘5’
s WX [WY | WR | WL SV EV DT LD FL dec. or hex. *3
d - WY [WR | WL SV EV DT LD FL - =
o
LL
Error flags No. IEC address | Set If —
R900B | %MX0.900.11 for an instant = the calculated result is 0. E
©
R9009 %MX0.900.9 for an instant = the result exceeds the range of 4-digit o
BCD data (overflow).

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Inikial | Comment |
1] start BOOL FALSE activates the funckion
1 VAR, summand WORD 16#2111 Tthis value will be added
Z WAOR, output_walue WORD 16#0011 |resulk after 0-=1 leading
3 VAR, edge from skark: 1682122

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD
J stan F40_BADD
=l EN ENO -
s%mmand =1E#2111 — = d ——output_walue = TE#2122

ST IF start THEN
F40_BADD(summand, out put _val ue) ;
END | F;

351

Arithmetic instructions

F41 DBADD 8-digit BCD addition

Description The 8-digit BCD equivalent constant or 8-digit BCD data specified by s and the 8-digit BCD data
specified by d are added together if the trigger EN is in the ON-state. The result is stored in d.

2
c
@)

=
o
S
S

—
0

£

o

LL

F41_DEADD |
- EN ENO |
- = d I

Part Il

Example value 16#12342000 (BCD)

Bit 31..28(27..24(23..20(19..16| |15..12|10 .. 8|7 . . 4|3 . .0

d 0001|0010 0011|0100 0010|0000 | 0000|0000

16# BCD 1 2 3 4 2 0 0 0
- 32-bit area >

+

Example value 16#00003678 (BCD)

Bit 31..28(27..24(23..20(19..16 15..12(10 .. 8|7 . . 4(3 . .0
s 0000|0000 | 0000 (0000 0011 (0110 (0111|1000
16# BCD 0 0 0 0 3 6 7 8

Result value 16#12345678 (BCD) if trigger is ON

Bit 31..28(27..24(23..20(19..16 15..12(10 .. 8|7 . . 4(3. .0
d 0001|0010 | 0011|0100 0101 (0110 (0111|1000
16# BCD 1 2 3 4 5 6 7 8

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

= When this instruction is used, the area for the augend d is overwritten by the
added result. If you want to avoid the overwrite, we recommend using the
instruction F43_DBADD?2 (see page 355).

PLC types Availability of F41_DBADD (see page 1325)

Data types Variable | Datatype Function
S DWORD addend, 32-bit area for 8-digit BCD data or equivalent
constant
d DWORD augend and result, 32-bit area for 8-digit BCD data

352

Arithmetic instructions

(2}
c
(@)
=
Operands For Relay TIC Register Constant ‘5’
s DWX [DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL [dec. or hex. *3
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL - £
ol
LL
Error flags No. IEC address | Set If =
R900B | %MX0.900.11 for an instant = the calculated result is 0. bud
©
R9009 %MX0.900.9 for an instant = the result exceeds the range of 8-digit =
BCD data (overflow).

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Type | Inikial | Comment |
1] skart Bl FALSE ackivates the function
1 AR summand DWORD 16#12342000 this walue wil be added
2 AR output_wvalue DWORD 16#00003678 | result after 0-=1 leading
3 MAOR edge From start;
16412345675

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD
J start F41_DBADD
=) EN ERER—
surmtmand = TE#1 2342000 — s d ——output_walue = TE#12345673

ST I F DF(start) THEN
F41 DBADD(summand, out put _val ue);
END | F;

353

Arithmetic instructions

F42 BADD?2 4-digit BCD addition, destination can be specified

Description The 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by s1 and s2 are
added together if the trigger EN is in the ON-state. The result is stored in d.

2
c
@)

=
o
S
S

s
0

£

o

LL

= F42_BADD?2 |

o - EN ENO r
- &1 d
- g2 |-
Example value 16#4321 (BCD)
Bit 15..12(10 .. 8|7 . . 4[3. .0
s1 0100 | 0011|0010 | 0001
16# (BCD) | 4 3 2 1

+

Example value 16#1234 (BCD)

Bit 15..12|10 .. 8|7 . .43 . .0
s2 0001|0010 (0011 (0100
16# (BCD) 1 2 3 4

: i

Result value 16#5555 (BCD) if trigger is ON

Bit 15..12(10 .. 8|7 . .4|3. .0
d 0101|0101 0101|0101
16# (BCD) 5 5 5 5

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F42 BADD2 (see page 1325)
Data types Variable | Datatype Function
sl WORD augend, 16-bit area for 4-digit BCD data or equivalent constant
s2 WORD addend, 16-bit area for 4-digit BCD data or equivalent constant
d WORD sum, 16-bit area for 4-digit BCD data
Operands For Relay T/IC Register Constant
sl,s2 WX | WY WR WL SV EV DT LD FL dec. or hex.
d - WY WR WL SV EV DT LD FL -

354

Arithmetic instructions

Error flags No. IEC address | Set If
R900B | %MX0.900.11 for an instant = the calculated result is 0.
R9009 | %MX0.900.9 for an instant = the result exceeds the range of 4-digit
BCD data (overflow).
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Twpe | Imitial | Commert |
1] start BOOL FALSE activates the Funckion
1 WOR, summand_1 WORD 16#4321 Ffirst summand
Z WAR, summand_2 WORD 16#1234 second summand
3 W AR output_walue WORD 0 result after a 0->1 leading
4 WAR, edae from skark: 16#5555

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD
J start F4z2_BaDD?
/) EN ENO
summand_1 = 1Th#43271 —— =1 d ——output_walue = 16#5555
summand_2 = 1h#1234 —— g2

ST IF start THEN
F42 BADD2(summand_1, summand_2, out put_val ue);
END | F;

0
c
(@)

=
o
S
S

s
0

£

a
LL

355

Part Il

Arithmetic instructions

F43 DBADD?2 8-digit BCD addition, destination can be specified

Description The 8-digit BCD equivalent constant or 32-bit area for 8-digit BCD data specified by s1 and s2 are
added together if the trigger EN is in the ON-state. The result is stored in d.

2
c
@)

=
o
S
S

s
0

£

o

LL

Part Il

F43_DEADDZ |
- EN ENO |
- 51 d
- 82 |-

Example value 16#12345678 (BCD)

Bit 31..28(27..24(23..20|19..16 15..12(10 .. 8|7 . . 4(3 . .0

s1 0001|0010 | 0011|0100 0101 (0110 (0111 (1000

16# BCD 1 2 3 4 5 6 7 8
- 32-bit area =

+

Example value 16#87654321 (BCD)

Bit 31..28(27..24(23..20(19..16 15..12(10 .. 8|7 . . 4(3 . .0
s2 100001110110 | 0101 0100|0011 (0010 (0001
16# BCD 8 7 6 5 4 3 2 1

: 1

Result value 16#99999999 (BCD) if trigger is ON

Bit 31..28(27..24(23..20(19..16 15..12(10 .. 8|7 . . 4(3 . .0
d 100110011001 |1001 1001110011001]1001
16# BCD 9 9 9 9 9 9 9 9

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F43 DBADD?2 (see page 1325)

Data types Variable | Datatype Function
sl DWORD augend, 32-bit area for 8-digit BCD data or equivalent
constant
s2 DWORD addend, 32-bit area for 8-digit BCD data or equivalent
constant
d DWORD sum, 32-bit area for 8-digit BCD data

356

Arithmetic instructions

(2}
c
(@)
=
Operands For Relay TIC Register Constant ‘5’
sl, s2 DWX [DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL [dec. or hex. *3
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL - £
ol
LL
Error flags No. IEC address | Set If =
R900B | %MX0.900.11 for an instant = the calculated result is 0. bud
©
R9009 %MX0.900.9 for an instant = the result exceeds the range of 8-digit =
BCD data (overflow).

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Twpe | Initial | Comment |
1] skart BiooL FALSE activates the Function
1 WOR summand_1 DWORD 16#12345678 Firsk summand
Z WAOR, summand_? DWORD 16#87654321 second summand
3 AR output_wvalue DWORD 0 result after a 0-=1 leading
4 VAR edge From stark:

164999999099

Body When the variable start is set to TRUE, the function is carried out.

LD
start Fd3_DEADDE |
EN ENO -

summand_1 — =1 d autput_walue
summand_2 —— 52

ST I F start THEN
F43_DBADD2(summand_1, summand_2, output _val ue);
END | F;

357

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Arithmetic instructions

F35 INC 16-bit increment

Description Adds "1" to the 16-bit data specified by d if the trigger EN is in the ON-state. The result is stored in
d.

F35_ING |
-EN TENO |

. dr

Example value 17

Bit 15..12110 .. 8|7 . .43 . .0
d 0000|0000 | 0001 (0001

.

Result value 18 if trigger is ON

Bit 15..12110 .. 8|7 . .43 . .0
d 0000|0000 [0001 (0010

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F35_INC (see page 1325)

Data types Variable | Datatype Function
d ANY16 16-bit area to be increased by 1
Operands For Relay T/IC Register Constant
d - WY | WR | WL SV EV DT LD FL -

Error flags No. IEC address Set If

R900B | %MX0.900.11 for an instant = the calculated result is 0.

R9009 %MX0.900.9 for an instant = the result exceeds the range of 16-bit

data (overflow).

Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
0 skart B0l FALSE ackivates the Funckion
1 WAR, increment_value INT 17 result after a 0-=1 leading
2 YAR, edge from stark; 15

Body When the variable start changes from FALSE to TRUE, the function is carried out.

358

Arithmetic instructions

LD | start F35_INC
. =) EM EMNO
d ——increment_value =13

0
c
(@)
=
o
S
S
s
0
£
a
LL

ST IF DF(start) THEN
F35 I NC(i ncrenent val ue);
END | F;

Part Il

359

Arithmetic instructions

n
c
9o
3]
= F36 DINC 32-bit increment
E _
& Description Adds "1" to the 32-bit data specified by d if the trigger EN is in the ON-state. The result is stored in
d.
= F35_DING |
o - EM - ENO I
d -

Example value 131081

Bit 31..2827..24123..20|19..16 15..12)10 .. 8|7 . . 4(3. .0
d 0000 | 0000 (0000 (0010 0000|0000 | 0000 [1001

l < 32-bit area >

Result value 131082 if trigger is ON

Bit 31..28(27..24(23..20(19..16 15..12(10 .. 8|7 . .43 . .0
d 0000|0000 | 0000|0010 1000|0000 0000| 1010

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F36_DINC (see page 1325)

Data types Variable | Datatype Function
d ANY32 32-bit area to be increased by 1
Operands For Relay T/IC Register Constant
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address Set If
R900B | %MX0.900.11 for an instant = the calculated result is 0.
R9009 %MX0.900.9 for an instant = the result exceeds the range of 32-bit
data (overflow).
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Initial | Comment
1] skart B0l FALSE ackivakes the Funckion
1 WoR increment_walue DIMT 131081 | resulk after a 0-3+1 leading
2 WaR edge from start: 131032

Body When the variable start changes from FALSE to TRUE, the function is carried out.

360

Arithmetic instructions

(7]

C

)

3]

LD J start F36_DINC S
Bl EN ENO - o

‘ d ——increment_walue = 131082 c

o

LL

ST IF DF(start) THEN
F36_DI NC(i ncrement _val ue) ;
END | F;

=
@©
o

361

Arithmetic instructions

F55 BINC 4-digit BCD increment

Description Adds "1" to the 4-digit BCD data specified by d if the trigger EN is in the ON-state. The result is
stored in d.

2
c
@)

=
o
S
S

—
0

£

o

LL

F&5_BING |
-EN " ENO |

. dr

Part Il

Example value 16#4320 (BCD)

Bit 15..12110 .. 8|7 . . 4(3 . .0
d 0100|0011 | 0010|0000
16# BCD 4 3 2 0

: 1

Result value 16#4321 (BCD) if trigger is ON

Bit 15..12110 .. 8|7 . . 4(3 . .0
d 0100|0011 |0010|0001
16# BCD 4 3 2 1

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F55_BINC (see page 1325)

Operands Variable | Datatype Function
d WORD 16-bit area for 4-digit BCD data to be increased by 1
Operands For Relay T/IC Register Constant
d - wy WR WL SV EV DT LD FL -
Error flags No. IEC address Set If
R900B | %MX0.900.11 for an instant = the calculated result is 0.
R9009 %MX0.900.9 for an instant = the result exceeds the range of 4-digit
BCD data (overflow).
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Type | Initial | Comment |
0 skart EOOL FALSE ackivates the funckion
1 WA, increment_valle WORD 16#4320 | result after a 0-=1 leding
i YAR edge From stark: 1684321

362

Arithmetic instructions

Body When the variable start is set to TRUE, the function is carried out.

0
c
(@)
=
o
S
S
s
0
£
a
LL

LD
J start FEE_BIMC |
‘ IBl— EN ENO -

d ——increment_walue = Th#4321

Part Il

ST I F DF(start) THEN
F55 BI NC(i ncrement _val ue) ;
END | F;

363

Arithmetic instructions

F56 DBINC 8-digit BCD increment

Description Adds "1" to the 8-digit BCD data specified by d if the trigger EN is in the ON-state. The result is
stored in d.

2
c
@)

=
o
S
S

—
0

£

o

LL

F56_DEING |
- EN ENO |
d

Part Il

Example value 16#87654320 (BCD)

Bit 31..28(27..24(123..20]19..16 15..12110 .. 8|7 . . 4(3 . .0

s 1000011110110 (0101 0100 (0011|0010 | 0000

16# BCD 8 7 6 5 4 3 2 0
< 32-bit area >

: 1

Result value 16#87654321 (BCD) if trigger is ON

Bit 31..28|27..24|23..20|19..16 15..12|10 .. 8|7 . . 4|3 . .0
d 1000|0111 0110|0101 0100 [0011| 0010|0001
16# BCD 8 7 6 5 4 3 2 1

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F56_DBINC (see page 1325)

Data types Variable | Datatype Function
d DWORD 32-bit area for 8-digit BCD data to be increased by 1
Operands For Relay T/IC Register Constant
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address | Set If
R900B | %MX0.900.11 for an instant = the calculated result is 0.
R9009 | %MX0.900.9 for an instant = the result exceeds the range of 8-digit
BCD data (overflow).
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

364

Arithmetic instructions

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Initial | Comment |
1] skart BioioL FALSE ackivates the function
1 WOR, increment_value DWORD 16#587654320 | result after a 0-=1 leding
z WaR edge From start:
16487654321

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD
star FhE_DBEINC

B l— EN EMO
| i ——increment_wvalue = 1E#57E54321

ST IF DF(start) THEN
F56_DBI NC(i ncrenent _val ue) ;
END | F;

0
c
(@)

=
o
S
S

s
0
£
a
LL

365

Part Il

2
c
@)

=
o
S
S

s
0

£

o

LL

Part Il

Arithmetic instructions

F25 SUB 16-bit subtraction

Description

PLC types

Data types

Operands

Subtracts the 16-bit equivalent constant or 16-bit area specified by s from the 16-bit area specified
by d if the trigger EN is in the ON-state. The result is stored in d (minuend area). All 16-bit values
are treated as integer values.

F25 SUB |
“EN T ENO |

-5 dr
This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears

under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction SUB (see
page 62). Please refer also to Advantages of the IEC instructions in the online help.
Example value 16

Bit 15..12110 .. 8|7 . . 4(3. .0
d 0000 | 0000 | 0001|1011

Example value 27

Bit 15..12110 .. 8|7 . .43 . .0
s 0000|0000 (0001 (0000

: 1

Result value -11 if trigger is ON

Bit 15..12110 .. 8|7 . . 4(3. .0
d 1111111111 111110101

Availability of F25_SUB (see page 1323)

Variable | Datatype Function
s subtrahend
d ANY16 minuend and result

The variables s and d have to be of the same data type.

For Relay T/IC Register Constant
s WX | WY | WR | WL SV EV DT LD FL dec. or hex.
d - WY [WR | WL SV EV DT LD FL -

366

Arithmetic instructions

(2}
c
o
S
Errorflags | o IEC address | Set If >
R900B | %MX0.900.11 for an instant = the calculated result is 0. g
R9009 | %MX0.900.9 for an instant = the result exceeds the range of 16-bit o
data (overflow or underflow). LL
Example In this example, the same POU header is used for all programming languages. For an example

Part Il

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Twpe | Initial | Comment |
1] skark BOOL FALSE ackivates the Funckion
1 WOR, walue_in INT 27 "the value, that will be subtracted
Z WAR, walue_jn_out INT 16 result after a 0-=1 leading
3 W AR edge From start: -11

Body When the variable start is set to TRUE, the function is carried out.

LD
J start F25_SUE
=) EM EMNO
‘ value_in=27 —— 5 o ——alue_in_out=-11

ST I F start THEN
F25 SUB(val ue_in, value_in_out);
END | F;

367

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Arithmetic instructions

F26 DSUB 32-bit subtraction

Description

PLC types

Data types

Operands

Subtracts the 32-bit equivalent constant or 32-bit data specified by s from the 32-bit data specified
by d if the trigger EN is in the ON-state. The result is stored in d (minuend area). All 32-bit values
are treated as double integer values.

F26 DSUB |
“EN ENO |

-5 dr
This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears

under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction SUB (see
page 62). Please refer also to Advantages of the IEC instructions in the online help.

Example value 16778109

Bit 31..28(27..24(23..20(19..16 15..12]10 .. 8|7 . . 4|3 . .0
d 0000 | 0001 | 0000|0000 0000001101111 1101

< 32-bit area >
]

Example value 524740
Bit 31..28(27..24(23..20(19..16 15..12]10 .. 8|7 . . 4|3 . .0
s 0000 | 0000 | 0000|1000 0000 (0001 (1100|0100

: 1

Result value 16253369 if trigger is ON
Bit 31..28(27..24(23..20|19..16 15..12(10 .. 8|7 . . 4(3 . .0
d 0000 | 0000|1111 [1000 0000 | 0001|1011 [1001

Availability of F26_DSUB (see page 1323)

Variable | Datatype Function
s subtrahend
d ANY32 minuend and result

The variables s and d have to be of the same data type.

For Relay T/IC Register Constant
DWX | DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL | dec. or hex.
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -

368

Arithmetic instructions

(2}
c
(@)
S
Errorflags | o IEC address | Set If >
R900B | %MX0.900.11 for an instant = the calculated result is 0. g
R9009 | %MX0.900.9 for an instant = the result exceeds the range of 32-bit o
data (overflow or underflow). LL
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

Part Il

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Type | Initial | Comment |
1] skart BOL FALSE ackivakes the Function
1 WOR wvalue_in DINT 524740 "the walue, that will be subkracted
z WOR, value_jin_out DIWT 16775109 | resulk after a 0-=1 leading

edge from skark: 16253369

Body When the variable start is set to TRUE, the function is carried out.

LD
J start Fz2e_DSUE
=l EM EMNO
‘ value_in=524740—— 5 d —alue_in_out=16253369

ST I F start THEN
F26_DSUB(val ue_in, value_in_out);
END | F;

369

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Arithmetic instructions

F27 SUB2 16-bit subtraction, destination can be specified

Description

PLC types

Data types

Operands

Subtracts the 16-bit data or 16-bit equivalent constant specified by s2 from the 16-bit data or 16-bit
equivalent constant specified by s1 if the trigger EN is in the ON-state. The result is stored in d. All
16-bit values are treated as integer values.

F27_SUB2
- EM END

- 51 o

- 52
This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears

under "Recently used" in the pop-up menu. Press <CtrI>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction SUB (see
page 62). Please refer also to Advantages of the IEC instructions in the online help.
Example value 27
Bit 15..12|10 .. 8|7 . . 4|3 . .0
s 0000 [0000 | 0001|0000
—

Example value 16

Bit 15..12110 .. 8|7 . . 4(3. .0
d 0000|0000 | 0001 [1011

1 1

Result value 11 if trigger is ON
Bit 15..12110 .. 8|7 . . 4(3. .0
d 0000 | 0000 | 0001|0011

Availability of F27_SUB2 (see page 1323)
Variable | Datatype Function

sl minuend

s2 ANY16 subtrahend

d result

The variables s1, s2 and d have to be of the same data type.

For Relay T/IC Register Constant
sl,s2 WX | WY WR WL SV EV DT LD FL dec. or hex.
d - wy WR WL SV EV DT LD FL -

370

Arithmetic instructions

Error flags No. IEC address Set If
R900B | %MX0.900.11 for an instant = the calculated result is 0.
R9009 | %MX0.900.9 for an instant = the result exceeds the range of 16-bit
data (overflow or underflow).
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Initial | Comment |
1] skark BOOL FALSE activates the Funckion
1 WAR rnirend IMT 27 miruend
2 AR subtrahend INT 16 subkrahend
3 W AR output_value INT 1] result after a 0-=1 leading
4 MAR edage From skark: 11

Body When the variable start is set to TRUE, the function is carried out.

LD
J start Fz7_SUEBE?
=) EM ENO
minuend = 27 —— 51 d ——output_wvalue =11
subtrahend = 1h—— s?

ST IF start THEN
F27 _SUB2(m nuend, subtrahend, output_val ue);
END | F;

0
c
(@)

=
o
S
S

s
0
£
a
LL

371

Part Il

Arithmetic instructions

F28 DSUB?2 32-bit subtraction, destination can be specified

Description Subtracts the 32-bit data or 32-bit equivalent constant specified by s2 from the 32-bit data or 32-bit
equivalent constant specified by s1 if the trigger is in the ON-state. The result is stored in d. All
32-bit values are treated as double integer values.

2
c
@)

=
o
S
S

s
0

£

o

LL

s F28_DSUB2 |
- EN ENO |
- 51 i
- 52 [

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction SUB (see
page 62). Please refer also to Advantages of the IEC instructions in the online help.

Example value 16809984

Bit 31..28(27..24(123..20]19..16 15..12110 .. 8|7 . . 4(3 . .0
s1 0000 | 0001|0000)| 00O0O 1000 | 0000|0000 | 0000O0

< 32-bit area >
]

Example value 525312

Bit 31..28(27..24(23..20|19..16 15..12(10 .. 8|7 . . 4(3. .0
s2 0000 | 0000 | 0000 [1000 0000|0100 | 0000 (0000

: 1

Result value 16284672 if trigger is ON

Bit 31..28(27..24(23..20(|19..16| |15..12|10 .. 8|7 . . 4|3 . .0
d 0000 | 0000 | 1111|1000 0111|1100 | 0000|0000

PLC types Availability of F28 DSUB2 (see page 1323)

Data types Variable | Datatype Function
sl minuend
s2 ANY32 subtrahend

d result

The variables s1, s2 and d have to be of the same data type.

372

Arithmetic instructions

(7]
c
(@)
=
Operands For Relay TIC Register Constant ‘5’
sl, s2 DWX | DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL | dec. or hex. 4(/:)
d - DWY | DWR [DWL [DSV | DEV | DDT | DLD | DFL - £
ol
LL
Error flags No. IEC address Set If =
R900B %MX0.900.11 for an instant = the calculated result is 0. b
©
R9009 %MX0.900.9 for an instant = the result exceeds the range of 32-bit a
data (overflow or underflow).

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Initial | Comment
1] skart BOOL FALSE activates the Funckion
1 VAR rninuend DINT 16809954 minuent
2 VAR, subtrahend DINT 525312 subkrahent
3 AR output_walue DINT 0O result after a 0-=1 leading

edge from skark: 11

Body When the variable start is set to TRUE, the function is carried out.

LD
star F2i_DSUB?2
=) EMN ENG -
minuend = 16309354 —— 51 d ——output_wvalue = TEZ84572
subtrahend = 525312 — g2

ST IF start THEN
F28 DSUB2(m nuend, subtrahend, output_val ue);
END | F;

373

Arithmetic instructions

F45 BSUB 4-digit BCD subtraction

Description Subtracts the 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by s
from the 16-bit area for 4-digit BCD data specified by d if the trigger EN is in the ON-state. The
result is stored in d.

2
c
@)

=
o
S
S

s
0

£

o

LL

=

@

& F45 BSUE |
- EM - ENO
_ al
= 0T
Example value 16#2111 (BCD)
Bit 15..12(10 .. 8|7 . . 4[3. .0
d 0010|0001 | 0001|0001
16# (BCD) 2 1 1 1
]

Example value 16#0011 (BCD)

Bit 15..12(10 .. 8|7 . . 4|3 . .0
s 0000|0000 |0001]|0101
16#(BCD) | 0 0 1 1

trigger: ON

Result value 16#2100 (BCD)

Bit 15..12[10 .. 8[7 . . 4|3 . .0
d 0010|0001 | 0000|0000
16# (BCD) 2 1 0 0

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F45_BSUB (see page 1325)

Data types Variable | Datatype Function
S WORD subtrahend, 16-bit area for 4-digit BCD data or equivalent
constant
d WORD minuend and result, 16-bit area for 4-digit BCD data
Operands For Relay T/IC Register Constant
s WX | WY [WR | WL sV EV DT LD FL dec. or hex.
d - WY | WR [WL SV EV DT LD FL -

374

Arithmetic instructions

(2}
c
o
S
Errorflags | o IEC address | Set If >
R900B | %MX0.900.11 for an instant = the calculated result is 0. g
R9009 %MX0.900.9 for an instant = the result exceeds the range of 4-digit o
BCD data (overflow). LL
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

Part Il

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Clasz | Identifier | Twpe | Initial | Comment |
1] start BOOL FALSE activates the funckion
1 WAR subtrahend WORD 1640011 "this value will be subkracted
Z WAR output_walue WORD 16#2111 |resulk after 0-=1 leading
3 AR edge from stark: 1642100

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD
J start F45_BSLIE
= EM EMNO —
‘ subtrabend = 16#0011 — = d ——output_wvalue = TE#2100

ST IF DF(start) THEN
F45 BSUB(subtrahend, output val ue);
END | F;

375

Arithmetic instructions

F46 DBSUB 8-digit BCD subtraction

Description Subtracts the 8-digit BCD equivalent constant or 8-digit BCD data specified by s from the 8-digit
BCD data specified by d if the trigger EN is in the ON-state. The result is stored in d.

2
c
@)

=
o
S
S

—
0

£

o

LL

F45_DESUE |
- EN ENO |
- = d I

Part Il

Example value 16#23210044 (BCD)

Bit 31..28(27..24(23..20]19..16 15..12]110 .. 8|7 . . 4|3 . .0
d 0010|0011 0001|0001 0000 [0000|0100 (0100
16# BCD 2 3 2 1 0 0 4 4

< 32-bit area >
]

Example value 16#00210011 (BCD)

Bit 31..28(27..24(23..20(19..16 15..12(10 .. 8|7 . . 4(3 . .0
s 0000|0000 | 0010|0001 0000 | 0000 (0001 (0001
16# BCD 0 0 2 1 0 0 1 1

l’rigger: ON

Result value 16#23000033 (BCD)

Bit 31..28(27..24(23..20(19..16 15..12(10 .. 8|7 . . 4(3. .0
d 0010|0011 | 0000|0000 0000 | 0000|0011 (0011
16# BCD 2 3 0 0 0 0 3 3

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F46_DBSUB (see page 1325)

Data types Variable | Datatype Function
s DWORD subtrahend, 32-bit area for 8-digit BCD data or equivalent
constant
d DWORD minuend and result, 32-bit area for 8-digit BCD data
Operands For Relay T/IC Register Constant
DWX | DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL | dec. or hex.
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -

376

Arithmetic instructions

(2}
c
o
S
Errorflags | o IEC address | Set If >
R900B | %MX0.900.11 for an instant = the calculated result is 0. g
R9009 %MX0.900.9 for an instant = the result exceeds the range of 8-digit o
BCD data (overflow). LL
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

Part Il

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Inikial | Comment |
1] skark BOOL FALSE ackivates the Funckion
1 AR subtrahend DWORD 16400210011 "this value will be subtracted
Z WAR, output_walue DWORD 16#£23210044 | resulk after 0-31 leading
3 WAR edge from stark:
16423000033

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD
J start F46_DBSUE
=] EM ENO
‘ subtrahend = 1e#00210017 — 5 d_!—-c:utput_value = 16#02300033

ST | F DF(start) THEN
F46_DBSUB(subt rahend, out put_val ue);
END | F;

377

Arithmetic instructions

F47 BSUB?2 4-digit BCD subtraction, destination can be specified

Description Subtracts the 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by s2
from the 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by s1 if the
trigger EN is in the ON-state. The result is stored in d.

2
c
@)

=
o
S
S

—
0

£

o

LL

s F47_BSUB2 |
- EN ENO |
- 51 i
- 52 [

Example value 16#16 (BCD)

Bit 15..12110 .. 8|7 . . 4|3 . .0
s1 0000|0000 | 0001|0110
16# (BCD) 0 0 1 6
]

Example value 16#4 (BCD)

Bit 15..12(10 .. 8|7 . . 4|3 . .0
s2 0000|0000 {0000 [0100
16# (BCD) 0 0 0 4

t'igger: ON

Result value 16#12 (BCD)

Bit 15..12(10 .. 8|7 . . 4|3 . .0
d 0000| 0000|0001 [0010
16# (BCD) 0 0 1 2

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F47_BSUB2 (see page 1325)

Data types

Variable | Datatype Function
sl WORD minuend, 16-bit area for 4-digit BCD data or equivalent
constant
s2 WORD subtrahend, 16-bit area for 4-digit BCD data or equivalent
constant
d WORD result, 16-bit area for 4-digit BCD data

378

Arithmetic instructions

(2}
c
(@)
=
Operands For Relay T/IC Register Constant ‘5’
sl,s2 WX | WY WR WL SV EV DT LD FL dec. or hex. *3
d - WYy WR WL SV EV DT LD FL - £
ol
LL
Error flags No. IEC address Set If _
R900B | %MX0.900.11 for an instant = the calculated result is 0. —
p =
©
R9009 %MX0.900.9 for an instant = the result exceeds the range of 4-digit o
BCD data (overflow).

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
1] skart BOOL FALSE ackivates the function
1 VAR minuend WORD 16#4567 minuent
2 W AR subtrahend WORD 16#1234 subtrahent
3 WAR output_wvalue WORD 0 result after a 0-=1 leading
4 WA, edge From skart: 1683333

Body When the variable start is set to TRUE, the function is carried out.

LD
start F47 _BSLIB?
el EM ENO —
rinuend = 1E#4507 —— 51 d ——output_value = Th#3333
subtrahend = 1b#1234—— s

ST I F start THEN
F47_BSUB2(m nuend, subtrahend, output_val ue);
END | F;

379

Arithmetic instructions

F48 DBSUB2 8-digit BCD subtraction, destination can be specified

Description Subtracts the 8-digit BCD equivalent constant or 8-digit BCD data specified by s2 from the 8-digit
BCD equivalent constant or 8-digit BCD data specified by s1 if the trigger EN is in the ON-state.
The result is stored in d.

2
c
@)

=
o
S
S

—
0

£

o

LL

—

p—

@

& F48 DESUEZ |
- EN END|—
- g1 d
- 52 [
Example value 16#33555588 (BCD)
Bit 31..28(27..24(123..20(19..16 15..12|10 .. 8|7 . . 4|3 . .0
s1 0001|0010 0101|0101 0101 ({0101 (1000|1000
16# BCD 3 3 5 5 5 5 8 8

< 32-bit area B

]

Example value 16#00110022 (BCD)

Bit 31..28(27..24(23..20(19..16 15..12(10 .. 8|7 . . 4(3. .0
s2 0000|0000 | 0001|0001 0000 | 0000 | 0010|0010
16# BCD 0 0 1 1 0 0 2 2

l’rigger: ON

Result value 16#33445566 (BCD)

Bit 31..28(27..24(23..20|19..16 15..12(10 .. 8|7 . . 4(3. .0
d 0011]0011|0100|0100 0101 (0101 (0110 (0110
16# BCD 3 3 4 4 5 5 6 6

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F48_DBSUB2 (see page 1325)

Data types Variable | Datatype Function
sl DWORD minuend, 32-bit area for 8-digit BCD data or equivalent
constant
s2 DWORD subtrahend, 32-bit area for 8-digit BCD data or equivalent
constant
d DWORD result, 32-bit area for 8-digit BCD data

380

Arithmetic instructions

(2}
c
(@)
=
Operands For Relay TIC Register Constant ‘5’
sl, s2 DWX [DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL [dec. or hex. *3
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL - £
ol
LL
Error flags No. IEC address | Set If =
R900B | %MX0.900.11 for an instant = the calculated result is 0. bud
©
R9009 %MX0.900.9 for an instant = the result exceeds the range of 8-digit =
BCD data (overflow).

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Twpe | Initial | Comment |
1] skart BiooL FALSE activates the Funckion
1 VAR rninuend DWORD 16#3355556858 minuent
2 VAR, subtrahend DWWORD 16400110022 subtrahent
3 AR output_walue DWORD 0 result after a 0-=1 leading
4 VAR edge from stark:
16433445566

Body When the variable start is set to TRUE, the function is carried out.

LD
start Fd4a_DBSUE?
. = EN EMO —
minuend = 16#33555588 — =1 d ——output_wvalue = 16#33445060
subtrahend = 16#00110022 — 52

ST IF start THEN
F48 DBSUB2(m nuend, subtrahend, output_val ue);
END | F;

381

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Arithmetic instructions

F37 DEC 16-bit decrement

Description Subtracts "1" from the 16-bit data specified by d if the trigger EN is in the ON-state. The result is
stored in d.

F37_DEC |
-EN T ENO |

. dy
Example value 17

Bit 15..12110 .. 8|7 . . 4(3. .0
d 0000|0000 | 0001|0001

: 1

Result value 16 if trigger is ON

Bit 15..12110 .. 8|7 . . 4[(3. .0
d 0000|0000 | 0001 (0000

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F37_DEC (see page 1325)

Data types Variable | Datatype Function
d INT, WORD 16-bit area to be decreased by 1
Operands For Relay T/IC Register Constant
d - wy WR WL SV EV DT LD FL -
Error flags No. IEC address Set If
R900B | %MX0.900.11 for an instant = the calculated result is 0.
R9009 %MX0.900.9 for an instant = the result exceeds the range of 16-bit
data (underflow).
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
1] skart Bl FALSE ackivakes the Funckion
1 WOR, decrement_walue IMNT 17 result after a 0-=1 leading
2 W AR edge from skark: 16

Body When the variable start is set to TRUE, the function is carried out.

382

Arithmetic instructions

n

c

i)

LD e
J start F37_DEC =
=] EN ENO - o

‘ d ——decrement_value = 16 =

o

LL

ST IF DF(start) THEN
F37_DEC(decrenent _val ue);
END | F;

=
@©
o

383

Arithmetic instructions

F38 DDEC 32-bit decrement

Description Subtracts "1" to the 32-bit data specified by d if the trigger EN is in the ON-state. The result is
stored in d.

2
c
@)

=
o
S
S

—
0

£

o

LL

F38_DDEC |
-EN " ENO |

. dr

Part Il

Example value 131081

Bit 31..28(27..24(23..20(19..16 15..12]110 .. 8|7 . . 4|3 . .0

d 0000 | 0000 | OOO0O | 0010 0000 | 0000 | 0000|1001
< 32-bit area >

Result 131080

Bit 31..28(27..24(123..20]19..16 15..12110 .. 8|7 . . 4|3 . .0

d 0000 | 0000 | 0000|0010 0000 (0000 | 0000 | 1000

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F38 DDEC (see page 1325)

Data types Variable | Datatype Function
d ANY32 32-bit area to be decreased by 1
Operands For Relay T/IC Register Constant
d - DWY | DWR | DWL (DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address Set If
R900B | %MX0.900.11 for an instant = the calculated result is 0.
R9009 %MX0.900.9 for an instant = the result exceeds the range of 32-bit
data (underflow).
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Type | Initial | Comment
0 skart B0l FALSE ackivakes the Funckion
1 WA, decrement_walue DINT 131081 | resulk after a 0-=1 leading
i WAR edge from stark: 131080

384

Arithmetic instructions

(7]
c
o
Body When the variable start changes from FALSE to TRUE, the function is carried out. g
LD &
| st F38_DDEC =
+— = EN EMO — Q
| d ——decrement_value = 131080

ST IF DF(start) THEN
F38 DDEC(decrement val ue);
END | F;

=
@©
o

385

Arithmetic instructions

F57 BDEC 4-digit BCD decrement

Description Subtracts "1" from the 4-digit BCD data specified by d if the trigger EN is in the ON-state. The
result is stored in d.

2
c
@)

=
o
S
S

—
0

£

o

LL

F&7 BDEC |
-EN” ENO |

. dr

Part Il

Example value 4322 (BCD)

Bit 15..12110 .. 8|7 . . 4(3 . .0
d 0100|0011 | 0010|0010
16# BCD 4 3 2 2

1Trigger: ON

Result value 4321 (BCD)

Bit 15..12110 .. 8|7 . . 4(3. .0
d 0100|0011 |0010 (0001
16# BCD 4 3 2 1

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F57_BDEC (see page 1325)

Data types Variable | Datatype Function
d WORD 16-bit area for BCD data to be decreased by 1
Operands For Relay T/IC Register Constant
d - wy WR WL | SV EV DT LD FL -
Error flags No. IEC address | Set If
R900B | %MX0.900.11 for an instant = the calculated result is 0.
R9009 | %MX0.900.9 for an instant = the result exceeds the range of 4-digit
BCD data (underflow).
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
0 skart BOOL FALSE ackivates the function
1 WAR decrement_walue WORD 16#4322 | resulk after a 0-=1 leading
z WAR edaoe from skark: 1684521

386

Arithmetic instructions

Body When the variable start changes from FALSE to TRUE, the function is carried out.

0
c
(@)
=
o
S
S
s
0
£
a
LL

LD
J start F&57_BDEC
=) EM EMNO —

| o ——decrement_wvalue = 15#4321

Part Il

ST IF DF(start) THEN
F57 BDEC(decr enment _val ue) ;
END | F;

387

Arithmetic instructions

F58 DBDEC 8-digit BCD decrement

Description Subtracts "1" from the 8-digit BCD data specified by d if the trigger EN is in the ON-state. The
result is stored in d.

2
c
@)

=
o
S
S

—
0

£

o

LL

F55_DEDEC |
- EN ENO |
d

Part Il

Example value 87654322 (BCD)

Bit 31..28(27..24(23..20]19..16 15..12110 .. 8|7 . . 4(3 . .0

s 1000|0111 101100101 0100 (001110010 (0010

16# BCD 8 7 6 5 4 3 2 2
< 32-bit area >

lTrigger: ON

Result value 87654321 (BCD)

Bit 31..28(27..24(23..20(19..16 15..12(10 .. 8|7 . . 4(3. .0
d 100001110110 | 0101 0100|0011 (0010 (0001
16# BCD 8 7 6 5 4 3 2 1

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F58_DBDEC (see page 1325)

Data types Variable | Datatype Function
d DWORD 32-bit area for BCD data to be decreased by 1
Operands For Relay T/C Register Constant
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address | Set If
R900B | %MX0.900.11 for an instant = the calculated result is 0.
R9009 %MX0.900.9 for an instant = the result exceeds the range of 8-digit
BCD data (underflow).
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

POU header

388

Arithmetic instructions

All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Initial | Comment |
1] stark BOoL FisLSE ackivates the Function
1 AR decrement_walue DWORD 16#87654322 | resulk after a 0-=1 leading
2 VAR edge from start:
16#576545321

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD
start F58_DBDEC |

Bl EN ENO -
d ——decrement_wvalue = Tb#57054321

ST I F DF(start) THEN
F58 DBDEC(decr enent _val ue) ;
END | F;

0
c
(@)

=
o
S
S

s
0
£
a
LL

389

Part Il

Arithmetic instructions

F30 MUL 16-bit multiplication, destination can be specified

Description Multiplies the 16-bit data or 16-bit equivalent constant s1 and the 16-bit data or 16-bit equivalent
constant specified by s2 if the trigger EN is in the ON-state. The result is stored in d (32-bit area).
All 16-bit values are treated as integer values.

2
c
@)

=
o
S
S

s
0

£

o

LL

Part Il

F30_mMUL
CEM ENO

- 51 o
- 52

Bit 15..12(10 .. 8|7 . . 4(3 . .0
Example value 10 s1 0000 (0000 [0OOO0OO (1010
Bit 15..12(10 .. 8|7 . . 4(3. .0
Example value 17 s2 1000|0100 | 0001|0001

Result value 170 if trigger is ON I
Bit 15..12110 .. 8|7 . . 4|3 . .0 15..12]10 .. 8|7 . . 4|3 . .0
d 0000 | 0000 | O0OOO | 0OO0OO0O 0000 | 0000|1010 (1010
< 32-bit area >

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction MUL (see
page 63). Please refer also to Advantages of the IEC instructions in the online help.

PLC types Availability of F30_MUL (see page 1323)

Data types Variable | Datatype Function
sl multiplicand
s2 ANY16 multiplier
d ANY32 result
The variables s1, s2 and d have to be of the same data type.
Operands For Relay T/C Register Constant
s1, s2 WX | WY WR WL SV EV DT LD FL dec. or hex.
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -

390

Arithmetic instructions

Error flags No. IEC address Set If
R900B | %MX0.900.11 for an instant = the calculated result is 0.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
1] skart BOOL FALSE activates the Fuckion
1 WAR multiplicand INT 10 mulkiplicant
Z WAR multiplicator — INT 17 mulkiplicator
3 AR output_walue DIMT 0O result after a 0->1 leading
4 WOR edoe from skark: 170

Body When the variable start is set to TRUE, the function is carried out.

LD
J start F30_MUL
L] AN =
multiplicand = 10— =1 d ——output_walue = 170
‘ multiplicator=17 — s&

ST IF start THEN
F30_MJL(mul tiplicand, multiplicator, output_val ue);
END | F;

0
c
(@)

=
o
S
S

s
0

£

a
LL

391

Part Il

Arithmetic instructions

F31 DMUL 32-bit multiplication, destination can be specified

Description Multiplies the 32-bit data or 32-bit equivalent constant specified by s1 and the one specified by s2 if
the trigger EN is in the ON-state. The result is stored in d[0], d[1] (64-bit area). All 32-bit values are
treated as double integer values.

2
c
@)

=
o
S
S

—
0

£

o

LL

s F31_DMUL |
- EN ENO |
- 51 i
- 52 [

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction MUL (see
page 63). Please refer also to Advantages of the IEC instructions in the online help.

PLC types Availability of F31_DMUL (see page 1324)

Data types Variable | Datatype Function
sl multiplicand
ANY32
s2 multiplier
d ARRAY [0..1] of result
ANY32
The variables s1, s2 and d have to be of the same data type.
Operands For Relay T/IC Register Constant
sl,s2 |DWX |DWY |DWR |DWL |DSV |DEV | DDT |DLD | DFL | dec. or hex.
d - DWY |DWR |[DWL |DSV |DEV |DDT |DLD | DFL -
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Initial | Comment
0 skark BOOL FALSE ackivates the function
1 WAR multiplicand DIMT 100000 multiplicant
z WAR, mulkiplicator — DIMT 170000 mulkiplicakaor
3 WAR, oubput_walue ARRAY [0..1]0OF DINT [2(01] | resulk after a 0-=1 leading
4 YR edge From start: [170,0]

Body When the variable start is set to TRUE, the function is carried out.

LD J start F31_DMUL
] EM EMO
multiplicand = 100000 — g1 d ——output_walue = Structure
multiplicator = 170000 — g2

Access to the result is possible with output_value[0] and output_value[1].

392

Arithmetic instructions

ST IF start THEN
F31 DMUL(rul tiplicand, nmultiplicator, output_val ue);
END | F;

0
c
(@)
=
o
S
S
s
0
£
a
LL

Part Il

393

Arithmetic instructions

F34 MULW 16-bit data multiply (result in 16 bits)

Description The function multiplies the value specified at input s1 by the value specified at input s2. The result
of the function is returned at output d. The result at output d lies between -32768 and 32767 (i.e.
between 16#0 and 16#FFFF). All 16-bit values are treated as integer values.

2
c
@)

=
o
S
S

—
0

£

o

LL

s F34_MULW |
- EN END[
- 51 i
- 52 [
Example value 6
Bit 15..12 10 .. 8|7 . .4|3. .0
s1 0000 [0000 (0000|0110

X

Example value 5

Bit 15..12110 .. 8|7 . . 4(3 . .0
s2 0000 | 0000 | 0000|0101

: 1

Result value 30 if trigger is ON

Bit 15..12110 .. 8|7 . . 4(3. .0
d 0000|0000 (0001 1110

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F34_MULW (see page 1324)

Data types Variable | Datatype Function

sl multiplicand

s2 ANY16 multiplier

d result

The variables s1, s2 and d have to be of the same data type.
Operands For Relay T/C Register Constant
sl,s2 WX | WY WR WL SV EV DT LD FL dec. or hex.
d - wy WR WL SV EV DT LD FL -

394

Arithmetic instructions

Error flags No. IEC address | Set If
R9007 | %MX0.900.7 permanently = the result calculated exceeds the 16-bit
R9008 | %MX0.900.8 | for an instant area specified at output b.

R900B | %MX0.900.11 for an instant = the result calculated is 0.

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Clasz | Idertifier | Tvpe | Initial | Comment |
1] skark BOOL FALSE ackivates the Fuckion
1 WAOR inpuk_walug_1 IMT &
Z WAR output_walue IMNT 0 result: here 30

Body When the variable start is set to TRUE, the function is carried out.

LD
J start F34_MULW
] EM ENO
input_walue_1 =6—— &1 d ——output_wvalue = 30
F—r g?

ST IF start THEN
F34_MJULW i nput _value 1, 5, output_val ue);
END | F;

0
c
(@)

=
o
S
S

s
0

£

a
LL

395

Part Il

Arithmetic instructions

F39 DMULD 32-bit data multiply (result in 32 bits)

Description The function multiplies the value specified at input s1 by the value specified at input s2. The result
of the function is returned at output d. The result at output 'd' lies between -2147483648 and
2147483647 (i.e. between 16#0 and 16#FFFFFFFF). All 32-bit values are treated as double integer

2
c
@)

=
o
S
S

—
0

£

o

LL

- values.
G
o
F35_DMULD |
- EM END|—
- 51 i
- 52 [
Example value 17
Bit 15..12|10 .. 8|7 . . 4|3 . .0
d 0000 [0000 | 0001|0001

1

Result value 18 if trigger is ON

Bit 15..12110 .. 8|7 . .43 . .0
d 0000|0000 (0001 (0010

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F39 DMULD (see page 1325)
Data types Variable | Datatype Function
sl multiplicand
s2 ANY32 multiplier
d result
Operands For Relay T/C Register Constant
sl,s2 DWX | DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL | dec. or hex.
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address Set If
R9007 | %MX0.900.7 permanently = the result calculated exceeds the 32-bit
area specified at output d.
R9008 %MX0.900.8 for an instant
R900B | %MX0.900.11 for an instant = the result calculated is 0.

396

Arithmetic instructions

%)
c
Qo
o
Example In this example, the same POU header is used for all programming languages. For an example "5’
using IL (instruction list), please refer to the online help. 403)
c
POU header All input and output variables used for programming this function have been declared in the POU E
header. L
| Class | Identifier | Tvpe | Initial | Comment —
0 start BOOL FALSE activates the Function -
1 WoR input_valoe 1 DIWT 1312396 mulkiplicant <
2 VAR input_walue 2 DIMT 10 rulkiplicator ol
3 WAR output_walue DIMT O result after a 0->1 leading
4 WA, edge from skark: 13125960

In this example the input variables input_value_1 and input_value _2 are declared. However, you
can write constants directly at the input contact of the function instead.

Body When the variable start is set to TRUE, the function is carried out.

LD
J start F33_DMLULD
=) EMN ENG -
input_walue_1=1312896 — =1 d ——output_walue = 13125960
input_wvalue_2=10—— s

ST | F start THEN
F39_ DMULD(i nput_value_1, input_value_ 2, output_val ue);
END | F;

397

Arithmetic instructions

F50 BMUL 4-digit BCD multiplication, destination can be specified

Description Multiplies the 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by s1
and s2 if the trigger EN is in the ON-state. The result is stored in d (8-digit area).

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

F&0_BMUL |
- EN ENO r
- &1 d
- 82 |-
Bit 15..12110 .. 8|7 . .4(3 . .0
Example value 16#20 BCD s1 0 0 2 0
Bit 15..12110 .. 8|7 . .4(3. .0
Example value 16#2 BCD s2 0 0 0 2
Result value 16#40 if trigger is ON
Bit 15..12|10 .. 8|7 . .4(3 . .0]| [15..12|10 .. 8|7 . . 4|3 . .0
d 0 0 0 0 0 0 4 0
< 32-bit area >

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F50_BMUL (see page 1325)

Data types Variable | Datatype Function
sl WORD multiplicand, 16-bit area for 4-digit BCD data or equivalent
constant
s2 WORD multiplier, 16-bit area for 4-digit BCD data or equivalent
constant
d DWORD result, 32-bit area for 8-digit BCD data
Operands For Relay T/C Register Constant
sl, s2 WX | WY WR WL SV EV DT LD FL dec. or hex.
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address | Set If
R900B | %MX0.900.11 for an instant = the calculated result is 0.

398

Arithmetic instructions

%)
c
Qo
=
Example In this example, the same POU header is used for all programming languages. For an example "5’
using IL (instruction list), please refer to the online help. 403)
c
POU header All input and output variables used for programming this function have been declared in the POU E
header. L
| Class | Identifier | Tvpe | Initial | Comment | —
a skart BOOL FALSE activates the function s
1 W AR, mukiplicand WORD 16#20 mulkiplicand 6_5
2 AR mulkiplicator WORD 16#2 mulkiplicator
3 WAR output_walue DWORD 0 result after a 0-=1 leading
4 WAR edge From start: 16440

Body When the variable start is set to TRUE, the function is carried out.

LD
J start FRO_BMUL
| EMN ENO -
multiplicand = 1E#0020 — 51 d ——output_wvalue = TE#00000040
multiplicator = 16#0002 — 2

ST IF start THEN
F50_BMUL(rmul tiplicand, nultiplicator, output_val ue);
END | F;

399

Arithmetic instructions

F51 DBMUL 8-digit BCD multiplication, destination can be 11 specified

Description Multiplies the 32-bit BCD (8-digit) equivalent constant or 8-digit BCD data specified by s1 and the
one specified by s2 if the trigger EN is in the ON-state. The result is stored in the ARRAY d[0], d[1]
(64-bit area).

2
c
@)

=
o
S
S

—
0

£

o

LL

s F51_DBMUL |
- EN ENO |
- 51 i
- 52 [

Example value 16#60008 (BCD)

Bit 31..28(27..24(123..20]19..16 15..12110 .. 8|7 . . 4(3. .0

d 0000|0000 | 0O0O0O0O]| 0110 0000 [0000 | 000OCO (1000

16# BCD 0 0 0 6 0 0 0 8
< 32-bit area >

X

Example value 16#40002 (BCD)

Bit 31..28(27..24(23..20(19..16 15..12(10 .. 8|7 . . 4(3 . .0
S 0000 | 0000 | 0000|0100 0000 [0000 [0000 (0010
16# BCD 0 0 0 4 0 0 0 2

1

Result value 16#2400440016 (BCD) if trigger is ON stored in the ARRAY [0..1] of DWORD

Bit 31..28|27..24|23..20(19..16| |15..12|10 .. 8|7 . . 4[(3. .0
darray[0] [0000 | 0000 (0100|0100 0000|0000 | 0001|0110
16# BCD 0 0 4 4 0 0 1 6
< output_array[0] >
Bit 31..28(27..24(23..20(19..16| |[15..12|10 .. 8|7 . . 4|3 . .0
darray[1] | 0000 [0000 | 0000|0000 0000|0000 | 0010|0100
16# BCD 0 0 0 0 0 0 2 4

< output_array[1] >

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F51_DBMUL (see page 1325)

400

Arithmetic instructions

%)
c
o
5
Data types Variable | Datatype Function >
sl DWORD multiplicand, 32-bit area for 8-digit BCD data or equivalent 4(7‘)
constant <
sl DWORD multiplier, 32-bit area for 8-digit BCD data or equivalent &
constant
d ARRAY [0..1] of result =
DWORD -
p =
©
Operands For Relay T/IC Register Constant (a5
s1,s2 DWX | DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL | dec. or hex.
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address | Set If
R900B | %MX0.900.11 for an instant = the calculated result is 0.
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Initial | Comment |

1] skart BiOOL FaLSE arctivates the Function

1 WOR multiplicand DWWORD 16#60005 multiplicand

Z WAOR, multiplicator — DAWORD 16#40002 rulkiplicator

3 AR output_value ARRAY [0..1] OF DWORD [2(0)] result after a 0->1 leading

4 VAR edaoe from skart:[16400440016,

16#00000024]

Body When the variable start is set to TRUE, the function is carried out.

LD
start F51_DEMUL
/m EM ENO
multiplicand = 1ERI00E0005 —— 571 d ——output value = Structure
multiplicator = 1600040002 — &2

output_value = Structure

VAR, ARRAY [0..1] OF DWORD, [2(0],
(*result after a 0->1 leading

edge from stark:[16#00440016,
1600000024 T+)

ST IF start THEN
F51 DBMUL(multiplicand, multiplicator, output_value);
END | F;

401

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Arithmetic instructions

F32 DIV 16-bit division, destination can be specified

Description

PLC types

Data types

The 16-bit data or 16-bit equivalent constant specified by s1 is divided by the 16-bit data or 16-bit
equivalent constant specified by s2 if the trigger EN is in the ON-state.

F32 DI |
CEM ENO

- &1 d

- g2
The quotient is stored in d and the remainder is stored in the special data register DT9015
(DT90015 for FP2/2SH and FP10/10S/10SH). All 16-bit values are treated as integer values.

Example value 36
Bit 15..12|10 .. 8|7 . .43 . .0
s1 0000 [0OOOCO (0010|0100

Example value 17

Bit 15..12110 .. 8|7 . . 4(3. .0
s2 0000 | 0000 [OOO1 [0001
Result value 2 if trigger is ON Remainder 2 stored in DT9015/90015
Bit 15..12|10 .. 8|7 . . 4[(3. .0 15..12(10 .. 8|7 . . 4(3 . .0
d 0000 | 0000 [OOOO [0OO10 0000 | 0000 [0O0O0O0O0 (0010

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction DIV (see page
64). Please refer also to Advantages of the IEC instructions in the online help.

Availability of F32_DIV (see page 1324)
Variable | Datatype Function

sl dividend

s2 ANY16 divisor

d quotient

The variables s1, s2 and d have to be of the same data type.

402

Arithmetic instructions

(7]
c
(@)
=
Operands For Relay T/IC Register Constant ‘5’
sl,s2 WX | WY [WR | WL SV EV DT LD FL dec. or hex. 4(/:)
d - WY | WR | WL SV EV DT LD FL - £
ol
LL
Error flags No. IEC address Set If —
R900B | %MX0.900.11 for an instant = the calculated result is 0. :
p =
©
R9009 %MX0.900.9 for an instant = the negative minimum value -32768 (al
(16#8000) is divided by -1 (16#FFFF)

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Twpe | Initial | Comment
1] skart BOOL FALSE activates the Funckion
1 AR dividend INT 36 dividend
2 VAR divisor INT 17 divisor
3 WAR output_wvalue INT 1] result after a 0->1 leading
4 AR edge From start: 2

Body When the variable start is set to TRUE, the function is carried out.

LD
star Faz_ D
— |l EN EMO —
ividend = 36 — 51 d ——output_wvalue = 2

divigor =17 —— 52

DT20015 2

ST I F start THEN
F32_DI V(di vi dend, divisor, output_val ue);
END | F;

403

2
c
@)

=
o
S
S

s
0

£

o

LL

Part Il

Arithmetic instructions

F33 DDIV 32-bit division, destination can be specified

Description

PLC types

The 32-bit data or 32-bit equivalent constant specified by s1 is divided by the 32-bit data or 32-bit
equivalent constant specified by s2 if the trigger EN is in the ON-state. The quotient is stored in d
and the remainder is stored in the special data registers DDT9015 (DDT90015 for FP2/2SH and
FP10/10S/10SH). All 32-bit values are treated as double integer values.

F33_DOr
- EM END

- 51 o
- 52

Example value 16908416

Bit 31..28(27..24(23..20(19..16 15..12110 .. 8|7 . . 4|13 . .0
s1 0000 (0001 | 0000]0010 0000 | 0O0O0O0O | 1000 (| 00O0O
< 32-bit area >
|]
|
| |

Example value 589828

Bit 31..28(27..24(23..20(19..16 15..12110 .. 8|7 . . 4(3 . .0
s2 0000 | 0000 [0000 [1001 0000 | 0000 | 0000 (0100

: 1

Result value 28 if trigger is ON

Bit 31..28(27..24123..20|19..16 15..12110 .. 8|7 . . 4(3. .0
d 0000 | 0000 (0O0O0OO [OOOO 0000 | 0000|0001 ([1100

Remainder 393232

Bit 31..28(27..24123..20|19..16 15..12110 .. 8|7 . . 4(3 . .0
0000 | 0000 [(0O0O0O0O0 (0110 0000 | 0000|0001 [000O

<——— DT9016/DDT90016 —> <—— DT9015/DDT90015 ——>

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction DIV (see page
64). Please refer also to Advantages of the IEC instructions in the online help.

Availability of F33_DDIV (see page 1324)

404

Arithmetic instructions

n
c
o
S
Data types Variable | Datatype Function >
s1 dividend »
2 divi =
S Ivisor -
ANY32 &
d quotient
The variables s1, s2 and d have to be of the same data type. f
Operands For Relay T/IC Register Constant ES
s1,s2 | DWX |DWY |DWR |DWL |DSV [DEV |DDT |DLD |DFL [dec.or hex.
d - DWY |[DWR |DWL |[DSV | DEV |DDT |DLD | DFL -
Example In this example, the same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
1] skart BOOL FALSE ackivates the function
1 VAR dividend DINT 16903416 dividend
z WaR divisor DINT 589523 divisor
3 WAR output_walue DINT O result after a 0-=1 leading
4 WA, edge From skark: 25

Body When the variable start is set to TRUE, the function is carried out.

LD
stat F33_DDM

M| EN ENOD
dividend = 16808416 —— 51 d
divisor = 589828 — 52

|
ILDutput_value =28

— DCT9O5 493232

ST | F start THEN
F33_DDl V(di vi dend, divisor, output_val ue);
END | F;

405

Arithmetic instructions

F52 BDIV 4-digit BCD division, destination can be specified

Description The 4-digit BCD equivalent constant or the 16-bit area for 4-digit BCD data specified by s1 is
divided by the 4-digit BCD equivalent constant or the 16-bit area for 4-digit BCD data specified by
s2 if the trigger EN is in the ON-state.

2
c
@)

=
o
S
S

s
0

£

o

LL

Part Il

Faz2_BOM
- EM END

- 51 o

- 52
The quotient is stored in the area specified by d and the remainder is stored in special data register
DT9015 (DT90015 for FP2/2SH and FP10/10S/10SH).

Example value 16#0037 (BCD)

Bit 15..12[10 .. 8[7 . .4(|3. .0
d 0000|0000 | 0011|0111
16# (BCD) 0 0 3 7
|]
|
|

Example value 16#0015 (BCD)

Bit 15..12(10 .. 8|7 . . 4|3 . .0
s 0000|0000 | 0001|0101
16# (BCD) 0 0 1 5

lTrigger: ON

Result value 16#0002

Bit 15..12(10 .. 8|7 . . 4|3 . .0
d 0000 [0000 | 0000|0010
16# (BCD) 0 0 0 2

Remainder 1640007

Bit 15..12(10 .. 8|7 . . 4|3. .0
DT9015 0000 | 0000|0000 | 0111
16# (BCD) 0 0 0 7

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F52_BDIV (see page 1325)

406

Arithmetic instructions

(7]
c
o
5
Data types Variable | Datatype Function >
sl WORD dividend, 16-bit area for BCD data or 4-digit BCD equivalent 4(7‘)
constant <
s2 WORD divisor, 16-bit area for BCD data or 4-digit BCD equivalent constant &
d WORD quotient, 16-bit area for BCD data (remainder stored in special data —
register DT9015/DT90015) -
S
Operands For Relay T/IC Register Constant o
s1,s2 WX | WY WR WL SV EV DT LD FL dec. or hex.
d - WY WR WL SV EV DT LD FL -
Error flags No. IEC address Set If
R900B | %MX0.900.11 for an instant = the result calculated is 0.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Inikial | Comment
1] skark BOOL FALSE activates the funckion
1 VAR dividend WORD 16#0037 dividend
2 AR divizor WORD 1640015 divisor
3 WAOR oukput_walue WORD 0 result after 0-=1 leading edge
4 VaR From start: 1640002

Body When the variable start is set to TRUE, the function is carried out.

LD
start F&2_BDIW
- |mF——EN ENO -
dividend = 1640037 — =1 d ——output_walue = TE#0002
divisor = 16#0015 — s2

DIB01a 1680007 BhAAS B015

ST IF start THEN
F52_ BDI V(di vi dend, divisor, output_val ue);
END | F;

407

Arithmetic instructions

F53 DBDIV 8-digit BCD division, destination can be specified

Description The result is stored in the area specified by d, and the remainder is stored in the special data
registers DT9016 and DT9015 (DT90016 and DT90015 for FP2/2SH and FP10/10S/10SH).

2
c
@)

=
o
S
S

—
0

£

o

LL

= F&3_DEDIV |
o - EN ENCI|-
- 51 d
- 82 |-
Example value 16#00001110 (BCD)
Bit 31..28(27..24(23..20(19..16 15..12(10 .. 8|7 . .43 . .0
s1 0000 | 0000 | 0000 [0000 0000 | 0001 (0001 (0000
16# BCD 0 0 0 0 0 1 1 0
< 32-bit area >
]
I
]
Example value 16#0000011 (BCD)
Bit 31..28(27..24(23..20(19..16 15..12(10 .. 8|7 . . 4(3 . .0
s2 0000 | 0000 | 0000 [0O0O0O 0000 | 0000 (0001 (0001
16# BCD 0 0 0 0 0 0 1 1
Result value 16#00000100 (BCD) if trigger is ON
Bit 31..28(27..24(23..20(19..16 15..12(10 .. 8|7 . .43 . .0
d 0000 | 0000 | 0000 [0000 0000 | 0001|0000 0000
16# BCD 0 0 0 0 0 1 0 0
Remainder 16#00000010 (BCD) if trigger is ON stored in DT9015 to DT9016
(DDT90015 to DDT90016)
Bit 31..28(27..24(23..20(19..16 15..12(10 .. 8|7 . . 4(3. .0
0000 | 0000 | 0000 [0O0O0O 0000 | 0000 (0001 (0000
16# BCD 0 0 0 0 0 0 1 0
<—— DT9016/DDT90016 ——> <— DT9015/DDT90015 ——>

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F53_DBDIV (see page 1325)

408

Arithmetic instructions

(7]
c
o
S
Data types Variable | Datatype Function >
sl DWORD dividend, 32-bit area for BCD data or 8-digit BCD equivalent 4(7‘)
constant £
s2 DWORD divisor, 32-bit area for BCD data or 8-digit BCD equivalent &
constant
d DWORD quotient, 32-bit area for BCD data (remainder stored in =
special data register DT9016 and DT9015/DT90016 and :
DT90015) bt
ol
Operands For Relay TIC Register Constant
sl,s2,s3 | DWX | DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL | dec. or hex.
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address Set If
R900B | %MX0.900.11 for an instant = the result calculated is 0.
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
1] start BOCL FALSE activates the funckion
1 VAR dividend CWORD 16#00001110 dividend
Z VAR divisar WORD 16#00000011 divisor
3 WOR, output_walue DWIORD 0 result after 0-=1 leading edge
4 VAR From skark: 16200000100

Body When the variable start is set to TRUE, the function is carried out.

LD
star F53_DBEDM
/) EM EMO
dividend = 16800001710 — 51 d ——output_wvalue = TE#00000700
divisor = 16400000017 — s&
DTo015 2R000000000001 0000+ Kk 5015
DTE0 G 2R0000000000000000 - KhAAE D016

ST IF start THEN
F53_DBDI V(di vi dend, divisor, output_value);
END | F;

409

Arithmetic instructions

F313 FDIV Floating Point Data Divide

Description The real number data specified by s1 is divided by the real number data specified by s2 when the
trigger turns on. The result is stored in d.

2
c
@)

=
o
S
S

—
0

£

o

LL

F313_FD
- BN ENO

- 51 d

- 82
This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears

under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Part Il

Instead of using this FP instruction, we recommend using the related IEC instruction DIV (see page
64). Please refer also to Advantages of the IEC instructions in the online help.

PLC types Availability of F313_FDIV (see page 1324)

= This instruction cannot be programmed in the interrupt program.
Data types Variable | Data type Function
sl REAL Real number data for dividend.
s2 REAL Real number data for divisor.
d REAL 32-bit area for result (destination).
Operands For Relay T/IC Register Constant
sl,s2 [DWX | DWY |DWR (DWL | DSV |DEV | DDT | DLD | DFL -
d - DWY | DWR | DWL DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = data other than real number data is
R9008 | %MX0.900.8 [for an instant specified in s1 and s2.
= the real number data (floating point data)
for the divisor specified by s2 is "0.0".
R9009 %MX0.900.9 for an instant = the result is overflowed.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial |
0 Srart EOOL FALSE
1 WAaR Resul RE&L 0.0
z2 WaR Real Mumberl REAL 987654321.0
3 VAR Real Mumberz RE&L 123456739.0

410

Arithmetic instructions

(2}

c

o

Body When the variable Start is set to TRUE, the real number entered for the variable RealNumberl is "5’
divided by the real number entered for RealNumber2 and the result stored at the address assigned =

by the compiler to the variable Result. The monitor value icon is activated. 2

ol

b J Start F313_FDIY =
Ll EN ENO — =

RealMumberl = 9.5765402e+0058 — =1 d ——Result = 5.0000029 +

FRealMumber2 = 1.234567e+005 — =2 6_5

411

Arithmetic instructions

F70 BCC Block check code calculation

Description Calculates the Block Check Code (BCC), which is used to detect errors in message transmission,
of s3 bytes of ASCII data starting from the 16-bit area specified by s2 according to the calculation
method specified by s1. The Block Check Code (BCC) is stored in the lower byte of the 16-bit area
specified by d. (BCC is one byte. The higher byte of d does not change.)

2
c
@)

=
o
S
S

—
0

£

o

LL

T
o
F70_BCC |
- EM ENO I
- 51 _Control o
- 52 Start {
- 53 _MNumber

1600 0 O
A A
BCC calculation method set with “s1”
0: Addition
1: Substraction
2: Exclusive OR operation
A: CRC-16
Starting byte position for calculation (No. of bytes from “s2”)
OtoF
Starting byte position for storing results (No. of bytes from “d”)

OtoF
Conversion data

0: Binary data (CRC: 2 bytes / Not CRC: 1 byte)
1: ASCII code (2 bytes)

= If CRC-16 is specified as the calculation method, ASCIl code cannot be
specified for the conversion data.

PLC types Availability of F70_BCC (see page 1326)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Data types Variable | Datatype Function
sl INT specifies BCC calculation method: 0 = addition, 1 =
subtraction, 2 = exclusive OR operation
s2 ANY16 starting 16-bit area to calculate BCC
s3 INT specifies number of bytes for BCC calculation
d ANY16 16-bit area for storing BCC
Operands For Relay T/C Register Constant
sl, s3 WX | WY WR WL SV EV | DT | LD FL dec. or hex.
s2 WX | WY WR WL S)Y EV | DT | LD FL -
d - WY WR WL SV EV | DT | LD FL -

412

Arithmetic instructions

Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = the number of specified bytes for the
target data exceeds the limit of the
R9008 | %MX0.900.8 for an instant specified data area.
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Type | Inikial | Comment |
0 Skart BOCIL FALSE
1 VAR BCC_Calc_Method INT 2 0 = addition
z2 VAR A5CIT Skring STRING[3Z] ‘'%%01#RCSx0000"
3 VAR BiZC WORD 0 result = 16410

Body A block check code is performed on the value entered for the variable ASCII_String when Start
becomes TRUE. The exclusive OR operation, which is more suitable when large amounts of data
are transmitted, has been chosen for the BCC method.

How the BCC is calculated using the exclusive OR operation:

Exclusive OR operation:

In1 In2 Ougt wor |
In1— i—Dl.rt

In2 —

= = = =
il == ol]
= = = =

(o) ASCII-HEX-Code 2 5
/OASCII-BIN-Code 0010/0101 Exclusive ORing

ASCII-HEX-Code 3 0
O ASCII-BIN-Code [0 0 1 1/0 0 0 O Exclusive ORing

1 ASCII-HEX-Code 3 1
ASCII-BIN-Code (0 0 1 1|0 0 0 1

etc.

. etc.

N
ASCII-HEX-Code 3 0 Exclusive ORing
O ASCII-BIN-Code |0 0 1 1|10 0 0 O

‘ calculation

Block Check Code (BCC)
ASCII-HEX-Code 1 D —
ASCII-BIN-Code |0 0 0 1({1 1 0 1

This calculation result (16#1D)
is stored in d.

The ASCII BIN code bits of the first two characters are compared with each other to yield an
8-character exclusive OR operation result:
Sign for comparison ASCII BIN code

% 00100101
0 00110000
Exclusive OR result 00010101

0
c
(@)
=
o
S
S
s
0
£
a
LL

413

Part Il

Arithmetic instructions

(7]
c
(@]
e}
o . . .
= This result is then compared to the ASCII BIN code of the next character, i.e. "1".
E Sign for comparison ASCII BIN code
- Exclusive OR result 00010101
& 1 00110001
_ Next exclusive OR 00100100
E And so on until the final character is reached.
&
LD
1 Stant F70_BCC |
m} EN END -
BCC_Cale_Mathod = 2 —— =1_Cantral d BECC = 1680010
ASCI_String = "%01HRCSX0000" s2_Start
;l z3_Number
| Ad_Of_VarDffs_| |
= Nar Adr
e —H
LEW |
Adr_OF_%arOffs_| allows FFO_BCC to process the incoming ASCI_string. Offsetting the
ASCI string's walue by 2 compensates for the string's 2 byte header. A

By uzing LEN . an exlusive OR operation can be preformad on the entire data string
regardlesz of its length. “

ST | F start THEN
F70_BCC(sl1 Control:= BCC Cal c_Met hode,
s2 Start:= Adr O VarOfs(Var:= ASCI|_String,
Ofs: = 2),
s3_Number: = LEN(ASCII_String),
d=> BCC);
END | F;

414

Arithmetic instructions

F160 DSQR 32-bit data square root

Description The square root of the 32-bit data or constant value specified by s is calculated if the trigger EN is
in the ON-state. The result (square root) is stored in d.

0
c
(@)

=
o
S
S

s
0
£
a
LL

F160_DSGR |
- EN ENO |
- 5 d I

Part Il

The figures of the first decimal place and below are disregarded.

Example value 64

Bit 31..28(27..24123..20119..16 15..12110 .. 8|7 . . 4(3. .0
Binary 0000 [O0O0OO | O0OOO0 | O0OOO 0000 [0000 | 0100]) 0000O
Decimal 64

< 32-bit area =

l Trigger: ON

Result value 8

Bit 31..28(27..24123..20(|19..16 15..12110 .. 8|7 . . 4|3 . .0
Binary 0000 |00O0O0 | O00OO [0OO0QO0O 0000 |0O0O0OO |OOOO | 0100
Decimal 8

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions” pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction SQRT (see
page 68). Please refer also to Advantages of the IEC instructions in the online help.

PLC types Availability of F160_DSQR (see page 1321)

Data types Variable | Datatype Function
S DINT, DWORD source, 32-bit area to be calculated
d DINT, DWORD square root (decimal places deleted)

The variables s1 and d have to be of the same data type.

Operands For Relay T/IC Register Constant
S DWX | DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL | dec. or hex.
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -

415

Arithmetic instructions

%)
c
o
=
O
g Example In this example the function has been programmed in ladder diagram (LD) and structured text
2 (ST).The same POU header is used for all programming languages.
& POU header All input and output variables used for programming this function have been declared in the POU
header.
f | Class | Identifier | Tvpe | Initial | Comment |
G 0 skart BOOL FALSE activates the funckion
o 1 WAR input_walue DINT 70 inpuk_walue:=70
2 WAR, output_walue DINT O result after a 0-+1 leading
3 WAR edge From start: 3

Body When the variable start is set to TRUE, the function is carried out.

LD
J start F160_DSOR |
| EH ENO
| input_walue — = d ——output_value

ST IF start THEN
F160 DSQR(i nput _val ue, output_val ue);
END_I F;

416

Arithmetic instructions

F300 BSIN BCD type Sine operation

Description The function calculates the sine of BCD code angular data (input s) and stores the result (output d)
as a BCD value in an array with three elements.

0
c
(@)
=
o
S
S
s
0
£
a
LL

F300_BSIN |
- EM ENO
- 5 d r

Part Il

BCD values for input s lie in the area from 0° to 360° (16#0 to 16#360) in 1° steps. With this, output
d can yield a result in the range of -1.0000 to 1.0000. The result is returned as follows:

ARRAY[0] preceding sign (0 when input is +, 1 when input is -)

ARRAY[1] whole number before the decimal point (0 or 1)

ARRAY[2] numbers after the decimal point with 4 significant figures as a BCD value (16#0000 to
16#9999).

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F300_BSIN (see page 1323)

Data types Variable | Datatype Function
WORD 16-bit area where angle data is stored
ARRAY [0..2] of result stored in 3 words
WORD
Operands For Relay T/IC Register Constant
s WX | WY | WR | WL SV EV DT LD FL dec. or hex.
d - WY | WR | WL sV EV DT LD FL -
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = the input value for s is not a BCD value
RO008 | %MX0.900.8 | for an instant or is not between 0% and 360°.
R900B | %MX0.900.11 for an instant = theresultis 0.
R9009 %MX0.900.9 for an instant = the result causes an overflow.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help. In addition, an analytical program is
created that interprets the result. The same POU header is used for both programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Initial | Comment |

1] skart BoOL F&LSE activates the function

1 W AR, input_walue WORD] "ECD value bebween

2 AR ouktput_value ARRAY [0..2] OF WORD [3(0)] "number between -1.0000 and 1.0000
3 WAR input_181 to 353 BOGL FALSE "TRUE if input_walue

4 VAR input_90_or_270 BOOL FALSE | TRUE if input_walue

5 VAR o0 or 270"

417

Arithmetic instructions

In this example, the input variable input_value is declared. However, you can write a constant (e.g.
16#45 for 45°) directly at the input contact of the function.

Body In the body, the value 90° is assigned to the variable input_value. When the variable start is set to
TRUE, the function F300_BSIN is carried out. It stores the result in the variable output_value. If
the input_value is between 181° and 359°, output_value has a minus sign. The function
WORD_TO_BOOL sets the variable input_181_to_359 to TRUE. With an input_value of 90° or

2
c
@)

=
o
S
S

—
0

£

o

LL

ch 270°, the output_value is 1, which represents the value before the decimal point. If this is the
o case, then WORD_TO_BOOL sets the value of the variable input_90_or_270 to TRUE.
LD
1
16430 sinput_wvalue
2 F300_EBZIN
start —— EN EWNO —
input_wvalue — z d ——output_value
3 output_walue[l] — WORD TO BOOL ——input_151 ta_ 359
4 output_wvalue[1] — WORD TO BOOL |——input_90 ta 270

ST i nput _val ue: =16#90;
I F start THEN
F300_BSI N(i nput _val ue, output_val ue);
END | F;
i nput _181 to_359: =\WORD TO BOOL(out put _val ue[0]);
i nput _90 _or_ 270: =WORD TO BOCOL(out put _val ue[1]);

418

Arithmetic instructions

F301 BCOS BCD type Cosine operation

Description The function calculates the cosine of BCD code angular data (input s) and stores the result (output
d) as a BCD value in an array with three elements.

0
c
(@)

=
o
S
S

s
0

£

a
LL

F301_BCOS | =
EN T ENO| =
5 d | (al

BCD values for input s lie in the area from 0° to 360° (16#0 to 16#360) in 1° steps. With this output
d can yield a result in the range of -1.0000 to 1.0000. The result is returned as follows:

ARRAY[0] preceding sign (0 when input is +, 1 when input is -)

ARRAY[1] whole number before the decimal point (0 or 1)

ARRAY[2] numbers after the decimal point with 4 significant figures as a BCD value (16#0000 to
16#9999).

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F301_BCOS (see page 1323)

Data types Variable | Datatype Function
WORD area where angle data is stored
d ARRAY [0..2] of result stored in 3 words
WORD
Operands For Relay T/IC Register Constant
s WX [WY | WR | WL Y EV DT LD FL dec. or hex.
d - WY [WR | WL SV EV DT LD FL -
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = the input value for s is not a BCD value
or is not between 0° and 360°.
R9008 %MX0.900.8 for an instant
R900B | %MX0.900.11 for an instant = theresultis 0.
R9009 %MX0.900.9 for an instant = the result causes an overflow.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

419

Arithmetic instructions

n

c

(@]

e}

3

2

7 POU header In the POU header, all input and output variables are declared that are used for programming this
k= function.

o | Class | Identifier | Type | Initial | Comment |
L 1] skart BiooL F&LSE ackivates the function

— 1 W AR, input_walue WORD 1] "BCD value bebween

- 2 AR output_wvalue ARRAY [0..2] OF WORD [3(0)] | number between -1.0000 and 1.0000

% 3 WAOR oukput_value [0] = +/- sign

o

output_value [1] = pre-decimal value
aukput_value [2] = post-decimal poink values
result: here +0.7071

In this example, the input variable input_value is declared. However, you can write a constant (e.g.
16#45 for 45°) directly at the input contact of the function.

Body In the body, the value 16#45° is assigned to the variable input_value. When the variable start is
set to TRUE, the function is carried out. The result at output d isoutput_value[0] = 0,
output_value[1] = 0, output_value[2] = 7071.

LD
1 16H45 ————input_wvalue
- e — output_walue[d] = 1
a if input_waluz
inpit V:j: : ::N ENE _—n:u.mi"-lt walue e
= 5 dj = output_wvalue[1] =1
if input_walue
0" or 1807 £

ST i nput _val ue: =16#45;
I F start THEN
F301_BCOS(input_val ue, output_val ue);
END | F;

420

Arithmetic instructions

F302 BTAN BCD type Tangent operation

Description The function calculates the tangent of BCD code angular data (input s) and stores the result
(output d) as a BCD value in an array with three elements.

0
c
(@)

=
o
S
S

s
0

£

a
LL

F302_ETAN |
- EM ENO |
- 5 d I

Part Il

BCD values for input s lie in the area from 0° to 360° (16#0 to 16#360) in 1° steps. With this output
d vyields a result in the range of -57.2900 to 57.2900. The result is returned as follows:

ARRAY[0] preceding sign (0 when input is +, 1 when input is -)

ARRAY[1] whole number before the decimal point as BCD value (16#0 to
16#57)

ARRAY[2] numbers after the decimal point with 4 significant figures as BCD

value (16#0000 to 16#9999)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions” pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <CtrI>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F302_BTAN (see page 1324)
Data types Variable | Datatype Function
S WORD area where angle data is stored
d ARRAY [0..2] of result stored in 3 words
WORD
Operands For Relay TIC Register Constant
s WX [WY | WR | WL SV EV DT LD FL dec. or hex.
d - WY [WR | WL sV EV DT LD FL -
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently the input value for s is not a BCD value
R9008 | %MX0.900.8 for an instant s = 90° (16#90) or 270° (16#270)
R900B | %MX0.900.11 to TRUE the result is 0.
R9009 %MX0.900.9 for an instant the result causes an overflow.

Example

In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

421

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Arithmetic instructions

POU header In the POU header, all input and output variables are declared that are used for programming this

Body

LD

function.
| Class | Identifier | Tvpe | Initial | Comment |
a skark BOOL FALSE activates the Function
1 W AR, input_walue WORD 16#89 "BCD walue between
2 AR output_value ARRAY [0..2] OF WORD [3(0)] | number between -57.2900 and 57,2900
3 WAOR output_wvalue[0] = +/- sign

oukbput_value[1] = pre-decimal point values
autput_value[2] = post-decimal paoint values
resulk: here +57.2599

In this example, the input variable input_value is declared. However, you can write a constant (e.g.
16#89 for 89°) directly at the input contact of the function.

When the variable start is set to TRUE, the function is carried out. The input_value was initialized
with the value 16#89 (89°) in the POU header. The result is written to the ARRAY output_value.
Here in the first element of the ARRAY, the output_value = 16# (+ sign). In the second element,
16#57 represents the number before the decimal point, and 16#2899 comes after the decimal point
in the third element.

output_walue undefined

if input_walue

0" and 270° “
output_walue[1] = 1

if input_wvalue

between 917 and 1737 or
between 271" and 3597 .

F302_ BETAM
start —— EN END
input_value — = d ——output_walue

ST IF start THEN

F302_BTAN(i nput _val ue, output_val ue);
END | F;

422

Arithmetic instructions

F303 BASIN BCD type Arcsine operation

Description The function calculates the arcsine of a BCD value that is entered at input s as an ARRAY with
three elements. The result is returned as BCD angular data in the range of 0° to 360° (16#0 to

16#360) at output d.

0
c
(@)
=
o
S
S
s
0
£
a
LL

F303_BASIN | 5
- EM ENO [o
- 5 d I

BCD values for input s lie in the area from -1.0000 to 1.0000. They are entered as follows:

ARRAY[0] preceding sign (0 when input is +, 1 when input is -)
ARRAY[1] whole number before the decimal point (0 or 1)
ARRAY[2] numbers after the decimal point with 4 significant figures as a BCD

value (16#0000 to 16#9999).

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F303_BASIN (see page 1324)

Data types Variable | Datatype Function
S ARRAY [0..2] of area where angle data is stored
WORD
d WORD result stored in 3 words
Operands For Relay T/IC Register Constant
s WX | WY | WR | WL SV EV DT LD FL dec. or hex.
d - WY | WR | WL SV EV DT LD FL -
Error flags No. IEC address Set If
R9007 %MX0.900.7 permanently = the input value for s is not a BCD value
R9008 %MX0.900.8 for an instant or is not between -1.0000 and 1.0000
R900B | %MX0.900.11 to TRUE = theresultis 0.
R9009 %MX0.900.9 for an instant = the result causes an overflow.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Type | Initial | Comment |
1] skart BTl FALSE ackivates the function
1 W AR, input_walue ARRAY [0..2] OF WoORD [3(0%] "number between -1,0000 and 1.0000
2 AR output_wvalue WORD 1] BCD wvalue between
K] VAR 1640 and 164360 (0° and 360°)
results here 164333

423

Arithmetic instructions

Body The first element of the ARRAY’s input_value is given the value 1 (- sign). The second element
has 0 as its whole number value, and in the third element 16#4500 is written as the value after the
decimal point. When the variable start is set to TRUE, the function is carried out. The result for the
output_value = 16#333 (333°).

2
c
@)

=
o
S
S

—
0

£

o

LL

LD

1 ———input_walue[0]

Part Il

F303_BASIN |
output — EN END |—'
input_wvalue — = d (——output_alue

ST i nput _val ue[0] : =1;
i nput _val ue[1] : =0;
i nput _val ue[2] : =16#4500;
| F start THEN
F303_BASI N(i nput _val ue, out put_val ue);
END_| F;

424

Arithmetic instructions

n
c
o
: . Iz}
F304_BACOS BCD type Arccosine operation S
2
Description The function calculates the arccosine of a BCD value that is entered at input s as an ARRAY with E
three elements. The result is returned as BCD angular data in the range of 0° to 360° (16#0 to [
16#360) at output d.
F304_BACOS | T
- EM EMD [o
- 5 d I
BCD values for input s lie in the area from -1.0000 to 1.0000. They are entered as follows:
ARRAY[0] preceding sign (0 when input is +, 1 when input is -)
ARRAY[1] whole number before the decimal point (0 or 1)
ARRAY[2] numbers after the decimal point with 4 significant figures as a BCD

value (16#0000 to 16#9999).

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F304_BACOS (see page 1324)

Data types Variable | Datatype Function
S ARRAY [0..2] of area where angle data is stored in 3 words
WORD
d WORD result
Operands For Relay T/IC Register Constant
s WX | WY | WR | WL SV EV DT LD FL dec. or hex.
d - WY | WR | WL SV EV DT LD FL -
Error flags No. IEC address Set If
R9007 %MX0.900.7 permanently = the input value for s is not a BCD value
R9008 %MX0.900.8 for an instant or is not between -1.0000 and 1.0000.
R900B | %MX0.900.11 to TRUE = theresultis 0.
R9009 %MX0.900.9 for an instant = the result causes an overflow.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header |, the POU header, all input and output variables are declared that are used for programming this

function.
| Class | Identifier | Tvpe | Inikial | Comment |
1] skart BOOL FALSE ackivates the function
1 W AR, input_value ARRAY [0..2] OF WoORD [2(0),16#8660] "number between -1.0000 and 1.0000
2 AR output_value WORD 1] BCD value between
K] VAR 16#0 and 164360 (0° and 360°)
result: here 16430

425

Arithmetic instructions

(72}

c

Qo

©

2 Body When the variable start is set to TRUE, the function is carried out. The input_value = 0 (+ sign) in
o the ARRAY's first element. 0 represents the whole in the second element, and the value after the
£ decimal point is 8660. The function thus calculates the output_value = 16#30 (30°).

o

L LD

— Fan4_BACOS

= start —— EN ENO —

EE input_wvalue — = d ——output_wvalue

ST IF start THEN
F304_BACOS(i nput _val ue, out put _val ue);
END | F;

426

Arithmetic instructions

F305 BATAN BCD type Arctangent operation

Description The function calculates the arctangent of a BCD value that is entered at input s as an ARRAY with
three elements. The result is returned as BCD angular data in the range 0° to 90° (16#0 to 16#90)
or 270° to 360° (16#270 to 16#360) at output d.

0
c
(@)

=
o
S
S

s
0
£
a
LL

F305_BATAM | 5
- EM ENO [o
- 5 d I

BCD values for input s lie in the area from -9999.9999 to 9999.9999. They are entered as follows:

ARRAY[0] preceding sign (0 when input is +, 1 when input is -)

ARRAY[1] whole number before the decimal point as BCD value (16#0 to
16#9999)

ARRAY[2] numbers after the decimal point with 4 significant figures as a BCD

value (16#0000 to 16#9999).

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F305_BATAN (see page 1324)

Data types Variable | Datatype Function
S ARRAY [0..2] of area where angle data is stored in 3 words
WORD
d WORD result
Operands For Relay T/IC Register Constant
s WX [WY | WR | WL SV EV DT LD FL dec. or hex.
d - WY [WR | WL sV EV DT LD FL -
Error flags No. IEC address Set If
R9007 %MX0.900.7 permanently = the input value at s is not a BCD value.
R9008 | %MX0.900.8 for an instant
R900B | %MX0.900.11 to TRUE = theresultis 0.
R9009 %MX0.900.9 for an instant = the result causes an overflow.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

427

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Arithmetic instructions

POU header All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier

| Twpe | Initial | Comment

1]
1
i
3

Start

Tangentofdngle REAL 100.0

VAR,
VAR
WAR,

angle REAL 0.0 Bebween -pif2 radians

BOOL FALSE

and +pif2 radians.

Body When the variable Start is set to TRUE, the Arctangent of the real number entered for the variable
TangentofAngle is calculated and the result stored at the address assigned by the compiler to the
variable Angle (units are radians).

LD

Fa19_ATAN

J Start
h Ll EN END

angentofAngle = 1000 — ¢

d

—

——ngle = 1.5607966

428

Arithmetic instructions

(7]
c
o
F87 ABS 16-bit data absolute value S
- 2
Description Gets the absolute value of 16-bit data with the sign specified by d if the trigger EN is in the E
ON-state. L
FE7_ABS | =
“EM EMO 3
dl g
N

The absolute value of the 16-bit data with +/- sign is stored in d. This instruction is useful for
handling data whose sign (+/-) may vary.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions” pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction ABS (see
page 66). Please refer also to Advantages of the IEC instructions in the online help.

PLC types Availability of F87_ABS (see page 1326)

Data types Variable | Datatype Function
d ANY16 16-bit area for storing original data and its absolute value
Operands For Relay T/C Register Constant
d - WYy WR WL SV EV DT LD FL -
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = the 16-bit data is the negative minimum
R9008 | %MX0.900.8 | for an instant value -32768 (16#8000).
R9009 | %MX0.900.9 for an instant = the 16-bit data is the negative value in
the range from -1 to -32767 (16#FFFF to
16#8001).
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Twpe | Inmitial | Comment |

1] skart BOOL FALSE activates the Funckion
1 WAOR abs_walue INT -123 | resulk after a 0-=1 lzading

edge from stark: 123

Body When the variable start is set to TRUE, the function is carried out.

429

Arithmetic instructions

] | EN END!—'

LD J start F87_ABS
| d ——abs_wvalue

2
c
@)

=
o
S
S

s
0

£

o

LL

ST IF start THEN
F87_ABS(abs_val ue) ;
END | F;

Part Il

430

Arithmetic instructions

F88 DABS 32-bit data absolute value

Description Gets the absolute value of 32-bit data with the sign specified by d if the trigger EN is in the
ON-state. The absolute value of the 32-bit data with sign is stored in d. This instruction is useful for

handling data whose sign (+/-) may vary.

0
c
(@)

=
o
S
S

s
0

£

a
LL

FE5_DABS | 5
- EN END[o
. dr

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions” pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Instead of using this FP instruction, we recommend using the related IEC instruction ABS (see
page 66). Please refer also to Advantages of the IEC instructions in the online help.

PLC types Availability of F88 DABS (see page 1326)

Data types Variable | Datatype Function
d ANY32 32-bit area for storing original data and its absolute value
Operands For Relay T/IC Register Constant
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address Set If
R9007 %MX0.900.7 permanently = the 32-bit data is the negative minimum
R9008 | %MX0.900.8 for an instant value -2147483648 (16#80000000).
R9009 | %MX0.900.9 for an instant = the 32-bit data is the negative value in
the range from -1 to -2147483647
(16#FFFFFFFF to 16#80000001).

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Type | Initial | Comment |

1] stark BOCL FALSE activates the funckion
1 AR abs_walue DINT -123 |result after a 0-=1 leading

edge from skark: 123

Body When the variable start is set to TRUE, the function is carried out.

LD
J start Fas_DAEBS
| | EN ENO
| d ——abs_walue

431

Arithmetic instructions

ST IF start THEN
F88 DABS(abs_val ue);
END | F;

2
c
@)

=
o
S
S

s
0

£

o

LL

Part Il

432

Arithmetic instructions

F287 BAND 16-bit data deadband control

Description The function compares the input value at input s3 with a deadband whose lower limit is specified at
input s1 and whose upper limit is specified at s2. The result of the function is returned at output d

as follows:

0
c
(@)
=
o
S
S
s
0
£
a
LL

Part Il

F267 BAND |
- EN ENO |
s1_Min d {

52 Max
- 53 |n

= If the input value at input s3 < s1, the lower limit at input s1 is subtracted from
the input value at s3, and the result is stored as the output value at d.

= If the input value at input s3 > s2, the upper limit at input s2 is subtracted from
the input value at s3, and the result is stored as the output value at d.

. If the input value at s2 = s3 = s1, 0 is returned as the output value at d.

Output value d
A

Lower limit of
deadband s1

\ Input value s3

Upper limit of deadband s2

In this range, zero is output

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions” pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F287_BAND (see page 1323)

Data types Variable | Datatype Function
sl the area where the lower limit is stored or the lower limit data
s2 the area where the upper limit is stored or the upper limit
data
ANY16
s3 the area where the input value is stored or the input value
data
d the area where the output value data is stored
Operands For Relay T/IC Register Constant
s1,s2,s3 WX [WY WR WL | SV | EV | DT LD FL dec. or hex.
d - WY WR WL | SV | EV | DT LD FL -

433

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Arithmetic instructions

Error flags

Example

POU header

Body

LD

No. IEC address Set If

R9007 | %MX0.900.7 permanently = the value ats1 > s2.

R9008 %MX0.900.8 for an instant

R900B | %MX0.900.11 TRUE = the input value at s3 is 0.

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Initial | Comment |
0 start BOOL FALSE ackivates the Function
1 WAR, input_walue INT 12
z WAR, output_walue IMT 0 result: here 2

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

When the variable start is set to TRUE, the function is carried out. The constant 3 (lower limit of
the deadband) and 10 (upper limit of the deadband) are assigned to inputs s1 and s2. However,
you can declare variables in the POU header and write them in the function in the body at the
inputs.

F287_BAND
start — ENM EMO —
33— =1_Min d ——output_walus
10— 22 bdan
input_wvalue — 53 |

=1 = lower limit of deadband
z2 = upper limit of deadband .

ST | F start THEN

F287_BAND(3, 10, input_value, output_val ue);
END | F; (* 3=lower limt of deadband, 10=upper limt of deadband *)

434

Arithmetic instructions

%)
c
Qo
F288 DBAND 32-bit data deadband control g
= 2
Description The function compares the input value at input s3 with a deadband whose lower limit is specified at E
input s1 and whose upper limit is specified at s2. The result of the function is returned at output d T
as follows:
F285_DEAND | T
- EN ENO | o
- 51 _Min d
- 52 Max
- 53 |n

= If the input value at input s3 < s1, the lower limit at input s1 is subtracted from
the input value at s3, and the result is stored as the output value at d.

= If the input value at input s3 > s2, the upper limit at input s2 is subtracted from
the input value at s3, and the result is stored as the output value at d.

. If the input value at s2 = s3 = s1, 0 is returned as the output value at d.

Output value d
A

Lower limit of
deadband s1

\ Input value s3

Upper limit of deadband s2

In this range, zero is output

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions” pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F288 DBAND (see page 1323)

Data types Variable | Datatype Function
sl the area where the lower limit is stored or the lower limit data
s2 the area where the upper limit is stored or the upper limit
data
ANY32
s3 the area where the input value is stored or the input value
data
d the area where the output value data is stored
Operands For Relay T/IC Register Constant
sl,s2,s3 | DWX | DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL | dec. or hex.
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -

435

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Arithmetic instructions

Error flags No. IEC address | Set If
R9007 | %MX0.900.7 permanently
R9008 %MX0.900.8 for an instant

= the value at s1 > s2.

R900B | %MX0.900.11 to TRUE = the input value at s3is 0.

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
0 skark BOOL FALSE ackivates the function
1 WAR input_walue DIMNT -22
z WAR oubput_wvalue DINT 0 result: here -12

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Body When the variable start is set to TRUE, the function is carried out. The constant -10 (lower limit of
the deadband) and 20 (upper limit of the deadband) are assigned to inputs s1 and s2. However,
you can declare variables in the POU header and write them in the function in the body at the

inputs.
LD
F2e8_DEAND
start — ENM ENO —
10— z1_Min d ——output_value
20 —— 22 Pdan
input_value — =3 In

£1 = lower limit of deadband
2 = upper limit of deadband

ST IF start THEN
F288 DBAND(-10, 20, input_value, output_value);
END | F; (* 10=lower limt of deadband, 20=upper Iimt of deadband *)

436

Arithmetic instructions

F348 FBAND Floating point data deadband control

Description The function compares the input value at input s3_In with a deadband whose lower limit is
specified at input s1_Min and whose upper limit is specified at s2_Max. The result of the function

is returned at output d as follows:

0
c
(@)
=
o
S
S
s
0
£
a
LL

F343_FBAND | ©
= ENO i o
- 51 _Min d
- 52 Max {

- 53 In

Output value d
3

Lower limit of
deadband s1

0 \ Input value s3
Upper limit of deadband s2
A

In this range, zero is output

Comparison Flag

between s1 and s2

R900A | R900B | R900C
(>flag) | (=flag) | (<flag)

sl<s2 off off on
sl=s3ands2=sl off on off
s3<sl on off off

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions” pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F348_FBAND (see page 1324)

Data types Variable | Datatype Function
sl Min REAL the area where the lower limit is stored or the lower limit data
s2_Max REAL the area where the upper limit is stored or the upper limit
data
s3_1In REAL the area where the input value is stored or the input value
data
d REAL the area where the output value data is stored
Operands For Relay T/C Register Constant
sl Min, DWX | DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL | dec. or hex.
s2_Max,
s3_1In

437

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Arithmetic instructions

- DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -

Error flags

Example

POU header

Body

LD

No. IEC address Set If

R9007 %MX0.900.7 permanently = the values at inputs s1_Min, s2_Max,
and s3_In are not REAL numbers or the

R9008 %MX0.900.8 for an instant value at s1_Min > s2_Max.

R900B | %MX0.900.11 to TRUE = theresultis 0.

R9009 %MX0.900.9 for an instant = the result causes an overflow.

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Initial | Commert |
0 skark BOOL FALSE ackivakes the Function
1 VaR inpuk_walue REAL 12.0
z WAR output_walue REAL 0.0 result; here 2:0

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

The constants 3.0 and 10.0 are assigned to the inputs s1_Min (lower limit of the deadband) and
s2_Max (upper limit of the deadband). However, you can declare two variables in the POU header
and write them in the function in the body at the inputs. When the variable start is set to TRUE, the
function is carried out. Since the input_value = 12.0 is larger than the value of the upper limit of
the deadband at s2_Max, the output_value = 12.0 -10.0 = 2.0.

F3d45_ FEAMD
start —— EN ENDO —
30— =1_Min d ——output_value
100 — =2 pdan
input_wvalue — 53 |

=1 = lower limit of deadband
z2 = upper limit of deadband .

438

Arithmetic instructions

(7]

C

o

13

ST I F start THEN 2
F348 FBAND(s1 Mn:= 3.0 , &
s2_Max: = 10.0 , E

s3 _In: = input_val ue , H

d=> out put _val ue) —

END | F; (* 3.0=lower limt of deadband, 10.O0=upper limt *) %
(al

439

Arithmetic instructions

(72}
c
Qo
©
= F289 ZONE 16-bit data zone control
E —
o Description The function adds an offset value to the input value at input s3. The offset values for the negative
L and positive areas are entered at inputs s1 and s2. The result of the function is returned at output d
— as follows:
T
& F2859_7ONE |
- ENM EMD I
- 51 MegBias d
- 52 PosBias
- 53 In

= If the input value at input s3 < 0, the negative offset value at input s1 is added to
the input value at s3, and the result is stored as the output value at d.

" If the input value at input s3 = 0, 0 is returned at the output value to output d.

] If the input value at input s3 > 0, the positive offset value at input s2 is added to
the input value at s3, and the result is stored as the output value at d.

Output value d

Positive bias

value s2 \

> Input value s3

. — Negative bias value s1

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F289 ZONE (see page 1323)

Data types Variable | Datatype [Function
sl area where negative bias value is stored or negative bias value
data
s2 area where positive bias value is stored or positive bias value data
ANY16
s3 area where input value is stored or input value data
d area where output value is stored

440

Arithmetic instructions

)
c
o
e}
Operands For Relay T/IC Register Constant ‘5’
s1,s2,s3 WX | WY WR | WL | SV EV DT | LD | FL dec. or hex. *3
d - WYy WR | WL | SV EV DT | LD | FL - =
a8
LL
Error flags No. IEC address | Set If —
R900B | %MX0.900.11 for an instant = the calculation results in an overflow or :
an underflow of output d. <
R9009 %MX0.900.9 for an instant = the input value s3is 0. a
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
1] skart Bl FALSE ackivates the Funckion
1 W AR, negative_offset INT]
2 AR input_value INT -12
3 WAOR oubput_value IMT 0 result; here -2

In this example the input variables input_value and negative_offset are declared. However, you
can write constants directly at the input contact of the function instead.

Body When the variable start is set to TRUE, the function is carried out. It adds the corresponding
negative offset value = 10 to the negative input_value = -12. However, you can declare a variable
in the POU header and assign it to the function’s input in the body.

LD
1
10 ————neqgative_offsat
2 F289_ Z0OME
start — EM EMO —~
niegative_offset —— =1_MegBias d ——output_walue
20 —— 22 PoszBias
input_wvalue — 23 |k
| 2= positive offzet ,.;

ST IF start THEN
F289 ZONE(negative_offset, 20, input_value, output val ue);
END | F; (*negative_of fset=neg. offset, 20=pos. offset *)

441

Arithmetic instructions

F290 DZONE 32-bit data (double word data) zone control

Description The function adds an offset value to the input value at input s3. The offset value for the negative
and positive area are entered at inputs s1 and s2. The result of the function is returned at output d
as follows:

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

F250_DZONE |
- EM ENO I
- 51 MegBias d
- 52 PosBias {
- g3 In

= If the input value at input s3 < 0, the negative offset value at input s1 is added to
the input value at s3, and the result is stored as the output value at d.

" If the input value at input s3 = 0, 0 is returned at the output value to output d.

] If the input value at input s3 > 0, the positive offset value at input s2 is added to
the input value at s3, and the result is stored as the output value at d.

Output value d

Positive bias

value s2 \

> Input value s3

. — Negative bias value s1

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F290_DZONE (see page 1323)

Data types Variable | Datatype Function
sl area where negative bias value is stored or negative bias
value data
s2 area where positive bias value is stored or positive bias value
ANY32 data
s3 area where input value is stored or input value data
d area where output value is stored

442

Arithmetic instructions

n
c
o
e}
Operands For Relay TIC Register Constant ‘5’
sl1,s2,s3 | DWX | DWY | DWR [DWL | DSV | DEV | DDT | DLD | DFL | dec. or hex. *3
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL - =
ol
LL
Error flags No. IEC address Set If —
R900B | %MX0.900.11 for an instant = the calculation results in an overflow or +
an underflow of output d. Dct_s
R9009 | %MX0.900.9 for an instant = the input value s3is 0.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Twpe | Initial | Comment |
1] stark BOOL FALSE ackivates the Funckion
1 WOR, input_walue DINT 18
Z WAR, output_walue DINT 0O result: here 20

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Body When the variable start is set to TRUE, the function is carried out. It adds the corresponding
positive offset value = 2 to the positive input value = 18. The constants 5 (negative offset) and 2
(positive offset) are assigned to inputs s1 and s2 respectively. However, you can declare variables
in the POU header and write them in the function in the body at the inputs.

LD
F2a0_DZ0OME
start — EM EMNO —
5—— 21 _MegBiazs d ——output_walus
2—— 52 PosBias
input_wvalue — =3 In

=1 = negative offzat
s2 = positive offzet P

ST I F start THEN
F290 DZONE(sl1 NegBias:= 5,
s2 PosBias: = 2,

s3_In:= input_val ue,
d=> out put val ue);
END_I F; (*5=neg. offset, 2=pos. offset *)

443

Arithmetic instructions

F349 FZONE Floating point data zone control

Description The function adds an offset value to the input value at input s3. The offset value for the negative
and positive area are entered at inputs s1 and s2. The result of the function is returned at output d
as follows:

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

F345_FZONE |
- EM ENO I
- 51 MegBias d
- 52 PosBias {
- g3 In

= If the input value at input s3 < 0.0, the negative offset value at input s1 is added
to the input value at s3, and the result is stored as the output value at d.

" If the input value at input s3 = 0.0, 0.0 is returned as the output value to output d.

= If the input value at input s3 > 0.0, the positive offset value at input s2 is added to
the input value at s3, and the result is stored as the output value at d.

Output value d

Positive bias

value s2 \

> Input value s3

. — Negative bias value s1

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F349_FZONE (see page 1324)

Data types Variable | Datatype Function
sl REAL area where negative bias value is stored or negative bias
value data
s2 REAL area where positive bias value is stored or positive bias value
data
s3 REAL area where input value is stored or input value data
d REAL area where output value is stored

444

Arithmetic instructions

Operands %)
c
o
e}
For Relay TIC Register Constant ‘5’
S
sl1,s2,s3 | DWX | DWY | DWR [DWL | DSV | DEV | DDT | DLD | DFL | dec. or hex. *J‘)
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL - =
a8
LL
Error flags No. IEC address Set If —
R9007 %MX0.900.7 permanently = the values at inputs s1, s2, and s3 are +
R9008 | %MX0.9008 | for an instant not REAL numbers. N
R900B | %MX0.900.11 to TRUE = theresultis 0.
R9009 %MX0.900.9 for an instant = the result causes an overflow.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Type | Initial | Comment |
1] skart BOOL FALSE activates the Funckion
1 VAR input_salue REAL -10.0
2 AR output_walue REAL 0.0 result: here -11.23

In this example, the input variable input_value is declared. However, you can write a constant
directly at the input contact of the function instead.

Body The constant -1.23 is assigned to input s1 (negative offset) and the constant 5.55 is assigned to
input s2 (positive offset). However, you can declare two variables in the POU header and write
them in the function in the body at the inputs. When the variable start is set to TRUE, the function
is carried out. Since the input_value is negative (-10.0), the negative offset -1.23 is added to it.
The result here is: output_value =-11.23.

LD
F349 FZONE
start —— EN ENO —
123 —— 51_MegBias d ——output_value
255 —— 22 PoszBias
input_walue — =3 In

445

Arithmetic instructions

%)
c

Qo

©

-

7 ST IF start THEN

£ F349 _FZONE(sl NegBias:= -1.23 ,

a s2 PosBias: = 5.55

_ s3 I n: = input_val ue ,

E d=> out put _val ue);

C‘E END | F; (*-1.23=neqg. offset, 5.55=pos. offset *)

446

Arithmetic instructions

F85 NEG 16-bit data two's complement

Description Takes two's complement of 16-bit data specified by d if the trigger EN is in the ON-state. Two's
complement of the original 16-bit data is stored in d.

0
c
(@)

=
o
S
S

s
0
£
a
LL

Fa5 NEG | -

- EM ENO 3

il g
T

Two’s complement is a number system used to express positive and negative numbers in binary
format. In this system, the number becomes negative if the most significant bit (MSB) of data is 1.
Two’s complement is obtained by inverting all bits and adding 1 to the inverted result.

This instruction is useful for inverting the sign of 16-bit data from positive to negative or from
negative to positive.

Destination
Bit positionfi5 . . 1211 . . 8|7 . . 4|3 . . 0
d 0000/0OO0OO0OO0OOOOO|OO0T11
Decimal data 3
‘ start: ON
Destination
Bit position{i5 - -1211 - - 8|7 - - 4|3 - - 0
d 1111111111111 101
Decimal data -3

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F85 NEG (see page 1326)

Data types Variable | Datatype Function
d ANY16 16-bit area for storing original data and its two's complement
Operands For Relay T/IC Register Constant
d - wy WR WL SV EV DT | LD | FL -
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Twpe | Initial | Comment |
1] skark BOOL FALSE ackivates the Funckion
1 WOR, neqokiate_value WORD Z¥1001001101110001 | resulk after a 0-=1 leading
edge From stark:
Z2#0110110010001111

Body When the variable start changes from FALSE to TRUE, the function is carried out.

447

Arithmetic instructions

LDJ ga F85_NEG
| [P EN EMNO —

d ——negotiate_walue

2
c
@)

=
o
S
S

s
0

£

o

LL

ST IF DF(start) THEN
F85_NEG negoti at e_val ue) ;
END | F;

Part Il

448

Arithmetic instructions

F86 DNEG 32-bit data two's complement

Description Takes two's complement of 32-bit data specified by d if the trigger EN is in the ON-state. Two's
complement of the original 32-bit data is stored in d.

0
c
(@)

=
o
S
S

s
0

£

a

LL

F&5_DNEG |
CEN " ENO -

_ dr

Part Il

Two’s complement is a number system used to express positive and negative numbers in binary
format. In this system, the number becomes negative if the most significant bit (MSB) of data is 1.
Two’s complement is obtained by inverting all bits and adding 1 to the inverted result.

This instruction is useful for inverting the sign of 32-bit data from positive to negative or from
negative to positive.

Destination DT1 DTO
Bit positionfy5 . .1211 . . 8|7 . . 43 . .0f5 . .1211 . . 8|7 . . 4|3 . .0
Binarydatal1 1 1 1{1 11 1|1 11111111 111111111111 101
Decimal data -3

< 32-bit area

‘start:ON

Destination DT1 DTO
Bit position{i5 - -1211 . . 8|7 . . 4|3 . .05 . 1211 . . 8(7 . - 4|3 - -0
Binary data|0 0 0 0|0 0 0 00 0 0 0/0O0 0000 O0O0/O0O0O0(0O0O0O0(0OO0T1 1
Decimal data 3

< 32-bit area

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F86_DNEG (see page 1326)

Data types Variable | Datatype Function
d ANY32 32-bit area for storing original data and its two's complement
Operands For Relay T/IC Register Constant
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Type | Initial | Comment |
0 start EOOL FaLSE ackivates the Funckion
1 WAR negokiate_walue DWORD 2#11010001000011000110000011101111 |resulk after a 0-=1 leading
edge from start:
Z#0010111011110011
1001111100010001

449

Arithmetic instructions

n
c
o
E
g Body When the variable start changes from FALSE to TRUE, the function is carried out.
c
a LD
L start Fee_DMEG
= EW ENO —
| d ——hegotiate_walues

=
©
(o

ST |F DF(start) THEN
F86_DNEG negoti at e_val ue);
END | F;

450

Arithmetic instructions

%)

c

Qo

F270_|\/|AX Maximum value search in 16-bit data table §
2

Description The function searches for the maximum value and its position in a 16-bit data table. E
T

F270_MAX | =

- EN ENO =

- g1 Start Max I @©

- g2 End Pos - o

Input s1 specifies the starting area of the data table, and s2 specifies the end. The maximum value
is returned at output max and its position at output pos.

The position pos is relative to the position at the beginning of the data table to the first occurrence
of the maximum value.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions” pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F270_MAX (see page 1323)

Data types Variable | Datatype Function
sl starting area of data table
s2 ANY16 ending area of data table
max INT specifies maximum value
pos INT position where maximum value was found
Operands For Relay T/IC Register Const.
s1,s2 WX | WY WR WL SV EV DT LD FL -
max, pos - wYy WR WL SV EV DT LD FL -
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = the address of the variable at input s1 >
R9008 %MX0.900.8 for an instant s2.
= the address areas of s1 and s2 are
different.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Type | Initial | Comment |
1] skart BioL FALSE ackivates the function
1 WAR data_Field ARRAY [0.,4]OF INT [2,3,6,-3,1] Arhitrarily large data field
Z WAR maximum_svalue INT 1] result: here 6
3 AR position INT 1] result: here 2

Body When the variable start is set to TRUE, the function is carried out. It searches for the maximum
value and its position in the data_field. The result is here: maximum_value = 6 and position = 2.

451

2
c
@)

=
o
S
S

s
0

£

o

LL

Part Il

Arithmetic instructions

LD F270_MAX
output—— EN EMO —
datafield[0] — s1_5Start ax ——maximum
datafield[4] — =2_End Pos ——position

ST IF start THEN
F270_MAX(sl Start:= data _field[O],
s2 End: = data field[4],
Max=> maxi mum val ue,
Pos=> position);
END_| F;

452

Arithmetic instructions

F271 DMAX Maximum value search in 32-bit data table

Description The function searches for the maximum value and its position in a 32-bit data table.

0
c
(@)

=
o
S
S

s
0
£
a
LL

F271 DMAK
- EN EMO
- g1 Start Max
- g2 End Pos

Part Il

-1 1 1

Input s1 specifies the starting area of the data table, and s2 specifies the end. The maximum value
is returned at output max and its position at output pos.

The position pos is relative to the position at the beginning of the data table to the first occurrence
of the maximum value.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions” pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F271_DMAX (see page 1323)

Data types Variable | Datatype Function
sl DINT, DWORD starting area of data table
s2 DINT, DWORD ending area of data table
max DINT specifies maximum value
pos WORD position where maximum value was found
Operands For Relay T/C Register Const.
sl,s2 DWX | DWY | DWF | DWL | DSV | DEV | DDT | DLD | DFL -
max - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
pos - WYy WR WL SV EV DT LD FL -
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = the address of the variable at input s1 >
R9008 %MX0.900.8 for an instant s2.
= the address areas of s1 and s2 are
different.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Camment |
1] skark Bl FALSE ackivates the Funckion
1 VAR data_field ARRAY [0..4] OF DINT [2,3,222222,-333333,1] Arbitrarily large data Field
z WOR, maximum_value DIMT 0 result: here 222222
3 YAR, position INT 1] result: here 2

453

Arithmetic instructions

0
c
9o
3]
=
7 Body When the variable start is set to TRUE, the function is carried out. It searches for the maximum
< value and its position in the data_field. The result is here: maximum_value = 222222 and
o position = 2.
LL
— LD
- F271_ Db
G start —— EM ENO —
o data_field[]] — s1_Stat Man ——marimum_walus
data_field[4] — 52 _End Pos ——position

ST IF start THEN
F271 DMAX(s1 _Start:= data field[O],
s2 End: = data field[4],
Max=> maxi mum val ue,
Pos=> position);
END | F;

454

Arithmetic instructions

F350 FMAX Maximum value search in real number data table (floating point data)

Description The function searches for the maximum value and its position in a floating point data table.

PLC types

Data types

Operands

Error flags

Example

F350_FhAX

- EM

EMO

- 51 Start Max

- 52 End

|
f
Fos [

Input s1 specifies the starting area of the data table, and s2 specifies the end. The maximum value
is returned at output max and its position at output pos.

The address of the maximum value at output pos is relative to the beginning address in the data
table as specified at input s1.

If more than one maximum value is found, the first one found beginning from the starting address
specified at s1 is stored in d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Availability of F350 FMAX (see page 1325)

Variable | Datatype Function
sl REAL starting area of data table
s2 REAL ending area of data table
max REAL specifies maximum value
pos INT position where maximum value was found
For Relay T/IC Register Const.
sl,s2 DWX | DWY | DWF | DWL | DSV | DEV | DDT | DLD | DFL -
max - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
pos - WY WR WL SV EV DT LD FL -
No. IEC address | Set If
R9007 %MX0.900.7 permanently = the addresses of variables at inputs s1 >
R9008 | %MX0.900.8 | for an instant s2.
= the address areas are different.
= the floating point values exceed the
processing range.

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

0
c
(@)

=
o
S
S

s
0
£
a
LL

455

Part Il

Arithmetic instructions

(7]
c
o
e
(&]
g POU header All input and output variables used for programming this function have been declared in the POU
n header.
£
[a B 355 entirier pyuls ricia anmnen
| | 1dentifier | T | Initial | ¢ £ |
L 1] start BOL FALSE activates the funckion
— 1 YAR data_field ARRAY[D...4] OF REAL [2.0,3.45,-6.91,5.44,1.3] Arhitrarily large data field
= Z WAOR, max_wvalue REAL 0.0 result: here 5,44
G 3 WOR, posikion INT 0 result; here 3
o

Body When the variable start is set to TRUE, the function is carried out. It then searches the data_field
for a maximum value and its position. The result here is: max_value = 5.44 and position = 3.

LD
FaS0_F kA
start —— EM ENO —
data_field[J] — =1_Stat Manx ——mar_value
data_feld[4] — 52 End Pos ——position

ST IF start THEN
F350 FMAX(s1 _Start:= data_field[O],
s2 End: = data field[4],
Max=> max_val ue,
Pos=> position);
END | F;

456

Arithmetic instructions

%)

c

Qo

F272_|\/||N Minimum value search in 16-bit data table §
2

Description The function searches for the minimum value and its position in a 16-bit data table. E
T

F272_MIN | —

- EN ENO ¢ =

- g1 Start Min r @©

- g2 End Pos - o

Input s1 specifies the starting area of the data table, and s2 specifies the end. The minimum value
is returned at output min and its position at output pos.

The position pos is relative to the position at the beginning of the data table to the first occurrence
of the minimum value.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions” pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F272_MIN (see page 1323)

Data types Variable | Datatype Function
sl starting area of data table
s2 ANY16 ending area of data table
min INT specifies minimum value
pos INT position where minimum value was found
Operands For Relay T/IC Register Const.
sl,s2 WX | WY WR WL SV EV DT LD FL -
min, pos - WY WR WL SV EV DT LD FL -
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = the address of the variable at input s1 >
R9008 %MX0.900.8 for an instant s2.
= the address areas of s1 and s2 are
different.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Type | Initial | Camment |
1] skart BTl FaLSE ackivates the function
1 W AR data_field ARRAY [0..4] OF INT [2,3,8,-3,1] Arbitrarily large data field
2 AR minimum_value INT 1] result: here -3
3 WOR, posikion INT 0 result: here 3

457

Arithmetic instructions

(72}

c

Qo

©

g Body When the variable start is set to TRUE, the function is carried out. It searches for the minimum
2 value and its position in the data_field. The result is here: minimum_value = -3 and position = 3.
o LD

- F272_MIN

— start — EM ENO —

+ data_field[J] — =1_Stat Min ——minimum_value

F data_field[4] — 52 End Pas ——position

ST I F start THEN
F272 MN(sl Start:= data field[O],
s2 End: = data field[4],
M n=> mi ni num val ue,
Pos=> position);
END | F;

458

Arithmetic instructions

%)

c

Qo

F273_D|\/||N Minimum value search in 32-bit data table §
2

Description The function searches for the minimum value and its position in a 32-bit data table. E
T

F273_DMIN | —

- EN ENO ¢ =

- g1 Start Min r @©

- g2 End Pos - o

Input s1 specifies the starting area of the data table, and s2 specifies the end. The minimum value
is returned at output min and its position at output pos.

The position pos is relative to the position at the beginning of the data table to the first occurrence
of the minimum value.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions” pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F273_DMIN (see page 1323)

Data types Variable | Datatype Function
sl starting area of data table
s2 ANY32 ending area of data table
min DINT specifies minimum value
pos INT position where minimum value was found
Operands For Relay T/IC Register Const.
sl,s2 DWX | DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
min - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
pos - WYy WR WL SV EV DT LD FL -
Error flags No. IEC address Set If
R9007 %MX0.900.7 permanently = the address of the variable at input s1 >
RO008 | %MX0.900.8 | for an instant s2.
= the address areas of s1 and s2 are
different.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | 1dentifier | Tvpe | Initial | Carnment |
1] skark BOOL FALSE ackivates the Funckion
1 VAR data_Field ARRAY [0..4] OF DINT [2,3,222222,-333333,1] Arbitrarily large data field
Z WAR minimum_salue DINT 0 result: here -333333
3 WAR position INT n result: here 3

459

Arithmetic instructions

(72}
c
Qo
O
g Body When the variable start is set to TRUE, the function is carried out. It searches for the minimum
n value and its position in the data_field. The result is here: minimum_value = -333333 and
< position = 3.
o
L LD
= F273_DIN
= start —— EN ENO —
EE data_field[0] — =1_Stant Min ——minimum_walue
data_field[4] — =2 End Pos ——position

ST | F start THEN
F273 DM N(s1_Start:= data field[O],
s2 End: = data field[4],
M n=> mi ni num val ue,
Pos=> position);
END | F;

460

Arithmetic instructions

F351 EMIN Minimum value search in real number data table (floating point data)

Description The function searches for the minimum value and its position in a floating point data table.

F351_FriM

- EM

- 51 _Start Min {
- 52 End r

EMO

Pos

Input s1 specifies the starting area of the data table, and s2 specifies the end. The minimum value
is returned at output min and its position at output pos.

The address of the minimum value at output pos is relative to the beginning address in the data
table as specified at input s1.

If more than one minimum value is found, the first one found beginning from the starting address
specified at s1 is stored in d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F351_FMIN (see page 1325)
Data types Variable | Datatype Function
sl REAL starting area of data table
s2 REAL ending area of data table
min REAL specifies minimum value
pos INT position where minimum value was found
Operands For Relay T/C Register Const.
sl, s2 DWX | DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
min - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
pos - WY WR WL SV EV DT LD FL -
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = the addresses of variables at inputs s1 >
R9008 %MX0.900.8 for an instant s2.

processing range.

= the address areas are different.
= the floating point values exceed the

0
c
(@)

=
o
S
S

s
0
£
a
LL

461

Part Il

Arithmetic instructions

%)
c
()
=
O
g Example In this example, the same POU header is used for all programming languages. For an example
2 using IL (instruction list), please refer to the online help.
& POU header All input and output variables used for programming this function have been declared in the POU
header.
f | Class | Iderkifier | Tvpe | Initial | Carmment |
G 0 skart: BinoL FALSE ackivates the Function
o 1 WA data_field ARRAY[0..4] OFREAL [2.0,3.45,-6.91,5.44,1.3] Arbitrarily large data Field
2 WAR, min_walue REAL n.o result: here -6,91
3 WAR position INT n result: here 2

Body When the variable start is set to TRUE, the function is carried out. It then searches the data_field
for a minimum value and its position. The result here is: min_value = 6.91 and position = 2.

LD
F351_FMIN
start — EN ENO —
data_field[J] — =1_Stant Min ——min_wvalue
data_field[4] — s2 End Pos ——position

ST IF start THEN
F351 FM N(s1 _Start:= data field[O],
s2 End: = data field[4],
M n=> mi n_val ue ,
Pos=> position);
END | F;

462

Arithmetic instructions

F275 MEAN Total and mean numbers calculation in 16-bit data table

Description This function calculates the sum and the arithmetic mean of numbers (both with +/- signs) in the
specified 16-bit data table.

0
c
(@)

=
o
S
S

s
0
£
a
LL

F275_MEAN | -
= ENO i G
- 51 Start Sum I o
- 52 End Mean

Input s1_Start specifies the starting area of the data table, and s2_End specifies the end. The sum
of all elements in the data table is returned at output Sum and the arithmetic mean of all elements
in the data table is returned at output Mean. The arithmetic mean is rounded off if it is not a whole

number.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F275_MEAN (see page 1323)

Data types Variable | Datatype Function
s1_Start starting area of data table
s2_End ANY16 ending area of data table
Mean INT mean of all elements in data table area specified
Sum DINT sum of all elements in data table area specified
Operands For Relay T/IC Register Const.
sl_Start, WX [WY WR WL SV EV DT LD FL -
s2_End
Mean - WYy WR WL SV EV DT LD FL -
Sum - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address Set If
R9007 %MX0.900.7 permanently = the address of the variable at input
RO008 | %MX0.900.8 | for an instant SAEStArE=SeLEnd:
= the address areas are different.
R9009 %MX0.900.9 for an instant = the total value range overflows or
underflows the 16-bit range.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
1] skart BOCIL FALSE ackivates the function
1 AR data_field ARRAY [0..4] OF INT [2,3,6,-3,1] Arbitrarily large data Field
Z WAOR, SUM DIMT 0 result: here 9
3 WOR, MMEan INT 0 result: here 1

463

Arithmetic instructions

Body When the variable output is set to TRUE, the function F275_MEAN is carried out. The function
calculates the sum of all elements of the data table (sum=4+3 + 8 + (-2) + 1 + (-6) = 8) and
writes the result (in this case 8) to the variable sum. Additionally, the function calculates the
arithmetic mean of all elements of the data table (mean =sum/6=(4+3 +8 + (-2)+ 1+ (-6))/ 6 =
1.333) and writes the roanded-off number (in this case 1) to the variable mean.

2
c
@)

=
o
S
S

—
0

£

o

LL

E LD
CCLU F275_ MEAM
start —— EMN ENDO —
data_field[J] — =s1_Stat Sum ——=sum
data_field[4] — 22 End Mean ——mean

ST IF start THEN
F275 MEAN(sl Start:= data field[O],
s2 End: = data field[4],
SunF> sum
Mean=> nean) ;
END | F;

464

Arithmetic instructions

F276 DMEAN Total and mean numbers calculation in 32-bit data table

Description This function calculates the sum and the arithmetic mean of numbers (both with +/- signs) in the
specified 32-bit data table.

0
c
(@)
=
o
S
S
s
0
£
a
LL

F276_DMEAN | =
EN ENO | @
- 51 Start Sum I o
- 52 End Mean

Input s1 specifies the starting area of the data table, and s2 specifies the end. The sum of all
elements in the data table are returned at output sum and the arithmetic mean of all elements in
the data table are returned at output mean. The arithmetic mean is rounded off if it is not already a
whole number.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F276_DMEAN (see page 1323)

Data types Variable | Datatype Function
sl starting area of data table
ANY32
s2 ending area of data table
mean DINT mean of all elements in data table area specified
sum ARRAY [0..1] of sum of all elements in data table area specified
DINT
Operands For Relay TIC Register Constant
sl,s2 DWX | DWY | DWR | DWL | DSV | DEV | DDT | DLD [DFL -
mean, sum - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = the address of the variable at input s1 >
RO008 | %MX0.900.8 | for an instant s2.
= the address areas are different.
R9009 %MX0.900.9 for an instant = the total value range overflows or
underflows the 32-bit range.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

465

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Arithmetic instructions

POU header All input and output variables used for programming this function have been declared in the POU

Body

LD

ST

header.

| Class | Identifier | Twpe | Initial | Carnmert |
0 output B FALSE activates the funckion
1 VAR data_field ARRAY[0..4] OF DINT [2,3,222222,-333333,1] Arbitrarily large data Field
z WAR, sUm BRRAY [0, 1] OF DINT - [2(07] Fresult: here
3 WAR, mean DINT 0 resulk: here -22221

When the variable start is set to TRUE, the function is carried out. The function calculates the sum
of all elements of ARRAY data_field (sum =2 + 3 + 222222 + (-333333) + 1 =-111105) and
transfers the result to the variable sum. In addition, the function calculates the mean (mean =
sum/5 = -111105/5 = -22221) and transfers the result to the variable mean.

F276_DMEAN
start —— EM ENO —
data_field[]] — s1_Stan SUm ——Eum
data_field[4] — =2 End Mean ——mean
IF start THEN

F276 _DMEAN(sl Start:= data field[O],
s2 End: = data field[4],
Sum=> sum
Mean=> nean) ;
END_I F;

466

Arithmetic instructions

F352 EMEAN Total and mean numbers calculation in floating point data table

Description This function calculates the sum and the arithmetic mean (both with +/- signs) of floating point
values in the specified 32-bit data table.

0
c
(@)

=
o
S
S

s
0
£
a
LL

F352_FMEAN | =
- EN ENO [G
- 51 _Stat Sum I o
- g2 End Mean ¢

Input s1 specifies the starting area of the data table, and s2 specifies the end. The sum of all
elements in the data table are returned at output sum, and the arithmetic mean of all elements in
the data table are returned at output mean.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions” pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F352_FMEAN (see page 1325)

Data types Variable | Datatype Function
sl REAL starting area of data table
s2 REAL ending area of data table
mean REAL mean of all elements in data table area specified
sum REAL sum of all elements in data table area specified
Operands For Relay TIC Register Constant
sl,s2 DWX | DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
mean, sum - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = the addresses of variables at inputs s1 >
R9008 | %MX0.900.8 | for an instant s2.
= the address areas are different.
= the floating point values exceed the
processing range.
R9009 %MX0.900.9 for an instant = the result leads to an overflow or an
underflow.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

467

Arithmetic instructions

n

c

(@]

e}

3

2

7 POU header All input and output variables used for programming this function have been declared in the POU
= header.

o - -

[T | Class | Identifier | Type | Initial | Corment |
_ 1] skark Bl FaLSE ackivates the Funckion

= 1 WAR data Field ARRAY[0..4]0F REAL [2.0,3.45,-6.91,5.44,1.3] Arbitrarily large data field
pu 2 VAR sum REAL 0.0 result: here 5,28

D“_s 3 WA mean REAL 0.0 result: here 1,056

Body When the variable start is set to TRUE, the function is carried out. It calculates the sum =2.0 +
3.45 + (-6.91) + 5.44 + 1.3 = 5.28 and the mean = Sum/5 = 5.28/5 = 1.056 of the elements of the

data field.
LD
F352_FMEAN
start —— EN ENO —
data_field[J] —— s1_Star JUm ——Fum
data_field[4] — =2 End Mean ——meaan

ST IF start THEN
F352 FMEAN(sl Start:= data field[0] |,
s2 End: = data _field[4] ,
SunF> sum ,
Mean=> nmean) ;
END | F;

468

Arithmetic instructions

F282 SCAL Linearization of 16-bit data

Description The function renders the value y at position x by performing a linear interpolation based on the
neighboring reference points Pw yy, yw) and PW+1 1 yw+1). In this example, w is the nearest
reference point whose x value is smaller than the input value X, i.e. the function connects the
individual reference points in series and renders the output value y based on the input value x.

0
c
(@)

=
o
S
S

s
0

£

a
LL

-
p =
©
F282 SCAL | a
- EN ErND I
- }{ '-|I|'
- #y_data [
RN (o S P3h§3,y3]_ o
________ Moo N PEEYE): PRIBS):
TPy S DNyl O © PB(xayE)
22 s v e ol ndn dpn e o e g .40P.7(Iv,v7)_ T
o S Seaay i s i s i BT
The function can be used for:
= linearizing measured values, e.g. with non-linear sensors

= rendering a heater’s flow temperature y in relation to the outside temperature x
= etc.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F282 SCAL (see page 1323)

Data types Variable | Datatype Function
X INT Input value x
xy_data | DUT The first element of an DUT-type variable that contains the
xy value pairs.
y INT Output value y
EN BOOL Activation of the function (when EN = TRUE, the function is
executed during each PLC cycle)
ENO BOOL ENO is set to TRUE as soon the function is executed.
Helpful when cascading function blocks with EN functions.
Operands For Relay T/C Register Constant
X WX | WY WR WL SV EV | DT | LD FL dec. or hex.
y - WY WR WL SV EV | DT | LD FL -
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = the number of reference points is not
between 2 ... 100, or the x values are not
R9008 %MX0.900.8 for an instant in ascending order (x1 < x2 <x3<...).

469

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Arithmetic instructions

B Limitations of the output value y:

If the input value x is smaller than the x-coordinate of the first reference point (P1: x < x1), the
output y is set to the first reference point’s y-coordinate (output y = y1, horizontal dashed line in the
graph’s upper left corner).

If the input value x is greater than the x-coordinate of the last reference point (P8: x > x8), the
output y is set to the last reference point’s y-coordinate (output y = y8, horizontal dashed line in the
graphic’s upper right corner).

B DUT for the xy value pairs (reference points P1, P2, ...):

The reference points (P1, P2, ...) are copied to the function via an DUT-type variable that contains
the number of reference points and the xy value pairs (number; x1, X2, ...; y1, y2; ...).

Structure of the DUT:
1. Entry: Variable of the data type INT that contains the number of reference

points.The number of reference points (xy value pairs) can be set anywhere between 2 ... 100. In the
graph, eight reference points (P1 ... P8) are used.

2. Entry: Variable of the data type ARRAY [0..z] OF INT that contains the x values.

Here z represents the place marker for the number of reference points (see entry 1).

3. Entry: Variable of the data type ARRAY [0..z] OF INT that contains the y values.

Here z represents the place marker for the number of reference points (see entry 1).

B Important information:

x values

The x values have to be entered in ascending order (x1 < x2 < x3 < ...). If the x values are the
same (e.g. x2 = x3 = x4) the reference points P2(x2,y2) and P3(x3,y3) are ignored.

Overflow of the function:

In order to avoid an overflow in the calculation, neighboring reference points must fulfill the
following conditions:

lya - yb| < 32767 o o gl DU
Ix-xb| < 32767 Y| Paixaya)
|(ya - yb)*(x - xb)| < 32767
|xa - xb| < 32767

Accuracy of the calculation:

This function can only process whole numbers. Numbers that follow the decimal point are cut out
when calculating the value y. For example, if at the position x, y = 511,13, the function returns the
value 511.

470

Arithmetic instructions

n
c
o
=
Example In this example, the same POU header is used for all programming languages. For an example "5’
using IL (instruction list), please refer to the online help. 43
c
DUT In the DUT Pool the number of reference points and the xy value pairs are declared. E
LL
| 1dentifier | Type | Tnitial | Comment | f
1] referencepoints | INT & Feight reference points were <
1 % _walues BRRAY [1..8] OF INT [8(01] Field 1..8 - conkains & x-values o
2 ¥ _walues ARFRAY [1..8] OF INT [&(03] Field 1..8 - = contains & w-values

POU header In the POU header, all input and output variables are declared that are used for programming this

function.
| Class | Identifier | Type | Initial | Comment |
1] YAR, skart BOOL FALSE avtivakes the funcion
1 VAR input_value T 0 input_walue x
2 VAR measured_value Interpolstion 8 %_walues :=[-5,5,15,20,30,42,45,50],%_values := [5,-5,10,2,2(53,0,2] "number of reference points
& VAR oukput_value INT 1] output_value v

Here the input variable measured_value was declared, corresponding to the type of the DUT
defined above. Assigning the x values and y values was done in the POU header. However, you
can change the x values and y values in the body by assigning a value to the variable, e.g.
Measuredvalues.X_Values[1] for x.

Body When the variable start is set to TRUE, the function is carried out. For the input value at position x,
the output value y is calculated via linear interpolation of the neighboring reference points stored in
the variable measured_value.

LD
start F2g2 SCaL
| | EN ENO [~
input_walue — 4 " soutput_value
measuredvalue referencepoints —— wn data

ST IF start THEN
F282 SCAL(i nput_val ue, neasured_val ue. referencepoi nts, output_val ue);

END_I F;

471

Arithmetic instructions

F283 DSCAL Linearization of 32-bit data

Description The function renders the value y at position x by performing a linear interpolation based on the
neighboring reference points Pw(xw, yw) and Pw+1(xw+1, yw+1). In this example, w is the
nearest reference point whose x value is smaller than the input value x, i.e. the function connects
the individual reference points in series and renders the output value y based on the input value s.

2
c
@)

=
o
S
S

—
0

£

o

LL

—
-
)
o
F283_DSCAL |
- EM =] I
ar }{ Elll
- %y _data [
: Outphty“' :
gl R
________ Yoot N DT PEREYE) | PEIYEYE)
Akl) - © PRINEYE)
L NP e :__:_:_{_:_-.__:-_._T:.
-10 10 % 20 20 4o PTBLATY e
: RE=T L 1 71T X7 : i

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.
The function can be used for:

" linearizing measured values, e.g. with non-linear sensors

] rendering a heater’s flow temperature y in relation to the outside temperature x

. etc.

PLC types Availability of F283 DSCAL (see page 1323)
Data types Variable | Datatype Function
X DINT Input value x
xy_data | DUT The first element of a DUT-type variable that contains the xy
value pairs.
y DINT Output value y
EN BOOL Activation of the function (when EN = TRUE, the function is
executed during each PLC cycle)
ENO BOOL ENO is set to TRUE as soon the function is executed.
Helpful when cascading function blocks with EN functions.
Operands For Relay T/IC Register Constant
X WX | WY WR WL S\ EV DT | LD | FL | dec. or hex.
y - wy WR WL SV EV DT | LD | FL -

472

Arithmetic instructions

(7]
C
o
5
Error flags No. IEC address Set If >
R9007 %MX0.900.7 permanently = the number of reference points is not g
- between 2 ... 100, or the x values are not
0, ’ —
R9008 %MX0.900.8 for an instant in ascending order (x1 < x2 <x3 < ...). o
LL

B Limitations of the output value y:

=
@©
o

If the input value x is smaller than the x-coordinate of the first reference point (P1: x < x1), the
output y is set to the first reference point’s y-coordinate (output y = y1, horizontal dashed line in the

graph’s upper left corner).

If the input value x is greater than the x-coordinate of the last reference point (P8: x > x8), the
output y is set to the last reference point’s y-coordinate (output y = y8, horizontal dashed line in the
graphic’s upper right corner).

B DUT for the xy value pairs (reference points P1, P2, ...):

The reference points (P1, P2, ...) are copied to the function via a DUT-type variable that contains
the number of reference points and the xy value pairs (number; x1, x2, ...; y1, y2; ...).

Structure of the DUT:
1. Entry: Variable of the data type INT that contains the number of reference points.
The number of reference points (xy value pairs) can be anywhere between 2 ... 100. In the graph, eight reference points (P1 ... P8) are used.
2. Entry: Variable of the data type ARRAY [0..z] OF DINT that contains the x
values.

Here Z represents the place marker for the number of reference points (see entry 1).
3. Entry: Variable of the data type ARRAY [0..z] OF DINT that contains the y
values.

Here Z represents the place marker for the number of reference points (see entry 1).

B Important information:

x values

The x values have to be entered in an ascending order (x1 < x2 < x3 < ...). If the x values are the
same (e.g. x2 = x3 = x4) the reference points P2(x2,y2) and P3(x3,y3) are ignored.

Overflow of the function:

In order to avoid an overflow in the calculation, neighboring reference points must fulfill the
following conditions:

lya - yb| < 2147483647 A I

Ix-xb| < 2147483647 Y| Paixaya)

|(ya - yb)*(x - xb)] <2147483647
xa - xb| < 2147483647

Accuracy of the calculation:

This function can only process whole numbers. Numbers that follow the decimal point are cut out
when calculating the value y. For example, if at the position x, y = 511,13, the function returns the

473

Arithmetic instructions

value 511.

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

2
c
@)

=
o
S
S

—
0

£

o

LL

DUT In the DUT Pool, the number of reference points and the xy value pairs are declared.

—
D_ |
| 1dentifier | Type | Initial | Camment |
1] referencepaints | IMT g Feight reference points were
1 % _values ARRAY [1,.8] OF DINT [&(0)] Field 1..8 - = contains 8 x-values
2 ¥ _values ARRAY [1..8] OF DINT [5{0)] Field 1..8 -» contains 3 v-values

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
i start BO0L FP.LSE avtivates the function
1 WAR input_walue DIMT |n|:|ut walue x
z WAR measured_value Interpolation_& X values ;= [-5,5,15,20,30,42,45,50], ¥ _values 1= [5,-5,10,2,2(5),0,2] "number of reference points
3 WYaR oukput_value DINT olkput_value v

Here the input variable measured_value was declared, corresponding to the type of the DUT
defined above. Assigning the x values and y values was done in the POU header. However, you
can change the x values and y values in the body by assigning a value to the variable, e.g.
Measuredvalues.Y_Values[3] for y3.

Body When the variable start is set to TRUE, the function is carried out. For the input value at position
X, the output value y is calculated via linear interpolation between the neighboring reference points
stored in the variable measured value.

LD
start F2a3_DSCaL
] | EN ENO
input_wvalue — & p ——output_walue
measuredvalue referencepoints — wy_data

ST IF start THEN
F283_DSCAL(i nput val ue, neasured_val ue. ref erencepoi nts, out put_val ue);
END | F;

474

Arithmetic instructions

"

c

9o

F284 RAMP Inclination output of 16-bit data §
2

Description Executes linear ramp output based on the parameters set. E
L

F284 RAMP |
- EM EMO

=
@©
o

- g2 Targetvalue

- =1 _Initialvalue d_Cutputy/alue
- g3 RizeTime {

PLC types Availability of F284 RAMP (see page 1323)

Data types Variable Data type | Function
s1_InitialValue INT The initial value from which the output value increases or
decreases after the trigger's rising edge has been detected by
the system
s2_TargetValue INT The target value to which the output value increases or
decreases
s3_RiseTime INT The time range in ms for the output value to increase or
decrease from the initial value to the target value
d_OutputValue INT The output value
Operands For Relay T/IC Register Constant
sl,s2,s3 WX | WY WR WL SV EV DT LD FL dec. or hex.
d - Wy WR WL SV EV DT | LD FL -
Error flags No. IEC address Set If
R9007 %MX0.900.7 permanently = the area specified using the index
R9008 | %MX0.900.8 | for an instant modifier exceeds the limit.
= the output time range specified by
s3_RiseTime is smaller than 1 or larger
than 30000.
Example In this example, the same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifiet | Type | Initial |
1] iImitialyalue INT 3000
1 VAR iTargettalue IMT 6000
2 MAOR iRizeTimme INT 1000
3 VAR iCukputy alue INT]
4 YAR, bRun BOOL FALSE

In this example, the input variables ilnitialValue, iTargetValue and iRiseTime are declared.
However, you can write a constant directly at the input contact of the function instead. Additionally,
the variable bRun is declared to start the ramp function and the variable iOutputValue is declared
for storing the result.

475

Arithmetic instructions

Body When the variable bRun is switched to TRUE, the function is carried out and iOutputValue
increases from 3000 (the initial value of ilnitialValue) to 6000 (the initial value of iTargetValue) in
1000ms (according to the initial value of iRiseTime).

2
c
@)

=
o
S
S

—
0

£

o

LL

Time chart for increasing the output value:

Example values: ilnitialValue = 3000, iTargetValue = 6000, iRiseTime = 1000

-
p—
© ’
o bRun (Trigger)
ON
OFF —
iOutputValue : Data is initialized when the system
| detects the trigger’s rising edge.
\/
6000 - - - === = = = = -
iTargetValue .
1
1
1
1
1
1
1
3000 K - = = = = = = = = = e oo oo RicaTi !
iinitialValue ! | _ _ RiseTime
| ! 1000 ms |
L L L » Time (ms)
0 1000 1750 2750

Time chart for decreasing the output value:
Example values: ilnitialValue = 6000, iTargetValue = 3000, iRiseTime = 1000

bRun (Trigger)

ON
OFF —
A ! Data is initialized when the system
: detects the trigger's rising edge.
ilnitialValue \
6000k -----—---—-=—-—"-—=-=-—=---- T+
N
N
N
N
N
N
N
N
N
N
N
iTargetValue RiseTime AN
3000 F - - - -=-= === - - S ———— yr—
1 I --=-=--—-=--- 1
1 1 1000 ms 1
1]] » Time (ms)
0 1000 1750 2750
LD
bRun Fedd_RAMP
] | EM EMO
initialYalue — =1_Initialvalue d_Dutputvalue ——iOutputy'alue
iTargetvalue— s2_Targetvalue
iRiseTime — s3_RiseTime
ST

476

Arithmetic instructions

| F bRun THEN
F284 RAMP(i I nitial Val ue, i TargetVal ue, iRi seTine, iCQutputValue);
END | F;

0
c
(@)
=
o
S
S
s
0
£
a
LL

Part Il

477

Arithmetic instructions

F354 FSCAL Scaling of Real Number Data

Description This function performs scaling (linearization) of a real number data table and renders the output (Y)
for an input value (X).

2
c
@)

=
o
S
S

—
0

£

o

LL

F354 FSCAL |
- EN ENO |

Part Il

: ij,r data ! |-

For a detailed description, refer to the instructions: F282_SCAL (see page 468) and F283_DSCAL
(see page 471).

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F354 FSCAL (see page 1325)

Data types Variable | Datatype Function
X REAL Input value (X)
xy_data INT First element of the data unit type table used for scaling
y REAL Output value (Y)
Operands For Relay T/IC Register Constant
X WX | WY | WR WL SV EV DT LD FL real
xy_data | WX | WY [WR WL SV EV DT LD FL -
y - | WY [WR WL SYY EV DT LD FL -
Error flags No. IEC address Set If
R9007 %MX0.900.7 permanently = the specified address using the index

RO008 | %MX0.900.8 | for an instant modifier exceeds a limit.

= anon-real number value is input into 'X'.

= the number of values (first element of the
DUT) <2 or > 99.

= anon- real number value is specified to be
the real numerical value (xt, yt) specified in
'xy_data'.

= the linear table of 'xy_data' is not registered
in ascending order of the x-sequence.

= the linear table of 'xy_data' exceeds the
area.

= an overflow (operation is unable) occurs
during the scaling operation.

478

Arithmetic instructions

F96 SRC Table data search (16-bit search)

Description Searches for the value that is the same as s1 in the block of 16-bit areas specified by s2 (starting
area) through s3 (ending area) if the trigger EN is in the ON-state.

PLC types

Data types

Operands

Example

- En
- 51
- 52 Start
53 End

Fo5_SRC |

EMND

When the search operation is performed, the search results are stored as follows:

The number of data that is the same as s1 is transferred to special data register
DT9037 (or DT90037 for FP2/2SH, FP10/10S/10SH).

The position the data is first found in, counting from the starting 16-bit area, is
transferred to special data register DT9038 (or DT90038 for FP2/2SH,
FP10/10S/10SH).

Be sure that s2 < s3.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Availability of F96_SRC (see page 1326)
Variable | Datatype Function
sl 16-bit area or equivalent constant to store the value
searched for
s2 ANY16 starting 16-bit area of the block
s3 ending 16-bit area of the block

The variables s1, s2 and s3 have to be of the same data type.

For Relay T/IC Register Constant
sl WX | WY WR WL SV EV DT | LD | FL dec. or hex.
s2,s3 - WY WR WL SV EV DT | LD | FL -

In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

0
c
(@)

=
o
S
S

s
0

£

a
LL

479

Part Il

Arithmetic instructions

(72}

c

o

et

(&)

>

= POU header All input and output variables used for programming this function have been declared in the POU
2 header.

k=

o | Class | Identifier | Tvpe | Initial | Comment |
e 0 start BOOL FALSE activates the fuctian

_ 1 WAR search_wvalue WORD 16420 ¥ zpecifies the walus ko

= Z WaR data_array ARRAY [0,.3] OF WORD [16#101,16#2A04,16420,16#20] | 2 matches For 16420

= 3 WAR number_matches INT 0 data_array[2] = Lst makch
© 4 WAR. position1_match INT i

o

Body When the variable start is set to TRUE, the function is carried out.

LD
start F35_SRC
/m| EM EMO
search_value = 16#HI020 — =1
data_array[0] = 16#0101 — 52 Start
data_array[3] = 16#0020 — 53 End

start MOWE
/m| EM EMO —
DT90037 = 22— ——number_matches = 2
start MOWE
/m| EM EMO —
0790038 = 2 — ——pasition1_match =2

ST IF start THEN
F96_SRC(sl1:= search_val ue ,
s2 Start:= data_array[0] ,
s3 End: = data_array[3]);
nunber _mat ches: =DT90037;
position_lmatch: =DT90038;
END | F;

480

Arithmetic instructions

F97 DSRC 32-bit table data search

Description The function searches for the value specified at input s1 in a block of 32-bit areas whose beginning
is specified at input s2 and whose end is specified at input s3.

0
c
(@)

=
o
S
S

s
0

£

a
LL

F97_DSRC | =
= ENO G
1 o
- 52 Start
- 53 End

Value searched for 32-bit table data

22 ‘22 ‘22 ‘22

[o1 |23 [45 67‘313

The number of data items that match s1 is stored in special data register DT90037.

The relative position of the first matching data item, counting from the starting 32-bit area s2, is
stored in special data register DT90038.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F97_DSRC (see page 1326)

Data types Variable | Datatype Function
sl 32-bit area or equivalent constant to store the value
searched for
s2 ANY32 starting 32-bit area of the block
s3 ending 32-bit area of the block
The adresses of the variables at inputs s2 and s3 must be of the same adress type.
Operands For Relay T/IC Register Constant
sl DWX | DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL | dec. or hex.
s2,s3 - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address Set If
R9007 %MX0.900.7 permanently = the address of the variables at outputs
RO008 | %MX0.900.8 | for an instant s2>s3.

481

Arithmetic instructions

%)
c
o
=
O
g Example In this example, the same POU header is used for all programming languages. For an example
2 using IL (instruction list), please refer to the online help.
& POU header All input and output variables used for programming this function have been declared in the POU
header.
f | Class | Identifier | Tvpe | Initial | Commert |
G 0 skart BioioL FALSE ackivates the funkkion
o 1 WAR data_table BRRAY [0,.3] OF DINT [-44,222222,-44,12345] Arbitrarily large data field
2 WAR, number_matches IMT 0 result: here 2
3 WAR position_Imakch IMT] resulk: here 0

Body When the variable start is set to TRUE, the function is carried out. Instead of using an input
variable in this example, a constant (-44) is assigned to input s1. The result is stored in special data
registers DT90037 and DT90038. The two E_MOVE functions copy the results to the two variables
number_matches and position_1match.

LD
1 Fa7_DSRC
start—— EM EMNO
-44—— 51
data_tahle[0]— s2_5Start
data_tahle[3]— s3_End
¢
FACHE
stat—— EMN EMNO —
OTan0037 — ——numhber_matches
3
FACHE
stat—— EMN EMNO —
0790038 — ——position_1match

ST | F start THEN
FO7_DSRC(sl:= -44
s2 Start:= data_tabl e[0]
s3 End: = data_table[3]);
nunber _mat ches: =DT90037;
positionl _match: =DT90038;
END | F;

482

Arithmetic instructions

15.1 Introduction into the FIFO buffer

The FIFO buffer is a first-in-first-out buffer area realized as a ring buffer. Data is stored in the order in which it is
written to the buffer, and then read out in the order stored, starting from the first data item stored. It is
convenient for buffering objects in sequential order.

0
c
(@)

=
o
S
S

s
0

£

a
LL

Usage procedure

* The area to be used is defined as the FIFO buffer using the F115_FIFT (see page 483) instruction.
(This should be done only once, before reading or writing is done.)

Part Il

* Data should be written to the buffer using the F117_FIFW (see page 491) instruction, and read out
of the buffer using the F116_FIFR (see page 487) instruction.

Writing data
* When data is written, the data items are stored in sequential order, starting from the first data
storage area. The writing pointer indicates the next area to which data is to be written. The number
of words stored increases by 1.

* [f the data storage area becomes full, i.e. the number of words stored is equal to n-1, further data
writing is inhibited.

Reading data

* When data is read, data is transferred starting from the first data item stored. The reading pointer
indicates the next area from which data is to be read. The number of words stored decreases by 1.

* An error occurs if an attempt is made to read data when the data storage area is empty, the number
of words stored is equal to the memory size of the FIFO buffer or is equal to zero.

Data storage area

If data is written while the FIFO buffer is in the status shown below, the data will be stored in the area indicated
by 3. The writing pointer moves to 4, i.e. the next data item will be written to 4. If data is read, it will be read from
the area indicated by 0. The reading pointer then moves to 1, i.e. the next data item will be read from 1. (For
more information on the reading and writing pointer, see F115_FIFT (see page 483)).

Write 103 Read 100
Size 5 5 5
Number 3 4 3

Positions E 0 | 3 E 0 | 4 1 | 4

0 100 0 100 0 [100
1 101 1 101 1 101
2 102 2 102 2 102
3 3 103 3 103

4 4 4

483

Arithmetic instructions

F115 FIFT FIFO buffer area definition

Description F115 specifies the starting area d1 for the FIFO (First-In-First-Out) buffer and the memory size n of
the FIFO buffer.

2
c
@)

=
o
S
S

—
0

£

o

LL

F115_FIFT |
- EN ENO {

Part Il

- n_humber
- d1_Start

n: memory size (number of words (16-bit)) of FIFO buffer,
n =1 to 256.

d1: the starting 16-bit area of FIFO buffer
How to use the FIFO buffer (see page 483)

Definition of the area using the FIFT instruction should be carried out only once, before writing to or
reading from the FIFO buffer. When the FIFT instruction is executed, the FIFO buffer area is
defined as follows:

15 0
di n Memory size of FIFO buffer (n)
di+1 0 Number of stored data items (words),
‘ written and not read
d1+2 0 ‘ 0 |FIFO pointer—;
d1+3 Data [0]
di+4 Data [1]
Data
storage
area Writing pointer
(n words) (0 to 255/16#00 to 16FF)
Reading pointer
Data [n-2
d1+n+1 ata [n-2] (0 to 255/16#00 to 16FF)
di+n+2 Data [n-1]

When the FIFT instruction is executed, the following are stored as default values: d1 = n (the value
specified by the FIFT instruction), d1 + 1 =0, and d1 + 2 = 16#0000.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F115 FIFT (see page 1320)

Data types Variable | Datatype Function
n INT specifies the memory size of FIFO buffer
di ANY16 starting 16-bit area of FIFO buffer

484

Arithmetic instructions

n
c
(@]
)
Operands For Relay T/IC Register Constant ‘5’
n WX WYy WR WL SV EV DT LD FL dec. or hex. *3
dl - wy WR WL SV EV DT LD FL - c
ol
LL
Error flags No. IEC address Set If —
R9007 | %MX0.900.7 permanently = n=0 E
R9008 | %MX0.900.8 for an instant = n>256 6_5
= The area specified by n exceeds the limit

Example This example illustrates the FIFO buffer by incorporating the functions F115_FIFT (see page 483),
F116_FIFR (see page 487) and F117_FIFW (see page 491). The function has been programmed
in ladder diagram (LD) and structured text (ST).

DIV " = FIFO_n_WORD [DUT]

| 1dentifier | Tvpe | Inikial |
0 INT 0
1 Mumber INT 1]
2 Positions WORD 0
5 Data ARRAY [0..12] OF WORD [13(00]

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class Identifier | Tvpe | Initial

0 VAR FIFC FIFD n_ WORD

1 VAR Read_Data IMNT]

2 VAR Write_Data IMNT 1

3 YR FIFD _Initialize BOOL FALSE
4 VAR FIFO \Wrike B FALSE
5 VAR FIFD_Read BinoL FALSE
fi WOR, Change_Yalue BOOL FAL3E

485

Arithmetic instructions

%)
c
Qo
©
2 Body The example below illustrates the status of the buffer after FIFO_Write has been enabled twice
» and FIFO_Read once. When FIFO_Write was activated the first time, the value 1 was written into
£ FIFO.Data[0]. When FIFO_Read was enabled, Read_Data then read this value. When
& FIFO_Write was enabled the second time, the Writing pointer was incremented by one and the
value 2 written into FIFO.Data[1]. see Entry Data Monitor 1
= # FIFo_ouT |
chU -FIFC DUT Structure
-FIF O atructure
Size 13 at OT1200
Mumhber 0at OT1201
Fositions 16#0101 at DT1202
-Data atructure
[0] 16#1001 at OT1203
[1] 160000 at OT1204
[£] 160000 at OT1205
[3] 160000 at OT1206
[4] 160000 at OT1207
[5] 160000 at OT1203
[E] 160000 at OT1209
[7] 160000 at OT1210
[3] 16#0000 at OT1211
[4] 160000 at OT1212
Fead Data 1 at OT1216
Wirite_Data 2at 0DT217
FIFO Initialize 241 at R240
FIFO Wyrite 241 at R281
FIFO_Read 241 at R252
Change “alue 241 at R253
LD FIFO_Initialize F115_FIFT |
=) _ EM ENO
FIFO.Data = Structure —— Yar Size O var Size !J_ ETN;{”:ﬁEF ’_‘
FIFO.Size =13 ’7
[The LT {Lawer Than) Operatar prevents a writing errar from occurring. 4
LT FIFO_Write
FIFO.number = (1— @}l FI7_FIFW |
FIFO.Zize=13—_ R EMN EMO |—- o
Write_Data=2— 5 d1_Start ——FIF0 . Size =13
[The GT (Greater Than) Operator prevents a reading error from occurring. 4
GT FIFO_Read
FIFQ.number =0—— J@}l F116_FIFR |
0—0 D EMN EMO |—- ~
FIFO.Size = 13— d1_Start d2 ——Read_Data=1

The E_ADD function is for cosmetic purposes only. It increments the value for the
variable Write_Data, which you can more easily differentiate when it is written into

the Array of the FIFO buffer. 4
Change_‘alue ADD |
i@] EN ENO -
Write_Data=2— YWrite_Data =2

1— 2

486

Arithmetic instructions

ST IF DF(FIFO_Initalize) THEN
(* Create the FIFO buffer *)
F115 FIFT(n_Nunber:= Size O Var(FIFO Data), dl Start:= FIFQ Size);

REPEAT
(* Initialize FIFO buffer with val ues *)

Wite Data:=Wite_ Data+1;
F117_FIFW s:= Wite_Data, dl_Start:= FIFO Size);
UNTI L(FI FO. Nunber >=FI FO. Si ze)
END_REPEAT;
END | F;

0
c
(@)

=
o
S
S

s
0
£
a
LL

Part Il

|F DF(FIFO Wite) THEN
(* Wite value of Wite Data to FIFO buffer *)
(* at rising edge of FIFO Wite *)
F117 FIFW s:= Wite Data, dl1_Start:
END | F;

FI FO Si ze) ;

| F DF(FI FO_Read) THEN

(* Read val ue fromFIFO buffer *)

(* at rising edge of FIFO Read *)

F116_FIFR(dl1_Start:= FIFO Size, d2:= Read_Data);
END | F;

487

Arithmetic instructions

F116 FIFR Read from FIFO buffer

Description F/P116 reads the data d1 from the FIFO (First-In-First-Out) buffer and stores the data in area
specified by d2.

2
c
@)

=
o
S
S

—
0

£

o

LL

F116_FIFR |
- EN ENO |
- d1 Stat d2

Part Il

How to use the FIFO buffer (see page 483)

Reading of data is done starting from the address specified by the reading pointer when the
instruction is executed.

15 0
di Memory size of FIFO buffer (n)
di+1 Number of stored data items (words),
‘ written and not read

di+2 =~ 1 Reading pointer in upper byte

di1+3 Data [0]

. "~ = Data storage area
e | [e evers
pointer -

di+n+1 Data [n-2]
d1+n+2 Data [n-1]

" (0), (n—2) and (n—1) are addresses assigned to the data storage area.
" n is the value specified by the F115_FIFT (see page 483) instruction.

The reading pointer is stored in the upper eight bits of the third word of the FIFO buffer area. The
actual address is the value of the leading address in the FIFO buffer area specified by d1 plus 3,
plus the value of reading pointer (the value of which only the first byte is a decimal value).

When the reading is executed, 1 is subtracted from the number of stored data items, and the
reading pointer is incremented by 1, or reset to zero if the reading pointer pointed to the final
element.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <CtrI>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F116 FIFR (see page 1320)

Data types Variable | Datatype Function
di starting 16-bit area of FIFO buffer
d2 ANY16 16-bit area for storing data read from FIFO buffer
The variables d1 and d2 have to be of the same data type.
Operands For Relay T/IC Register Const.
di, d2 - wy WR WL SV EV DT LD FL -

488

Arithmetic instructions

= * An error occurs if this is executed when the number of stored data
items is 0 or when the reading pointer is equal to the writing pointer.

* Reading is only carried out when the reading pointer is not equal to
the writing pointer.

0
c
(@)

=
o
S
S

s
0

£

a

LL

* If this is executed when the reading pointer is indicating the final
address in the FIFO buffer (the n defined by the FIFO instruction

minus 1), the reading pointer is set to 0. %
ol
Error flags No. IEC address | Set If
R9007 | %MX0.900.7 permanently = the size (n) of the FIFO specified by d1 is

n =0, or when n > 256.

= the number of stored data items of the
FIFO = 0.

= the number of stored data items of the
FIFO > FIFO size (n).

= the final address of the FIFO based on
the FIFO size (n) exceeds the area.

= the FIFO reading pointer > FIFO size (n).

= the FIFO reading pointer is 256 (16#100)
or higher after the data has been read.

R9008 %MX0.900.8 for an instant

Example This example illustrates the FIFO buffer by incorporating the functions F115_FIFT (see page 483),
F116_FIFR (see page 487) and F117_FIFW (see page 491). The function has been programmed
in ladder diagram (LD) and structured text (ST).

DIV = * FIFO_n_WORD [DUT]

| 1dertifier | Tvpe | Imikial |
0 INT 0
1 Murmber INT 1]
z2 Positions WORD 0
3 Data ARRAY [0..12] OF WORD [13(01]

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class Identifier | Tvpe | Initial

] VR FIFC FIFD n_ WORD

1 VR Read_Data INT]

z2 VR Write_Data INT 1

3 VaR FIFD _Initialize BOOL FaL3E
4 VR FIFO \Wrike B2 FALSE
5 VR FIFD_Read B2l FALSE
fi WOR, Change_Yalue BOOL FAL3E

489

Arithmetic instructions

%)
c
Qo
©
2 Body The example below illustrates the status of the buffer after FIFO_Write has been enabled twice
» and FIFO_Read once. When FIFO_Write was activated the first time, the value 1 was written into
£ FIFO.Data[0]. When FIFO_Read was enabled, Read_Data then read this value. When
& FIFO_Write was enabled the second time, the Writing pointer was incremented by one and the
value 2 written into FIFO.Data[1]. see Entry Data Monitor 1
= # FIFo_ouT |
chU -FIFC DUT Structure
-FIF O atructure
Size 13 at OT1200
Mumhber 0at OT1201
Fositions 16#0101 at DT1202
-Data atructure
[0] 16#1001 at OT1203
[1] 160000 at OT1204
[£] 160000 at OT1205
[3] 160000 at OT1206
[4] 160000 at OT1207
[5] 160000 at OT1203
[E] 160000 at OT1209
[7] 160000 at OT1210
[3] 16#0000 at OT1211
[4] 160000 at OT1212
Fead Data 1 at OT1216
Wirite_Data 2at 0DT217
FIFO Initialize 241 at R240
FIFO Wyrite 241 at R281
FIFO_Read 241 at R252
Change “alue 241 at R253
LD FIFO_Initialize F115_FIFT |
=) _ EM ENO
FIFO.Data = Structure —— Yar Size O var Size !J_ ETN;{”:ﬁEF ’_‘
FIFO.Size =13 ’7
[The LT {Lawer Than) Operatar prevents a writing errar from occurring. 4
LT FIFO_Write
FIFO.number = (1— @}l FI7_FIFW |
FIFO.Zize=13—_ R EMN EMO |—- o
Write_Data=2— 5 d1_Start ——FIF0 . Size =13
[The GT (Greater Than) Operator prevents a reading error from occurring. 4
GT FIFO_Read
FIFQ.number =0—— J@}l F116_FIFR |
0—0 D EMN EMO |—- ~
FIFO.Size = 13— d1_Start d2 ——Read_Data=1

The E_ADD function is for cosmetic purposes only. It increments the value for the
variable Write_Data, which you can more easily differentiate when it is written into

the Array of the FIFO buffer. 4
Change_‘alue ADD |
i@] EN ENO -
Write_Data=2— YWrite_Data =2

1— 2

490

Arithmetic instructions

ST IF DF(FIFO_Initalize) THEN
(* Create the FIFO buffer *)
F115 FIFT(n_Nunber:= Size O Var(FIFO Data), dl Start:= FIFQ Size);

REPEAT
(* Initialize FIFO buffer with val ues *)

Wite Data:=Wite_ Data+1;
F117_FIFW s:= Wite_Data, dl_Start:= FIFO Size);
UNTI L(FI FO. Nunber >=FI FO. Si ze)
END_REPEAT;
END | F;

0
c
(@)

=
o
S
S

s
0
£
a
LL

Part Il

|F DF(FIFO Wite) THEN
(* Wite value of Wite Data to FIFO buffer *)
(* at rising edge of FIFO Wite *)
F117 FIFW s:= Wite Data, dl1_Start:
END | F;

FI FO Si ze) ;

| F DF(FI FO_Read) THEN

(* Read val ue fromFIFO buffer *)

(* at rising edge of FIFO Read *)

F116_FIFR(dl1_Start:= FIFO Size, d2:= Read_Data);
END | F;

491

Arithmetic instructions

(72}

c

9o

©

= F117 FEIFW Write to FIFO buffer

E —

& Description F/P117 writes the data specified by s into the FIFO buffer specified by d1.
= F117_FIFW |

= - Eh ENC

5_5 - 5 d1_Start L

How to use the FIFO buffer (see page 483)

The specified data is written to the address indicated by the writing pointer when the instruction is

executed.
15 0
d1 Memory size of FIFO buffer (n)
di+1 Number of stored data items (words), written
‘ and not read
di+2 ‘ ~<|— Writing pointer in lower byte
d1+3 Data [0]
Writing | - |:| [s] Data storage area
pointer - (n words)
=4 =
di+n+1 Data [n-2]
di1+n+2 Data [n-1]

" (0), (n-2) and (n-1) are addresses assigned to the data storage area.
" n is the value specified by the F115_FIFT (see page 483) instruction.

The writing pointer is stored in the lower eight bits of the third word of the FIFO buffer area, and is
indicated by a relative position in the data storage area. The actual address to which data is being
written is specified by d1 plus the offset 3 plus the value of the writing pointer (the value of which
only the lower byte is a decimal value).

When the writing is executed, 1 is added to the number of stored data items, and the writing pointer
is incremented by 1, or reset to zero if the writing pointer pointed to the final element.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <CtrI>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F117 FIFW (see page 1320)

Data types Variable | Datatype Function
s 16-bit area or equivalent constant for storing data to write in
ANY16 the FIFO buffer
di starting 16-bit area of FIFO buffer

The variables s and d1 have to be of the same data type.

492

Arithmetic instructions

%)

c

(@]

)

3}

>

-

Operands For Relay T/IC Register Constant 2
S WX wy WR WL SV EV DT LD FL dec. or hex. E

dl - wy WR WL SV EV DT LD FL - LL

Error flags | g IEC address | Set If *%
R9007 %MX0.900.7 permanently = the size (n) of the FIFO specified by d1 is (al

n =0, or when n > 256.

= the number of stored data items of the
FIFO = 0.

R9008 | %MX0.900.8 for an instant = the number of stored data items of the
FIFO > FIFO size (n).

= the final address of the FIFO based on
the FIFO size (n) exceeds the area.

= the FIFO writing pointer > FIFO size (n).

= the FIFO writing pointer is 256 (16#100)
or higher after the data has been written.

== « An error occurs if this is executed when the FIFO buffer is full (the
number of stored data items = the size n of the FIFO defined by the
FIFT instruction). Writing is inhibited.

* If this is executed when the writing pointer is indicating the final
address in the FIFO buffer (the "n" value defined by the FIFT
instruction), the writing pointer will be set to 0.

Example This example illustrates the FIFO buffer by incorporating the functions F115_FIFT (see page 483),
F116_FIFR (see page 487) and F117_FIFW (see page 491). The function has been programmed
in ladder diagram (LD) and structured text (ST).

DIVANN = = FIFO0_n_WORD [DUT]

| 1dertifier | Tvpe | Imikial |
0 INT 0
1 murmber INT 1]
z2 Positions WOIR[0
3 Data ARRAY [0..12] OF WORD [13(01]

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class Identifier | Tvpe | Initial

0 VAR FIFO FIFO m_ WoORD

1 VAR Read_Data INT 1]

2 VAR \Write_Daka IMNT 1

3 VAR FIFO Initialize EBOOL FALSE
4 VAR FIFO \Wrike Bl FALSE
5 VAR FIFC_Read Bl FALSE
fi YOF, Change_Yalue BOOL FAL3E

493

Arithmetic instructions

%)
c
Qo
©
2 Body The example below illustrates the status of the buffer after FIFO_Write has been enabled twice
» and FIFO_Read once. When FIFO_Write was activated the first time, the value 1 was written into
£ FIFO.Data[0]. When FIFO_Read was enabled, Read_Data then read this value. When
& FIFO_Write was enabled the second time, the Writing pointer was incremented by one and the
value 2 written into FIFO.Data[1]. see Entry Data Monitor 1
= # FIFo_ouT |
chU -FIFC DUT Structure
-FIF O atructure
Size 13 at OT1200
Mumhber 0at OT1201
Fositions 16#0101 at DT1202
-Data atructure
[0] 16#1001 at OT1203
[1] 160000 at OT1204
[£] 160000 at OT1205
[3] 160000 at OT1206
[4] 160000 at OT1207
[5] 160000 at OT1203
[E] 160000 at OT1209
[7] 160000 at OT1210
[3] 16#0000 at OT1211
[4] 160000 at OT1212
Fead Data 1 at OT1216
Wirite_Data 2at 0DT217
FIFO Initialize 241 at R240
FIFO Wyrite 241 at R281
FIFO_Read 241 at R252
Change “alue 241 at R253
LD FIFO_Initialize F115_FIFT |
=) _ EM ENO
FIFO.Data = Structure —— Yar Size O var Size !J_ ETN;{”:ﬁEF ’_‘
FIFO.Size =13 ’7
[The LT {Lawer Than) Operatar prevents a writing errar from occurring. 4
LT FIFO_Write
FIFO.number = (1— @}l FI7_FIFW |
FIFO.Zize=13—_ R EMN EMO |—- o
Write_Data=2— 5 d1_Start ——FIF0 . Size =13
[The GT (Greater Than) Operator prevents a reading error from occurring. 4
GT FIFO_Read
FIFQ.number =0—— J@}l F116_FIFR |
0—0 D EMN EMO |—- ~
FIFO.Size = 13— d1_Start d2 ——Read_Data=1

The E_ADD function is for cosmetic purposes only. It increments the value for the
variable Write_Data, which you can more easily differentiate when it is written into

the Array of the FIFO buffer. 4
Change_‘alue ADD |
i@] EN ENO -
Write_Data=2— YWrite_Data =2

1— 2

494

Arithmetic instructions

ST IF DF(FIFO_Initalize) THEN
(* Create the FIFO buffer *)
F115 FIFT(n_Nunber:= Size O Var(FIFO Data), dl Start:= FIFQ Size);

REPEAT
(* Initialize FIFO buffer with val ues *)

Wite Data:=Wite_ Data+1;
F117_FIFW s:= Wite_Data, dl_Start:= FIFO Size);
UNTI L(FI FO. Nunber >=FI FO. Si ze)
END_REPEAT;
END | F;

0
c
(@)

=
o
S
S

s
0
£
a
LL

Part Il

|F DF(FIFO Wite) THEN
(* Wite value of Wite Data to FIFO buffer *)
(* at rising edge of FIFO Wite *)
F117 FIFW s:= Wite Data, dl1_Start:
END | F;

FI FO Si ze) ;

| F DF(FI FO_Read) THEN

(* Read val ue fromFIFO buffer *)

(* at rising edge of FIFO Read *)

F116_FIFR(dl1_Start:= FIFO Size, d2:= Read_Data);
END | F;

495

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Arithmetic instructions

Fo8 CMPR Data table shift-out and compress

Description

PLC types

Data types

Operands

Error flags

Shifts out non-zero data stored at the highest address of the table to the specified area and
compresses the data in the table to the higher address. The data in the table specified by d1 and
d2 is rearranged as follows:

Fo8_CMPR |

- EN ENO |
d1_Start |
42_End -

d3 |

" Contents of d2 (highest address) are shifted out to the area specified by d3.

Non-zero data is shifted (compressed) in sequential order, in the direction of the higher address in
the specified range.

d1 K3 d1
0

K2 ::>

0 K3
d2 K1 d2 K2
L o]
" Starting area d1 and ending area d2 should be the same type of operand.
" Be sure to specify d1 and d2 with "d1 < d2".
This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears

under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Availability of F98_CMPR (see page 1326)

Variable | Datatype Function

di starting (lowest) address of data to be compressed

d2 ANY16 final _(highest) address of data to be compressed, data at d2

is shifted out

d3 receives data shifted out from d2

For Relay T/IC Register Const.
d1, d2,d3 - wy WR WL SV EV DT LD FL -
No. IEC address Set If
R9007 %MX0.900.7 permanently = dl>d2
R9008 %MX0.900.8 for an instant = d1 and d2 are not in the same memory

area

496

Arithmetic instructions

n

c

o

=

Example 1 In this example, the same POU header is used for all programming languages. For an example g
using IL (instruction list), please refer to the online help. 403)

c

POU header All input and output variables used for programming this function have been declared in the POU E
header. L

Class | Idenkifier | Tvpe | Inikial | —

o YAR | Start BooL FALSE =

1 YAR DataField ARFAY [0,.5] OF INT [555,444,0,11,0,10] ©

i WAR ShiftoutData IMT o o

Body When the variable start is set to TRUE, the function is carried out. The data in the lower addresses
is compressed toward the higher addresses, and the value defined at the highest address, i.e. 10,
is shifted out.

LD
Start F95_CMPR

=l EN ENO
d1_Start ——DataField[D] =0

d2_End ——DataField[5] = 11

d3 ——ShiftoutData = 10

FFI8 CMPR_LD structure
Start 241 at R252
-DataField otructure

[0] 0at DT1Z211
[1] 0at DT1212
(2] 0at DT1213
[3] 555 at OT1214
[4] 444 at OT1215
(9] 11 at DT1216
ShiftoutData 10 at DT1217

Example 2 |n combination with the F99 CMPW/ P99 _CMPW instruction, this can be used to construct an
optional buffer. (Use a FIFO buffer for non-zero values.)

1. Executing the F99_CMPW/ P99 CMPW instruction
When data items are written to the first address of the buffer (the area of the specified range), they are
stored and accumulated in the buffer in sequential order. The oldest data will be stored in the last
address of the buffer.
2. Executing the F98 CMPR/ P98 CMPR instruction
When the data in the last address of the buffer (the area of the specified range) has been read, data
can be extracted in sequential order, starting from the oldest data.

The rest of the data in the buffer is shifted in the direction of the first address, so normally, the
oldest data at that point is stored in the last address of the buffer.

POU header | Class | Identifier | Tvpe | Initial |
0 DrataField ARRAY [0..5] OF INT [0,44,0,555,0,11]
1 VAR, shiftinData INT 31
2 VAR, ShiftoutData INT 0
3 WA, ShiftIn BOOL FaLSE
! VAR, Shiftout BOOL FALSE

497

Arithmetic instructions

(72}
c
Qo
©
-
7 LD In Step 1 the F99 function is activated, shifting in the value given in the variable ShiftinData at s,
< i.e. 31, and compressing the rest of the data.
o
L Fo9_CMPYY
— =il —— EN ENO —
- ShitinData = 31— = d1_Stan ——DataField[0] = 31
Ecs d2 End ——DataField[5] = 11
-F98 CMPR ExZ LD Structure
i -DataField Structure
[0] 31 at DT1218
[1] 31 at DT1219
[2] 31 at DT1220
[3] 44 at DT1221
[4] 855 at DT1222
[5] 11 at DT1223
ShiftinData 31 at DT1224
ShiftoutData 0at DT1225
Shiftn 21 at R263
ShiftOut 280 at R2B4
In Step 2 the F98 function is activated, and the value defined in the variable at d3, i.e. 11, is shifted
out.
F99 ChPWY
=lillg—— ERr ERCO —

shiftinData= 31— s d1_Start ——DataField[0]=10
d2 End ——DataField[5] = 31

FI53 CMPR

= liiemy—— En ENMO —
d1_Stan ——DataField[0]=0

dZ End ——DataField[5]= 31

d3 ——ShiftoutData = 31

-F95 CMPE Ex2 LD Structure

-DataField Structure
[0] 0at DT1218
[1] 31 at DT119
[2] 31 at DT1220
[3] 31 at DT1221
[4] 31 at DT1222
(5] 31 at DT1223
ShiftinDiata 31 at DT1224
ShiftoutData 31 at DT1225
Shiftln 241 at R263
ShiftCut 241 at R264

498

Arithmetic instructions

F99 CMPW Data table shift-in and compress

Description Shifts in data to the smallest address of the specified data table and compresses the data in the
table toward the higher address. The data in the table specified by d1 and d2 is rearranged as
follows:

0
c
(@)

=
o
S
S

s
0

£

a
LL

FO5_ChPYY |

- EN ENO |
- 5 d1_Start I
d2 End

Part Il

. Data specified by s is shifted in to the area specified by d1 (starting address).

Non-zero data is shifted (compressed) in sequential order, in the direction of the higher address in
the specified range.

+ K

d1 K3 < d1 Ko
Ko K4
K2 |::> K3
KO K2
d2 K1 d2 K1

" Starting area d1 and ending area d2 should be the same type of operand.
" Be sure to specify d1 and d2 with "d1 < d2".
= If the content of s is "0", only a compressed shift is carried out.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions” pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F99 _CMPW (see page 1326)
= For an example on how to construct a FIFO buffer using F/P99 and F/P98, see
Example 2 from F/P98.
Data types Variable | Datatype Function
S data to be shifted in
dl ANY16 starting address of area that is compressed into which
data from s is shifted
d2 end address of area where data is compressed
Operands For Relay T/IC Register Constant
S WX WYy WR WL SV EV DT LD FL dec. or hex.
di, d2 - wYy WR WL SV EV DT LD FL -

499

Arithmetic instructions

n
c
(@]
]
3}
>
= Error flags No. IEC address Set If
n
c R9007 %MX0.900.7 permanently = dl1>d2
o R9008 %MX0.900.8 for an instant = d1and d2 are not in the same memory area
L
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

Part Il

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Inikial |
0 Start BOOL FALSE
1 VAR DataField ARRAY[0..5] OF INT [SS5,444,0,11,0,10]
z2 VAR shiftinCiata IMT 32

Body After the variable Start is set to TRUE, the value of the variable ShiftinData, i.e. 32, at the contact
s is shifted into the specified area of the data table, and the data is compressed.

LD

Start FO9_ChPyY
=)l EM EMO
ShiftinData= 32— s d1_Stant ——DataField[0] = 32
d2_End ——DataField[5] = 10

-F99 _CMPYY LD structure
Start 241 at R261
{ -DataField Structure
[0] 32 at DT1205
[1] 32 at DT1206
2] 32 at D207
[3] 444 at OT1208
[4] 11 at DT1209
[5] 10 at DT1210
ShiftinData 32 at OT1211

500

Arithmetic instructions

n

c

9o

F277 SORT Sort data in 16-bit data table (in smaller or larger number order) g
= 2
Description The function sorts values (with +/- sign) in a data table in ascending or descending order. E
L

F277_SORT | —

- EN ENO =

- 51 Start @©

- 52 End o

- g3 [Descending

Input s1 specifies the starting area of the data table, and s2 specifies the end. You determine the
sorting order at input s3.

At input s3 you can enter the following values:

0 ascending order, i.e. begin with the smallest value
1 descending order, i.e. begin with the largest value

The data are sorted via bubble sort in the order specified according to the value entered at input s3.
Since the number of word comparisons increases in proportion to the square of the number of
words, the sorting process can take some time when there are a large number of words. When the
address of the variable at input s1 = s2, no sorting takes place.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F277_SORT (see page 1323)

Data types Variable | Datatype Function
sl INT starting area of data table to be sorted
s2 INT ending area of data table to be sorted
s3 INT specifies sorting order: 0 = ascending, 1 = descending
Operands For Relay T/IC Register Constant
sl,s2 - WY WR WL SV EV | DT | LD FL -
s3 WX | WY WR WL SV EV | DT | LD FL | dec. or hex.
Error flags No. IEC address Set If
R9007 %MX0.900.7 permanently = the address of the variable at input s1 >
s2
R9008 | %MX0.900.8 for an instant * the address areas of the values at inputs
sl and s2 are different

501

Arithmetic instructions

%)

c

o

=

O

g Example In this example, the same POU header is used for all programming languages. For an example

2 using IL (instruction list), please refer to the online help.

& POU header All input and output variables used for programming this function have been declared in the POU
header.

f | Class | Identifier | Tvpe | Initial | Comment |

G 1] skart B0l FALSE ackivates the Funckion

o 1 WOR, data_field ARRAY [0..4]OF INT [2,3,6,-3,1] | Arbitrarily large daka field
z WaR result: here [-3,1,2,3,6]

Body When the variable start is set to TRUE, the function is carried out. The constant 0 is specified at
input s3, which means the sorting is carried out in an ascending order. However, you can declare a
variable in the POU header and write it in the function in the body at input s3.

LD
F277_SORT

start — ENM ENOD
data_field[J] —— s1_Start
data_field[4] — 2 _End
0—— =3 Dezcending

sorting order:
=3 = D:azcending, 1.descending

ST I F start THEN
F277 SORT(sl Start:= data field[0],
s2 End: = data _field[4],
s3 Descending: = 0);
END | F;

502

Arithmetic instructions

n

c

9o

F278 DSORT Sort data in 32-bit data table (in smaller or larger number order) g
= 2
Description The function sorts values (with +/- sign) in a data table in ascending or descending order. E
L

F275_DSORT | —

- EN ENO =

- 51 Start @©

- 52 End o

- g3 [Descending

Input s1 specifies the starting area of the data table, and s2 specifies the end. You determine the
sorting order at input s3.

At input s3 you can enter the following values:

0 ascending order, i.e. begin with the smallest value
1 descending order, i.e. begin with the largest value

The data are sorted via bubble sort in the order specified according to the value entered at input s3.
Since the number of word comparisons increases in proportion to the square of the number of
words, the sorting process can take some time when there are a large number of words. When the
address of the variable at input s1 = s2, no sorting takes place.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F278 DSORT (see page 1323)

= Although this is a 32-bit instruction, the number of steps is the same as the
16-bit instruction.

Data types Variable | Datatype Function
sl DINT starting area of data table to be sorted
s2 DINT ending area of data table to be sorted
s3 INT specifies sorting order: 0 = ascending, 1 = descending
Operands For Relay T/IC Register Constant
sl,s2 - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
s3 WX [WY WR WL SV EV DT LD FL | dec. or hex.
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = the address of the variable at input s1 >
s2
R9008 | %MX0.900.8 for an instant * the address areas of the values at inputs
sl and s2 are different

503

Arithmetic instructions

%)

c

o

=

O

g Example In this example, the same POU header is used for all programming languages. For an example

2 using IL (instruction list), please refer to the online help.

& POU header All input and output variables used for programming this function have been declared in the POU
header.

= | Class | Idertifier | Type | Initial | Carmment |

% 0 skart ool FALSE activates the Function

o 1 WAR data_field ARRAY[0..4] OF DINT [2,3,222222,-333333,1] "arbitrarily large data Field
z WA, sort_order INT 1 :ascending, 1:descending

In this example, the input variable sort_order is declared. However, you can write a constant
directly at the input contact of the function instead.

Body When the variable start is set to TRUE, the function is carried out. Since the variable sort_order is
set to 1, the specified data field in sorted in descending order.

LD
F27a_DS0ORT

start —— EN ENO
data_fisld[J] — =1_Start
data_field[4] — =2 End

sort_order —— s3_Descending

zorting order:
z3 = Diascending, 1:descending

ST IF start THEN
F278 DSORT(sl1 Start:= data field[O],
s2 End: = data field[4],
s3_Descendi ng: = sort_order);
END | F;

504

Arithmetic instructions

)

c

o

F353 FSORT Sort data in real number data table (floating point data table) g
= 2
Description The function sorts values (with +/- sign) in a data table in ascending or descending order. E
LL

F353_FSORT | —

- ER EMO E

- 51 Start ©

- 52 End o

- 53 Descending

Input s1 specifies the starting area of the data table, and s2 specifies the end. You determine the
sorting order at input s3.

At input s3 you can enter the following values:

0 ascending order, i.e. begin with the smallest value
1 descending order, i.e. begin with the largest value

The data are sorted via bubble sort in the order specified according to the value entered at input s1.
Since the number of word comparisons increases in proportion to the square of the number of
words, the sorting process can take some time when there are a large number of words. When the
value at inputs s1 = s2, no sorting takes place.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F353_FSORT (see page 1325)

Data types Variable | Datatype Function
sl REAL starting area of data table to be sorted
s2 REAL ending area of data table to be sorted
s3 INT specifies sorting order: 0 = ascending, 1 = descending
Operands For Relay T/IC Register Constant
sl,s2 - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
s3 WX [WY WR WL SV EV DT LD FL dec. or hex.
Error flags No. IEC address Set If
R9007 %MX0.900.7 permanently = the addresses of variables at inputs s1 >
RO008 | %MX0.900.8 | for an instant s2.
= the address areas are different.
= the floating point values exceed the
processing range.

505

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Arithmetic instructions

Example

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

Body

LD

header.
| Class | Identifier | Twpe | Initial | Comment |
1] skart Bl FALSE ackivates the Function
1 VAR data field ARRAY[0..4] OF REAL [2.0,3.45,-6.91,5.44,1.3] "arbitrarily large data field
Z WAR, sort_order IMT 1] :ascending, 1:idescending

In this example, the input variable sort_order is declared. However, you can write a constant (e.g.
1 for a descending sorting order) directly at the input contact of the function in the body.

The variable sort_order is specified as the value 1. When the variable start is set to TRUE, the
function is carried out. It sorts the elements of the ARRAY data_field in descending order.

1 1 ————zart_order

2 F3553_FZ0RT
start —— EN ENO
data_field[J] — =1 _Start
data_field[4] — 2 End

sort_order —— s3_Descending

zorting order:
3 = Dascending, 1:descending -

ST sort_order: =1;

IF start THEN
F353 _FSORT(sl1 Start:= data field[O0],
s2 End: = data _field[4],
s3_Descendi ng: = sort_order);
END | F;

506

Chapter 16

Bistable instructions

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Bistable instructions

=== Serves as arelay with set and reset inputs

Description KEEP serves as a relay with set and reset points.

KEEP |
- SetTrigger Address
- ResetTrigger |-

When the SetTrigger turns ON, output of the specified relay goes ON and maintains its condition.
Output relay goes OFF when the ResetTrigger turns ON. The output relay’s ON state is
maintained until a ResetTrigger turns ON regardless of the ON or OFF states of the SetTrigger. If
the SetTrigger and ResetTrigger turn ON simultaneously, the ResetTrigger is given priority.

PLC types Availability of KEEP (see page 1328)

Data types Variable | Datatype Function
Set Trigger | BOOL sets Address output, i.e. turns in ON
Reset BOOL resets Address output, i.e. turns it OFF
Trigger
Address | BOOL specifed relay whose status (set or reset) is kept
Operands For Relay T/IC Register Constant
Set Trigger, X Y R L T C - - - -
Reset
Trigger
o - Y R L - - - - - -
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Tvpe | Initial | Cammert
] VAR Set_triggerl BOOL FALSE Fif sek_trigger is On, the
1 VAR Reset_triggerl BOOL FALSE Fif reset_trigaer is OM, the
z AR, Address1 BOOL FALSE oukpuk
LD Set'll'riggeﬂ
5
KEEF | Address
FezetTrigger1 — SetTrigger Address —\E ok
I _ResetTrigger

ST When programming with structured text, enter the following:
Addr ess1: =KEEP(Set Tri gger 1, ResetTriggerl);

508

Bistable instructions

SET SET, RESET

Description SET: When the execution conditions have been satisfied, the output is turned on, and the on status
is retained.

0
c
(@)

=
o
S
S

s
0

£

a
LL

RST: When the execution conditions have been satisfied, the output is turned off, and the off status
is retained.

Part Il

- SET ~ - PRST }

Ll You can use relays with the same number as many times as you
like with the SET and RST instructions. (Even if a total check is run, this is not
handled as a syntax error.)

= When the SET and RST instructions are used, the output changes with each step
during processing of the operation.

" To output a result while operation is still in progress, use a partial /0 update
instruction (F143).

= The output destination of a SET instruction is held even during the operation of
an MC instruction.

= The output destination of a SET instruction is reset when the mode is changed
from RUN to PROG. or when the power is turned off, except when a hold type
internal relay is specified as the output destination.

. Placing a DF instruction (or specifying a rising edge in LD) before the SET and
RST instructions ensures that the instruction is only executed at a rising edge.

" Relays can be turned off using the RST instruction.

= Using the various relays with the SET and RST instructions does not result in
double output.

. It is not possible to specify a pulse relay (P) as the output destination for a SET
or RST instruction.

Operands For Relay T/IC Register Constant
SET - Y R L - - - E - -
RST
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help. Since addresses are assigned directly
using FP addresses, no POU header is necessary.

POU header All input and output variables used for programming this function have been declared in the POU
header.

Using the DF command or specifying a rising edge refines the program by making the
programming step valid for one scan only:

(1) When the input X0 is activated, the output YO is set.

(2) When the input X0 is turned off, the output YO remains set.

(3) When the input X1 is activated, the output YO is reset.

(4) When the input X0 is reactivated, the output YO is set.

509

Bistable instructions

%
c
o
=
O
2 FBD 1
o
0
2 o DF SET i)
o 2
LL bt DF RET 0|
— 1
DF SET
ju & @ i
F 2
bt DF R:T 0]
1
pl— ©E I sET —fm
@
2
DE_ |~ msT —fm
1
oF - seT @
ey
2
B— oF - RreT @

LD In ladder diagram, specify a rising edge in the contact and SET or RESET in the coil:

1 B @ 1 B @
g | e o — 1. - i
2 =1 T 2 w1 T
| iB— @ LB @
1 Al il 1 = Rl
L B— & T
.E. @ ...
2 w1 Rl 2 A Tl
L B— @ LB

ST When programming with structured text, enter the following:
(*TRUE and FALSE are assigned to YO0*)
| F DF(X0) THEN
Y0: = TRUE;
END | F;

| F DF(X1) THEN
YO: = FALSE;
END_| F;

510

Chapter 17

Bitwise Boolean instructions

Bitwise Boolean instructions

F5 BTM Bit data move

Description 1 bit of the 16-bit data or constant value specified by s is copied to a bit of the 16-bit area specified
by d according to the content specified by n if the trigger EN is in the ON-state. When the 16-bit
equivalent constant is specified by s, the bit data move operation is performed internally converting
it to 16-bit binary expression.

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

F&_ETM |
“EN ENO |

a
This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears

under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

The operand n specifies the bit number as follows:

n: 16#
@ Bit position of source

@ Bit position of destination

Bit No. Description

0-3 source bit No. (16#0 to 16#F)

4-7 FP2/2SH and 10SH: number of bits to be transferred (16#0 to 16#F)
FP3: invalid

8-11 destination bit No. (16#0 to 16#F)

12-15 invalid

For example, reading from the right, n = 16#C01 would move from bit position one, one bit to bit
position 12 (16#C).

PLC types Availability of F5_BTM (see page 1325)

Data types Variable | Datatype Function
s source 16-bit area
n ANY16 specifies source and destination bit positions
d destination 16-bit area

The variables s and d have to be of the same data type.

512

Bitwise Boolean instructions

n
c
o
=
O
S
]
Operands For Relay T/C Register Constant g
s WX | WY [WR| WL | SV | EV | DT | LD | FL | dec. orhex. E
d - | Wy |WR| WL [SV |EV|DT|LD]|FL - LL
Explanation with example value 16#8888 and bit at position 2 moves to destination value at bit =
position 15 "
@©
ol
source
bitpos |15 . . 12|11 . . 8|7 . . 5|4 .
10 0 0|1 00 O0f1T 00 0|1 0 0
target
bitpos |15 . . 12|11 . . g|7 . . 5|4 . . 0
1 11 1111 10111 11 1 11
result l
bitpos 45 . . 12|11 . . 8|7 . . 5|4 . .0
0 1 1 1
Bit at position 15 is exchanged, destination value in this example: 16#7FFF
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Clasz | Idertifier | Tvpe | Initial | Cammert |

1] skark BOOL FALSE activates the Funckion

1 VAR inpuk_walue WORD Z2¥1000100010001000

Z WAR copy_operand WORD 16#0F02 " digit no.1 and no.3 are invalid, digit no. 0 locates

3 W AR output_wvalue WORD Z#1111111111111111 |result after a 0->1 leading

4 MAR edge from skark:
S#0111111111111111

Body When the variable start is set to TRUE, the function is carried out.

LD
J start F5_ETh |
| EN ENOD
input_walue — = d output_walue
copy_operand —— n

ST When programming with structured text, enter the following:
| F start THEN
F5 BTM s: = input_val ue,
n: = copy_operand,
d=> out put _val ue);
END | F;

513

Bitwise Boolean instructions

F6 DGT Digit data move

Description The hexadecimal digits in the 16-bit data or in the 16-bit equivalent constant specified by s are
copied to the 16-bit area specified by d as specified by n.

2
c
@)

=
o
S
S

—
0

£

o

LL

F&_DGT |
-EN " ENO |

S|
This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears

under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Part Il

Digits are units of 4 bits used when handling data. With this instruction, 16-bit data is separated into
four digits. The digits are called in order hexadecimal digit 0, digit 1, digit 2 and digit 3, beginning
from the least significant four bits:

< 16-bit data >
bit %5 . . 12 (11 . . 87 . . 4(3 . . 0
0 0 0 O o 00 OJ17 0O Of1T 0 O 1

hexadec. digit | hexadec. digit | hexadec. digit | hexadec. digit
3 2 1 0

n specifies the ® source hexadecimal digit position, the ® number of digits and the ©)
destination hexadecimal digit position to be copied using hexadecimal data as follows:

n: 16# |: |: |:|
@ Source: Starting hexadecimal digit position
0 Hexadecimal digit 0
1 Hexadecimal digit 1
2 Hexadecimal digit 2
3 Hexadecimal digit 3

@ Number of hexadecimal digits to be copied
0 Copies 1 hexadecimal digit (4 bits)
1 Copies 2 hexadecimal digits (8 bits)
2 Copies 3 hexadecimal digits (12 bits)
3 Copies 4 hexadecimal digits (16 bits)

@ Destination: Starting hexadecimal digit position
0 Hexadecimal digit O
1 Hexadecimal digit 1
2 Hexadecimal digit 2
3 Hexadecimal digit 3

Following are some patterns of digit transfer based on the specification of n.
" Specify n: 16#101 when hexadecimal digit 1 of the source is copied to

514

Bitwise Boolean instructions

digit

digit

digit

digit

digit

digit

digit

digit

hexadecimal digit 1 of the destination.
3 2 1 0

3 2 1 0

Specify n: 16#003 (short form: 16#3) when hexadecimal digit 3 of the source is
copied to hexadecimal digit O of the destination.

3 2 1 0

3 2 1 0

Specify n: 16#212 when multiple hexadecimal digits (hexadecimal digits 2 and 3)
of the source are copied to multiple hexadecimal digits (hexadecimal digits 2 and
3) of the destination.

3 2 1 0
) \
3 2 1 0

Specify n: 16#210 when multiple hexadecimal digits (hexadecimal digits 0 and 1)
of the source are copied to multiple hexadecimal digits (hexadecimal digits 2 and
3) of the destination.

0
c
(@)

=
o
S
S

s
0

£

a

LL

515

Part Il

Bitwise Boolean instructions

%)
c
9o
3]
= . Specify n: 16#130 when 4 hexadecimal digits (hexadecimal digits O to 3) of the
17 source are copied to 4 hexadecimal digits (hexadecimal digits O to 3) of the
k= destination.
& digit 3 2 1 0
—_ S
@
o
v
d
digit 3 2 1 0

PLC types Availability of F6_DGT (see page 1325)

Data types Variable | Datatype Function

S 16-bit area source

n ANY16 Specifies source and de.stinati.op hexadecimal digit position

and number of hexadecimal digits

d 16-bit area destination

Operands For Relay T/IC Register Constant
s,n | WX | WY | WR | WL SV EV DT LD FL dec. or hex.
d - WY | WR | WL SV EV DT LD FL -

Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Idenkifier | Twpe | Inital | Comment |
1] WAR, skart Bl FALSE
1 WAR soUrce INT 329 decimal 329 = 164149
Z WAR, specify_n WORD 16#111 | Beginning from the end:
3 WAR outpuk INT 1] 1: first b, digit is digit 1, i.e. 4
4 WAR 1: copies 2 hex. digits, i.e. 14
1: destination is hewx, digik 1

Body When the variable start is set to TRUE, the function is carried out. The values for source and
output in the Monitor Header of the ladder diagram body have been set to display the hexadecimal
value by activating the Hex button in the tool bar.

516

Bitwise Boolean instructions

n
c
o
3]
LD start FE_DGT S
m EM EMNO @
source = 329 —— 5 d ——output = 320 £
specify_n= 1640111 ———— n &
=10] | =
——FF6 DGT LD Structure =
start 241 at RS0 6_5
source 328 at DT3Z7
specify_n 1680111 at OT3Z72
output 320 at OT3273
< I I

ST When programming with structured text, enter the following:
| F start THEN
F6_DGT(s:= source,
n: = specify_n,
d=> out put);
END_| F;

517

Bitwise Boolean instructions

F65 WAN 16-bit data AND

Description Executes AND operation of each bit in 16-bit equivalent constant or 16-bit data specified by s1 and
s2 if the trigger EN is in the ON-state. The AND operation result is stored in the 16-bit area
specified by d. When 16-bit equivalent constant is specified by s1 or s2, the AND operation is
performed internally converting it to 16-bit binary expression. You can use this instruction to turn

2
c
@)

=
o
S
S

s
0

£

o

LL

—
G OFF certain bits of the 16-bit data.
o
FES WWARN
- EM ERC
- 51 i
- 52
Bit position (15 - -12/11 - - 8|7 - - 4|3 - - 0
s1 0100/1T101(1011[1001
Bit position [15 - - 12[11 - - 8|7 - - 4|3 - - 0
s2 00O0O0/0O0O0O1T 11 1|11 11
‘start:ON
Bit position [15 - - 1211 - - 8|7 - - 4|3 - -0
d 000O0/0O0O0O01 01 1[1001

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F65 _WAN (see page 1326)

Data types Variable | Datatype Function
sl,s2 16-bit area or 16-bit equivalent constant to be compared
d ANY16 16-bit area for storing AND operation result

The variables s1, s2 and d have to be of the same data type.

Operands For Relay T/C Register Constant
s, s2 WX | WY | WR | WL | SV | EV | DT | LD | FL | dec.orhex.
d - WY | WR [WL | SVY | EV | DT | LD | FL -
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Type | Inikial | Comment |
0 start BOOL FALSE activates the Funckion
1 VaR value_1 WORD 2F0000000011001100
2 VAR valug_7 WORD 2¥0000000010101010
3 YA, output_walue WORD 0 result after a 0-=1 leading edge
4 VAR From skart; 22000000001 0001000

518

Bitwise Boolean instructions

Body When the variable start is set to TRUE, the function is carried out.

LD
start =R
] EN ENO —
value_1— z1 d ——output_wvalue
value_2d —— 22

ST When programming with structured text, enter the following:
| F start THEN
F65 WAN(val ue_1, value_2, output_value);
END_| F;

0
c
(@)

=
o
S
S

s
0
£
a
LL

519

Part Il

2
c
@)

=
o
S
S

s
0

£

o

LL

Part Il

Bitwise Boolean instructions

F66 WOR 16-bit data OR

Description

PLC types

Data types

Operands

Example

POU header

Executes OR operation of each bit in 16-bit equivalent constant or 16-bit data specified by s1 and
s2 if the trigger EN is in the ON-state. The OR operation result is stored in the 16-bit area specified
by d. When 16-bit equivalent constant is specified by s1 or s2, the OR operation is performed
internally converting it to 16-bit binary expression. You can use this instruction to turn ON certain
bits of the 16-bit data.

FEE WOR

- EN ENO

- 51 i

- 52

Bit position (15 - - 1211 - - 8|7 - - 4|3 - - 0
s1 0100/1101(1011{1 001

Bit position |15 - - 1211 - - 8(7 - - 4|3 - - 0
s2 000O0/0O0OO[1T 1111|1111

'start:ON

Bit position [15 - - 12[11 - - 8|7 - - 4(3 - -0

d 01001101111 11111

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Availability of F66_WOR (see page 1326)

Variable | Datatype Function
sl,s2 16-bit area or 16-bit equivalent constant to be compared
d ANY16 16-bit area for storing OR operation result

The variables s1, s2 and d have to be of the same data type.

For Relay T/IC Register Constant
sl,s2 WX | WY WR WL SV EV DT LD FL dec. or hex.
d - WYy WR WL SV EV DT LD FL -

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Type | Inital | Comment |
start BOOL FALSE ackivates the Funckion

VAR value_1 WORD 2#0000000011001100

VAR value_2 WiORD Z2#0000000010101010

YA, output_wvalue WORD 0 result after a 0- =1 leading edge
VAR From start: 2#0000000011101110

£ O T e e}

520

Bitwise Boolean instructions

Body When the variable start is set to TRUE, the function is carried out.

LD
J start FEE_wWOR
F—EN EHO [
walue_1— 31 d ——output_wvalue
‘ wvalue_2d —— 22

ST When programming with structured text, enter the following:
| F start THEN
F66_WOR(val ue_1, value_2, output_value);
END | F;

0
c
(@)

=
o
S
S

s
0
£
a
LL

521

Part Il

2
c
@)

=
o
S
S

s
0

£

o

LL

Part Il

Bitwise Boolean instructions

F67 XOR 16-bit data exclusive OR

Description

PLC types

Data types

Operands

Example

POU header

Executes exclusive OR operation of each bit in 16-bit equivalent constant or 16-bit data specified
by s1 and s2 if the trigger EN is in the ON-state. The exclusive OR operation result is stored in the
16-bit area specified by d. When 16-bit equivalent constant is specified by s1 or s2, the exclusive
OR operation is performed internally converting it to 16-bit binary expression. You can use this
instruction to review the number of identical bits in the two 16-bit data.

FE?_}{DR|

- EM ERC

- 51 i

- 52

Bit position [15 - - 12[11 - - 8|7 - - 4|3 - - 0
s1 0100/1101(1011(100 1

Bit position |15 - - 1211 - - 8|7 - - 4|3 - - 0
s2 00O0O0O/0OO0OO[1T 1111111

‘start:ON

Bit position (15 - - 12(11 - - 8|7 - - 4(3 - - 0

d 0100/1101/0100{0110

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Availability of F67_XOR (see page 1326)

Variable | Datatype Function
sl,s2 16-bit area or 16-bit equivalent constant to be compared
d ANY16 16-bit area for storing XOR operation result

The variables s1, s2 and d have to be of the same data type.

For Relay T/IC Register Constant
sl,s2 WX | WY WR WL SV EV DT LD FL dec. or hex.
d - WYy WR WL SV EV DT LD FL -

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Type | Inikial | Comment |
start BOOL FALSE activates the Funckion

VAR value_1 WORD 2#1111000011001100

VAR value_2 WORD 2#1100000010101010

YA, output_walue WORD 0 result after a 0-=1 leading edge
VAR From skart; 220011000001100110

£ O T e e}

522

Bitwise Boolean instructions

Body When the variable start is set to TRUE, the function is carried out.

LD
J start FE7_>x0R
] | EW ENO -
wvalue_1— z1 d ——output_wvalue
‘ value 2 —— 32

ST When programming with structured text, enter the following:
| F start THEN
F67 XOR(val ue_1, value_2, output_value);
END | F;

0
c
(@)

=
o
S
S

s
0
£
a
LL

523

Part Il

Bitwise Boolean instructions

F68 XNR 16-bit data exclusive NOR

Description Executes exclusive NOR operation of each bit in 16-bit equivalent constant or 16-bit data specified
by s1 and s2 if the trigger EN is in the ON-state. The exclusive NOR operation result is stored in
the 16-bit area specified by d. When 16-bit equivalent constant is specified by s1 or s2, the
exclusive NOR operation is performed internally converting it to 16-bit binary expression. You can

2
c
@)

=
o
S
S

—
0

£

o

LL

—
G use this instruction to review the number of identical bits in the two 16-bit data.
o
FES_XNR |
- EM ERC
- 51 i
- 52
Bit position 15 - -12{11 - - 8|7 * - 4|3 - - 0
s1 0100/1101(1 0111001
Bit position [15 - - 12{11 - - 8|7 - - 4(3 - -0
s2 00O0O0O/0OO0OO[1T 1111111
‘start:ON
Bit position (15 - - 12(11 - - 8|7 - - 4|3 - -0
d 1011(0010[1011|100H1

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F68 XNR (see page 1326)

Data types Variable | Datatype Function
sl,s2 16-bit area or 16-bit equivalent constant to be compared
d ANY16 16-bit area for storing NOR operation result

The variables s1, s2 and d have to be of the same data type.

Operands For Relay T/C Register Constant
sl,s2 WX | WY WR WL SV EV DT LD FL dec. or hex.
d - wy WR WL SV EV DT LD FL -

524

Bitwise Boolean instructions

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Inikial | Comment |
1] skart BOOL FALSE ackivates the Function
1 VAR value_1 WORD 2#1111000011001100
2 VAR value_2 WORD 2#1100000010101010
3 MAR autput_walue WORD 0 result after a 0-=1 leading edas
4 VAR From skart: Z#1100111110011001

Body When the variable start is set to TRUE, the function is carried out.

LD
start FES_*MNR
} EM ENO
value_1— z1 d ——output_wvalue
value 2 —— 22

ST When programming with structured text, enter the following:
| F start THEN
F68 XNR(val ue_1, value_2, output_value);
END | F;

0
c
(@)

=
o
S
S

s
0

£

a
LL

525

Part Il

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Bitwise Boolean instructions

F69 WUNI 16-bit data unite

Description The function combines the two values at inputs s1 and s2 with the value at input s3 by bit-unit
processing. The result of the function is returned at output d. The data-unite is calculated as

PLC types

Data types

follows:

FE3_WWLINI

- EN
- 51
- 52

END !—

d
- 53 Mask {

[d] = ([s1] AND [s3]) OR ([s2] AND (NOT[s3]))

s1 s2
1010{1011 11100 | 1101 0001/0010/0011 0100
A B C D 1 2 3 4
AND AND
s3 Bit inverted of s3
1111 {1111 | 0000|1111 000000001111 |0000
F F 0 F 0 0 F 0
s1AND s3 s2 AND NOT s3
1010{1011 0000|1101 0000 /0000/0011 |0000
A B 0 D 0 0 3 0
1OR
d
1010/101110011 {1101
A B 3 D

When the value at input s3 = 16#0, the value at input s2 is returned at output d.

When the value at input s3 = 16#FFFF, the value at input s1 is returned at output d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Availability of F69 WUNI (see page 1326)

Variable | Datatype Function
s1, s2 16-bit area or 16-bit equivalent constant to be compared
s3 16-bit area that stores master data for combination or 16-bit
ANY16 :
equivalent constant data
d 16-bit area for storing calculated result

The variables s1, s2, s3 and d have to be of the same data type.

526

Bitwise Boolean instructions

n
c
o
=
Operands For Relay T/IC Register Constant ‘5’
s1,s2,s3 WX | WY WR WL SV EV DT LD FL dec. or hex. 4(/:)
d - WY | WR | WL | SV | EV | DT | LD | FL - £
ol
LL
Error flags No. IEC address Set If —
R900B | %MX0.900.11 for an instant the result calculated is 0. :
p =
)
o
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Inital | Comment |
1] skart BOOL FALSE ackivates the function
1 VAR input_waluel WORD 16#aBCD
2 VAR input_value2 WORD 16#1234
3 WAR selection WORD 16#FFOF "selection:
4 WAR output_walue WORD 0 result: here 1640630

In this example the input variables input_value_1, input_value _2 and selection are declared.
However, you can write constants directly at the input contact of the function instead.

Body When the variable start is set to TRUE, the function is carried out.

LD
FEQ_WLINI
start —— EN ENO —~
input_value_1— =1 d output_wvalue
input_walue_2 —— 52
selection —— =3 Maszk

ST When programming with structured text, enter the following:
| F start THEN
F69 WUNI (sl1:= input_val uel,
s2: = input_val ue2,
s3_Mask: = sel ection,
d=> out put _val ue);
END | F;

527

2
c
@)

=
o
S
S

s
0

£

o

LL

Part Il

Bitwise Boolean instructions

F215 DAND 32-bit data AND

The function performs a bit-wise AND operation on two 32-bit data items at inputs s1 and s2. The
result of the function is returned at output d.

Description

F215_DAND |
- EN ENO |
- 51 d
- 82 |-
Truth sl s2 d
Table: 0 0 0
0 1 0
1 0 0
1 1 1

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F215 _DAND (see page 1323)

Data types Variable | Datatype Function
sl 32-bit equivalent constant or 32-bit area
s2 ANY32 32-bit equivalent constant or 32-bit area
d 32-bit area for storing AND operation result

The variables s1, s2 and d have to be of the same data type.

Operands For Relay T/IC Register Constant
sl,s2 | DWX|DWY |DWR |DWL | DSV | DEV | DDT | DLD | DFL | dec. or hex.
d - |DWY|DWR | DWL | DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address | Set If
R900B | %MX0.900.11 for an instant = the result calculated (output d) is 0.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Initial | Camment |
1] start B FALSE ackivates the Funckion
1 WaR input_walue_1 DWORD 16412345675
zZ WaR input_walue_Z DWORD 16#90AECDEF
3 W AR oubput_walue DWAORD 0 result: here 16# 10204468

In this example the input variables input_value_1 and input_value _2 are declared. However, you

528

Bitwise Boolean instructions

can write constants directly at the input contact of the function instead.

Body When the variable start is set to TRUE, the function is carried out.

LD
F215_DaND |

a (..
dintz — =2
ST When programming with structured text, enter the following:
| F START THEN
F215 DAND(dint1, dint2, dint3);
END | F;

0
c
(@)

=
o
S
S

s
0
£
a
LL

529

Part Il

2
c
@)

=
o
S
S

s
0

£

o

LL

Part Il

Bitwise Boolean instructions

F216 DOR 32-bit data OR

The function performs a bit-wise OR operation on two 32-bit data items at inputs s1 and s2. The
result of the function is returned at output d.

Description

F216_DOR
- EM EMO
- 51 i
- 52
Truth sl s2 d
Table: 0 0 0
0 1 1
1 0 1
1 1 1

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F216_DOR (see page 1323)

Data types Variable | Datatype Function
sl 32-bit equivalent constant or 32-bit area
s2 ANY32 32-bit equivalent constant or 32-bit area
d 32-bit area for storing OR operation result

The variables s1, s2 and d have to be of the same data type.

Operands For Relay T/IC Register Constant
sl,s2 | DWX|DWY |DWR |DWL | DSV | DEV | DDT | DLD | DFL | dec. or hex.
d - |DWY|DWR | DWL | DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address | Set If
R900B | %MX0.900.11 for an instant = the result calculated (output d) is 0.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Twpe | Initial | Carnment |
1] start B FALSE activates the Funckion
1 VAR input_walue_ 1 DWORD 16812345675
2 VAR input_walue_ 2 DWORD 16#90ABCDEF
3 W AR output_value DWORD O result: here 16#92EFDFFF

In this example the input variables input_value_1 and input_value _2 are declared. However, you

530

Bitwise Boolean instructions

n

c

9o

o

can write constants directly at the input contact of the function instead. g

Body When the variable start is set to TRUE, the function is carried out. &

LD &
F216_DOR

start—— EM ENO ———0uUT =

input_walue_1 — =1 d ———output_walue _:

input_walue_2 —— =2 E

(a

ST When programming with structured text, enter the following:
| F start THEN
F216_DOR(i nput _value_1, input_value_2, output_val ue);
END | F;

531

Bitwise Boolean instructions

F217 DXOR 32-bit data XOR

The functions a bit-wise exclusive OR operation on two 32-bit data items at inputs s1 and s2. The
result of the function is returned at output d.

2
c
@)

=
o
S
S

—
0

£

o

LL

Description

G
o F217_D¥OR |
- EN ENO |
- 51 d
- 82 |-
Truth sl s2 d
Table: 0 0 0
0 1 1
1 0 1
1 1 0

Using this instruction you can check how many bits in the two 32-bit data items are different, for
example. At each position in which the bits at inputs s1 and s2 are different, a 1 is added in the
result.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F217_DXOR (see page 1323)

Data types Variable | Datatype Function
sl 32-bit equivalent constant or 32-bit area
s2 ANY32 32-bit equivalent constant or 32-bit area
d 32-bit area for storing XOR operation result

The variables s1, s2 and d have to be of the same data type.

Operands For Relay T/IC Register Constant
s1, s2 DWX | DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL | dec. or hex.
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address | Set If
R900B | %MX0.900.11 for an instant = the result calculated (output d) is 0.

532

Bitwise Boolean instructions

n
c
o
=
Example In this example, the same POU header is used for all programming languages. For an example g
using IL (instruction list), please refer to the online help. 403)
c
POU header All input and output variables used for programming this function have been declared in the POU E
header. L
| Class | Identifier | Type | Initial | Comment | —
1] skart BionoL FaLSE ackivates the funckion et
1 ¥AR input_wvalue_1 DWORD 16#12345675 6_5
z YAR inpub_value_Z DWORD 16#90ABCDEF
3 WAOR output_walue DWORD 0 result: here 16#529F9B97

In this example the input variables input_value_1 and input_value _2 are declared. However, you
can write constants directly at the input contact of the function instead.

Body When the variable start is set to TRUE, the function is carried out.

LD
F217_DOR |

start —— EN ENDO l—'
input_walue_1 — =1 d output_walue
input_walue_g —— =2

ST When programming with structured text, enter the following:
| F start THEN
F217 DXOR(i nput_value_1, input_value_2, output_val ue);
END | F

533

Bitwise Boolean instructions

F218 DXNR 32-bit data XNR

The function performs a bit-wise exclusive NOR operation on two 32-bit data items at inputs s1 and
s2. The result of the function is returned at output d.

2
c
@)

=
o
S
S

s
0

£

o

LL

Description

G
o F215_DXNR |
- EN ENO |
- 51 d
- 82 |-
Truth sl s2 d
Table: 0 0 1
0 1 0
1 0 0
1 1 1

Using this instruction you can check how many bits in the two 32-bit data items are the same. At
each position in which the bits at inputs s1 and s2 match, a 1 is produced in the result.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F218 DXNR (see page 1323)

Data types Variable | Datatype Function
sl 32-bit equivalent constant or 32-bit area
s2 ANY32 32-bit equivalent constant or 32-bit area
d 32-bit area for storing XNR operation result

The variables s1, s2 and d have to be of the same data type.

Operands For Relay T/IC Register Constant
sl,s2 DWX | DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL | dec. or hex.
d - | DWY |DWR |[DwL | DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address | Set If
R900B | %MX0.900.11 for an instant = the result calculated (output d) is 0.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

534

Bitwise Boolean instructions

n
c
o
=
O
. S
POU header All input and output variables used for programming this function have been declared in the POU =
%]
header. =
| Class | Identifier | Type | Initial | Camment [l
1] stark Bl FALSE activates the function L
1 WAR input_value_1 DWORD 2#10101110101011110001 hik combination _
z WAR outpub value DWORD O result: here 2#11111111111101001111011110101001 =
i
Body When the variable output is set to TRUE, the function F218_DXNR is carried out. o
LD
F21%_D=MF
start —— EM EMO
B

input_walue_1 — =1 output_walue
AT1oomooont 1] — s2

ST When programming with structured text, enter the following:
| F start THEN
F218 DXNR(i nput_value_1, 2#11110001010100111, output_val ue);
END | F;

535

Bitwise Boolean instructions

F219 DUNI 32-bit data unites 12

Description The function combines the two values at inputs s1 and s2 bit-wise with the value at input s3. The
result of the function is returned at output d. The data-unite is calculated as follows:

2
c
@)
=
o
S
S
s
0
£
o
LL

F2159_DUNI |
- EN ENO |

- 51 i
- 52
- 53 Mask

Part Il

[d] = ([s1] AND [s3]) OR ([s2] AND (NOT[s3]))

s s2
1010/1011/1100/1101/1010|1011/1100|1101] [0001|0010/0011[0100|0001 /0010/0011/0100
A B C D A B C D 1 2 3 4 1 2 3 4
AND AND

s3 Bit invert of s3
1111/1111/0000/1111{0000|0000/1111/1111| | 0000|0000/ 1111/0000|1111/1111/0000|0000
FIF ol[FJ]olo | FIF o o[FlolFIFlolo
\i ‘
s1 AND s3 s2 AND NOT s3
1010[1011][0000[1101[1010]1011[0000[1101]| [0000|0000 001100000001 /0010/0000|0000
A B 0 D A B 0 D 0 0 3 0 1 2 0 0
OR

1010/1011/0011/1101]/00010010/1100/1101
A B 3 D 1 2 Cc D

When the value at input s3 = 16#0, then the value at input s2 is returned at output d.
When the value at input s3 = 16#FFFFFFFF, then the value at input s1 is returned at output d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F219_DUNI (see page 1323)

Data types Variable | Datatype Function
sl 32-bit equivalent constant or 32-bit area
s2 32-bit equivalent constant or 32-bit area
s3 ANY32 32-bit area that stores master data for combination or 32-bit
equivalent constant
d 32-bit area for storing result

The variables s1, s2, s3 and d have to be of the same data type.

536

Bitwise Boolean instructions

n
c
o
e}
Operands For Relay TIC Register Constant ‘5’
sl1,s2,s3 | DWX | DWY | DWR [DWL | DSV | DEV | DDT | DLD | DFL | dec. or hex. 4(/:)
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL - =
ol
LL
Error flags No. IEC address Set If =
R900B | %MX0.900.11 for an instant = the result calculated (output d) is 0. bud
)
o
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Initial | Comment |
1] start BOCL FiLSE activates the funckion
1 VAR input_value_1 DWORD 16#ABCDABCD
Z VAR input_walue_Z DWORD 16#12341234
3 AR selection DWORD 16#FFOFOOFF selection:
4 W AR output_walue DWORD 0 result: here 16#AB3012C0

In this example the input variables input_value_1, input_value _2 and selection are declared.
However, you can write constants directly at the input contact of the function instead.

Body When the variable start is set to TRUE, the function is carried out.

LD
F213_BUNI |

start —— EM EMO |—'
input_walue_1 — =1 d output_walue
input_walue_2 —— =2
selection —— 53_hdask

ST When programming with structured text, enter the following:
| F start THEN
F219 DUNI (s1:= input_val uel,
s2: = input_val ue2,
s3 _Mask: = sel ection,
d=> out put _val ue);
END | F;

537

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Bitwise Boolean instructions

F130 BTS 16-bit data bit set

Description

PLC types

Data types

Operands

Example

POU header

Body

LD

ST

Turns ON the bit specified by the bit position at n of the 16-bit data specified by d if the trigger EN
is in the ON-state. Bits other than the bit specified do not change. The range of n is 0 to 15.

F130_BTS |
-EN TENO |

-n dr
This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears

under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Availability of F130_BTS (see page 1321)

Variable | Datatype Function
d ANY16 16-bit area
n INT specifies bit position to be set
For Relay T/IC Register Constant
d - wy WR WL SV EV DT LD FL -
n WX | WY WR WL SV EV DT LD FL dec. or hex.

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Initial | Comment |
0 skart BOCL FALSE ackivates the funckion

1 WAR.
2 WAR.

output_walue WORD 22101010 | resulk after a 0-=1 leading

edoe from skark: 23101011

When the variable start is set to TRUE, the function is carried out.

J start F130_BTS
| | EM ENO
| 0—n d ——output_value

When programming with structured text, enter the following:
IF start THEN
F130_BTS(n: = 0,
d=> out put _val ue) ;
END | F;

538

Bitwise Boolean instructions

F131 BTR 16-bit data bit reset

Description Turns OFF the bit specified by the bit position at n of the 16-bit data specified by d if the trigger EN
is in the ON-state. Bits other than the bit specified do not change. The range of n is 0 to 15.

0
c
(@)
=
o
S
S
s
0
£
a
LL

F131_ETR |
“EN TENO -

-n drp

Part Il

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions” pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F131_BTR (see page 1321)

Data types Variable | Datatype Function
d ANY16 16-bit area
n INT specifies bit position to be reset
Operands For Relay T/IC Register Constant
d - wYy WR WL SV EV DT LD FL -
n WX WYy WR WL SV EV DT LD FL dec. or hex.
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Inikial | Comment |
0 start BOOL FALSE activates the funckion
1 AR output_wvalue WORD 2#10101 | result after a 0-=1 leading
z WAR edge from skark: Z#10001

Body When the variable start is set to TRUE, the function is carried out.

LD
J start F131_BTR
] | EM EMNO
‘ 2—n d ——output value

ST When programming with structured text, enter the following:
| F start THEN
F131_BTR(n:= 2,
d=> out put _val ue);
END | F;

539

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Bitwise Boolean instructions

F132 BTI 16-bit data bit invert

Description

PLC types

Data types

Operands

Example

POU header

Body

LD

ST

Inverts [1 (ON) — 0 (OFF) or 0 (OFF) — 1 (ON)] the bit at bit position n in the 16-bit data area
specified by d if the trigger EN is in the ON-state. Bits other than the bit specified do not change.
The range of n is 0 to 15.

F132_ETI |
-EN ENO |

-n dr
This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears

under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Availability of F132_BTI (see page 1321)

Variable | Datatype Function
d ANY16 16-bit area
n INT specify bit position to be inverted
For Relay T/IC Register Constant
d - wy WR WL SV EV DT LD FL -
n WX | WY WR WL SV EV DT LD FL dec. or hex.

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Initial | Comment |
0 skart BOOL FALSE ackivates the Function
1 WA, oubput_wvalue WORD 2#111 | resulk after a 0-=1 leading
i WAR edge from skark: 22101

When the variable start changes from FALSE to TRUE, the function is carried out.

J start F132_BTI
1Pl EM EMNO ——output_value
‘ 1—n d—

When programming with structured text, enter the following:
| F DF(start) THEN
F132_BTI(n:= 1,
d=> out put _val ue);
END | F;

540

Bitwise Boolean instructions

F133 BTT 16-bit data test

Description Checks the state [1 (ON) or 0 (OFF)] of bit position n in the 16-bit data specified by d if the trigger
EN is in the ON-state.

0
c
(@)
=
o
S
S
s
0
£
a
LL

F133_BTT |

_EM ENO

The specified bit is checked by special internal relay R900B.
" When specified bit is 0 (OFF), special internal relay R900B (=flag) turns ON.
. When specified bit is 1 (ON), special internal relay R900B (=flag) turns OFF.

Part Il

n specifies the bit position to be checked in decimal data.
Range of n: 0 to 15

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F133_BTT (see page 1321)

Data types Variable | Datatype Function
d ANY16 16-bit area
n INT specifies bit position to be tested
Operands For Relay T/C Register Constant
d - WY | WR | WL | SV | EV | DT | LD | FL -
n WX | WY | WR | WL | SV | EV | DT | LD | FL [dec.orhex.
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Initial | Comment |
1] skart BOOL FALSE ackivates the Function
1 VAR bitD_js_TRUE BOOL FALSE TRUE if bit LSE of walue is TRLE else FaLSE
2 W AR value WORD Z#101 |resulk after a 0-=1 leading
3 VAR, edge: 2#101
zero-flag (RO00E) has stake FALSE

541

Bitwise Boolean instructions

n
c
o
)
o
g Body When the variable start is set to TRUE, the function is carried out.
n
£ LD
a start F133_BTT |
LL EM ENOD
0—n
walue — d

=
©
(o

ST When programming with structured text, enter the following:
IF start THEN
F133_BTT(n:= 0,

d: = val ue) ;
| F RO00B THEN

bit0_is_TRUE : = FALSE;
ELSE

bit0_is_TRUE : = TRUE
END | F;

END_| F;

542

Bitwise Boolean instructions

F135 BCU Number of ON bits in 16-bit data

Description Counts the number of bits in the ON state (1) in the 16-bit data specified by s if the trigger EN is in
the ON-state.

0
c
(@)
=
o
S
S
s
0
£
a
LL

F135_BCU | -
- EM ENO 3
} d |— ol
e EI

The number of 1 (ON) bits is stored in the 16-bit area specified by d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F135_BCU (see page 1321)

Data types Variable | Datatype Function
ANY16 source
d INT destination area for storing the number of bits in the ON (1)
state

Operands For Relay T/IC Register Constant

S - wYy WR WL SV EV DT LD FL -

d WX | WY WR WL SV EV DT LD FL dec. or hex.
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Type | Inikial | Comment |
1] start EOCL FALSE ackivates the Funckion
1 VAR, checked waluel WORD 2#11011 "this value will be checked
Z WOR, output_value INT 0 result after a 0-=1 leading

edge from start; 4

Body When the variable start is set to TRUE, the function is carried out.

LD
J startI F135 ECU

ENDO l—'

| checked _walue] —— d ——output_value

ST When programming with structured text, enter the following:
| F start THEN
F135_BCU(checked_val uel, output_val ue);
END | F;

543

Bitwise Boolean instructions

F136 DBCU Number of ON bits in 32-bit data

Description Counts the number of bits in the ON state (1) in the 32-bit data specified by s if the trigger EN is in
the ON-state.

2
c
@)

=
o
S
S

s
0

£

o

LL

F135_DECU |
- EN ENO |
- = d I

Part Il

The number of 1 (ON) bits is stored in the 16-bit area specified by d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F136_DBCU (see page 1321)

Data types Variable | Datatype Function
S ANY32 source
d INT destination area for storing the number of bits in the ON (1)
state
Operands For Relay T/IC Register Constant
S DWX | DWY | DWR | DWL | DSV | DEV | DDT | DLD DFL dec. or hex.
d - wy WR WL SV EV DT LD FL -
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Inikial | Comment |
1] skart: BOiOL FALSE ackivates the function
1 WOR, checked_walue DWORD 16#1111FFFF this value will be checked
2 W AR output_walue INT n result after a 0->1 leading
3 VAR, edge from skark: 20

Body When the variable start is set to TRUE, the function is carried out.

LD
J start F136_DECU |
I EM ENO
| checked_wvalua] — = d ——output_walue

ST When programming with structured text, enter the following:
IF start THEN
F136_DBCU(checked val ue, output_val ue);
END | F;

544

Bitwise Boolean instructions

F84 INV 16-bit data invert (one's complement)

Description Inverts each bit (0 or 1) of the 16-bit data specified by d if the trigger EN is in the ON-state. The
inverted result is stored in the 16-bit area specified by d. This instruction is useful for controlling an
external device that uses negative logic operation.

0
c
(@)
=
o
S
S
s
0
£
a
LL

<
Fad [Ny | T
“EM EMNO o
al
N
Destination
Bit position |15 . .1211 . . 8(7 . . 4|3 . . 0
d 0101{1110/1011{1101
‘start:ON
Destination
Bit positionfis . .1211 . . 8(7 . . 4|3 . .0
d 1010/0001/0100/0010O0

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F84 INV (see page 1326)

Data types Variable | Datatype Function
d ANY16 16-bit area to be inverted
Operands For Relay T/IC Register Const.
d - wYy WR WL SV EV DT LD FL -
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Type | Initial | Comment |
0 skark BOOL FALSE activates the Funckion
1 MAR imvert_walue WORD 2#1001001101110001 | resulk afker a 0-=1 leading
z WAR edge from start;
Z#0110110010001110

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD
J start Fad MY |
I3 EN ENO -~
| d ——ivent_value

545

Bitwise Boolean instructions

ST When programming with structured text, enter the following:
| F DF(start) THEN
F84 I NV(invert val ue);
END | F;

2
c
@)

=
o
S
S

s
0

£

o

LL

Part Il

546

Bitwise Boolean instructions

F93 UNIT 16-bit data combine

Description Extracts each lower 4 bits (bit position 0 to 3) starting with the 16-bit area specified by s and
combines the extracted data into 1 word if the trigger EN is in the ON-state. The result is stored in
the 16-bit area specified by d.

0
c
(@)

=
o
S
S

s
0

£

a

LL

Fo3_UNIT | T
- EN EMC i o
- 5_Start d
- n_Mumber [

n specifies the number of data to be extracted. The range of n is 0 to 4.

The programming example provided below can be envisioned thus:

Source

Bit position |15 - - 12/11 - - 8|7
Array[0]ats |0 0 0 0{0 0 0 0|0 0 O
Array[1]ats [0 0 0 0{0 0 0 0[0 0 0
Array[2]ats [0 0 0 0|0 0 0 0[0 0 0

10
. start: ON -|

Destination I
Bit position |15 - - 12(11 ‘{- 8|7 ' 4|3 ' 0
Valueatd 1o 0 0 0fo 1 0 oJo o 1 0o 0 0 1

!

Bit positions 12 to 15 are filled with Os.

oOjojJo|w
— .
ojo|—+|o

o|o|O|&

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F93_UNIT (see page 1326)

Data types Variable | Datatype Function
s WORD starting 16-bit area to be extracted (source)
n INT specifies number of data to be extracted
d WORD 16-bit area for storing combined data (destination)
Operands For Relay T/IC Register Constant
s WX [WY WR WL SV EV DT LD FL -
n WX [WY WR WL SV EV DT LD FL | dec. or hex.
d - WY WR WL SV EV DT LD FL -

547

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Bitwise Boolean instructions

Error flags

Example

POU header

Body

LD

No. IEC address Set If

R9007 | %MX0.900.7 permanently = the area specified using the index

R9008 | %MX0.900.8 | for an instant modifier exceeds the limit
= thevalueatn=5

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Tvpe | Inikial |
] start BOOL TRLE
1 WAR data_input ARRAY[0..2] OF WORD [1,2,4]
z WAR, data_number INT 3
3 WA, data_united WORD 1]
4 WAR result_inkeger IMT 1]

When the variable start is set to TRUE, the function is carried out. The binary values in the
illustration on the main help page serve as the array values in data_input. In this example,
variables are declared in the POU header. However, you may assign constants directly at the input
function’s contact pins instead.

In this example, 6 (Monitoring) was activated so you can see the results immediately.

Fa5_UNIT
ER— EN END
data_input[d] = 16H0007 —— = Start d ——data_united = T6H0427
data_rumber = 3 —— n_ Number
data_united = 1680427 —— WORD _TO_INT I—-result_integer = 1057

548

Bitwise Boolean instructions

Fo4 DIST 16-bit data distribution

Description Divides the 16-bit data specified by s into 4-bit units and distributes the divided data into the lower
4 bits (bit position 0 to 3) of 16-bit areas starting with d if the trigger EN is in the ON-state.

0
c
(@)

=
o
S
S

s
0

£

a

LL

Fo4 DIST |

- EN ENO T
- 5 d_ Start o
- n_Mumber [

n specifies the number of data to be divided. The range of n is 0 to 4. When 0 is specified by n, this
instruction is not executed.

The programming example provided below can be envisioned thus:

Source n: 4
Bit position |15 - - 12111 - - 87 - - 4|3
Value at s 0111]jo o1 1j0o001J0 000

| —
Destination ‘ X0: ON
Bit position |15 - - 12|11 - 8|7 413 0
Array[0]atd |0 0 0 0|0 ofo 0jo 0 0 oj<
Array[1]atd |0 0 0 0|0 ofo ofo 1|
Array[2]atd [p 0 0 0|0 olo ojo 0 1 1|«
Array[3]atd |0 0 0 0|0 olo 0o 1 1 1 [

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming

area to open the list of recently used elements.

PLC types Availability of F94_DIST (see page 1326)
Data types Variable | Datatype Function
S WORD 16-bit area or equivalent constant to be divided (source)
n INT specifies number of data to be divided
d WORD starting 16-bit area for storing divided data (destination)
Operands For Relay T/IC Register Constant
s, n WX | WY WR WL SV EV DT LD FL dec. or hex.
d - Wy WR WL SV EV DT LD FL -

549

Bitwise Boolean instructions

(7]

c

o

et

(&]

>

= Error flags No. IEC address | Set If

(7]

c R9007 %MX0.900.7 permanently = the area specified using the index

a RO008 | %MX0.900.8 | for an instant modifier exceeds the limit

LL = thevalueatn=5 the last area for the
result exceeds the limit

*c:U Example In this example, the same POU header is used for all programming languages. For an example

o

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class | Identifier | Type | Initial |

] VAR integer IMNT 29456

1 WAR, data_inpuk WiDIR D 0

z2 WAR skart BOOL TRLE

5 WAR output_distrib ARRAY [0..3] OF WORD [4(00]

4 WAR, int_resulk_0 INT 0

5 WAR, int_resulk_1 INT 0

& WA, int_resulk_2 INT 0

7 WAR ink_resulk_3 INT 1]

Body When the variable start is set to TRUE, the function is carried out. The binary values in the
illustration on main help page serve as the values calculated. In this example, variables are
declared in the POU header. Also, a constant value of 4 is assigned directly at the contact pin for
n_Number.

LD
In this example, & (Monitoring) was activated so you can see the results immediately.

integer = 29456 —— INT_TO _WORD I—'-:Iata_input = 16H7310
Fa4 DIST
EEN— EN ENO —
data_input = 167310 — = d_Start ——output_distrib[0] = 16H0000
4 —— r_Number
output_distrib[0] = 16H0000 — “WORD _TO_[NT I—liht_result_lzl =0
output_distrib[1] = 16800071 — “WORD TO [NT I—-int_result_'l =1
output_distrib[2] = 16800053 — WORD _TO _INT I—-int_result_z =3
output_distrib[3] = 16H0007 — “WORD _TO_[NT I—liht_result_S =7

550

Bitwise Boolean instructions

F182 FILTER Time constant processing

Description Filter processing is executed for specified bits and output bitwise. The instruction can be useful to
negate the effects of bounce, e.g. for a switching device.

0
c
(@)

=
o
S
S

s
0

£

a
LL

F182_FILTER |
- EM EMO I
- 51 InputData d OutputData {

Part Il

s2_Inputhask
s3_FilterTime

For bits stored in the area specified by s1_InputData a debouncing is executed if the resulting
value for s2_InputMask is "1". The result of the debouncing operation is output to d_OutputData.
The debouncing time is defined via s3_FilterTime (0 to 30000ms). If s2_InputMask is "0" no
debouncing takes place and the corresponding bit at s1_InputData passes unchanged to
d_OutputData.

In the following figure, the bits in d_OutputData and their values will be the same as s1_InputData
after the filter time has elapsed or, for example, if no masking takes place, e.g. s2_InputMask is
assigned the value 0.

Bito Bit F
s1_InputData
1 1 0 0o F---—
! ! i Y
s2_InputMask 1 0 1 0
s3_FilterTime ¢ L ..
(if InputMask = 1)

e

d_OutputData

551

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Bitwise Boolean instructions

Pre-
cautions
during
program-
ming

PLC types

Data types

When the system detects a trigger's rising edge, all the bits of the input specified by s1_InputData
are output directly in d_OutputData and the effects of bounce are not prevented. A scan time error
may occur during filter processing, for a maximum of 1 scan.

Time charts for the filter when the value assigned to s2_InputMask is 1 (16#0001), i.e. bit 0
will be filtered, the other bits will not be filtered, and the value assigned to s3_FilterTime is
500ms.

bStart (Trigger)

o | L]

1 Data is initialized when the system

Data is initialized when the system

1 1
.) H - A | 1 : .
i':tg ofinput | detects the trigger's rising edge. : ! detects the trigger's rising edge.
400 ms 500 ms ! Y so0ms
R e VAN DT e R
oFF 200ms | | 200 j’ns I |
Bit 0 of filter E ! 1 i i i
result | ! ! 1 | !
v ! } ! v !
ON i
OFF i
e i
1 1
| i¢—*

The instruction does not operate
while the trigger is OFF.

Time chart when the value assigned to s2_InputMask is 0 (16#0000), i.e. bit 0 to F will be not
filtered

bStart (Trigger)

R |

Data is initialized when the system
detects the trigger's rising edge.

Data is initialized when the system
detects the trigger's rising edge.

1
|
1 1
! |
1
input data v v

Bit 1 to 15 of
ON
OFF
| I | I I I | I
. | I I I I I I I
Bit 1 to 15 of 1 ! 1 [1 1 1
filter result . : : : : . : :
v 1 1 1 1 v 1 1

orr] [N

+——>r

The instruction does not operate while
the trigger is OFF.

Availability of F182_FILTER (see page 1322)

Variable Data type Function
s1_InputData Input data whose bits will be filtered according to the
input mask
s2_InputMask Input mask which specifies which bits will be filtered
ANY16
s3_FilterTime Specifies the minimum off- and on-time in ms
d_OutputData Filtered data

552

Bitwise Boolean instructions

(7]
c
o
=
Operands For Relay T/IC Register Const. ‘5’
sl WX | WY WR WL | SV EV | DT | LD | FL - *3
s2,s3 WX | WY | WR WL | SV EV | DT | LD | FL dec. or hex £
ol
d - WY WR WL | SV EV | DT | LD | FL - LL
Error flags | g, IEC address | Set If -
p =
R9007 | %MX0.900.7 permanently = The filter processing time specified by D“_S
o - s3_FilterTime is less than 0 or greater
R9008 %MX0.900.8 for an instant than 30000.
Example In this example, the same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
0 bStart BOICL FALSE
1 VAR winputData WIORD 16#A9E6C
z YR wInpukMask:, WORD 1a000C Z#0000000000001 100 i.2, hits 2 and 3 filtered
3 VAR wioubputData WORD 0
4 VAR, iFilkerTime INT 100 0,1 seconds

In this example, the input variables winputData, winputMask and iFilterTime are declared.
However, for winputMask and iFilterTime, you can write a constant directly at the input contact of
the function instead. Additionally, the variable bStart is declared to start the filter function and the
variable wOutputData is declared for storing the result.

Body The filtered bits will only be written to wOutputData after the filter time has elapsed (see LD
example). See time charts (see page 550) for a detailed explanation. wOutputdata has the value
16#A9B0 for 100ms, when this time has been elapsed wOutputData has the value 16#A9BC.

LD 1
bStart Fl8Z_FILTER

| | = ENO —
winputData = TE6#A3BC—— s1_|nputData d_OutputData ——wOutputData = 16£4380
winputbdask = 160002 —— s2_Inputhdask
100 — s3_FilterTime

bStart F182_FILTER

| EM END —
winputData = 16#298C—— 51 _|nputData d_OutputData ——wOutputData = 16#A9BC
winputhdask = 168#000C—— s2_Inputhdask
100 —— s3_FilterTime

ST When programming with structured text, enter the following:
| F bStart Then
F182_FI LTER(W nput Dat a, Wl nput Mask, i FilterTi me, wCut put Dat a) ;
End_If;

553

Chapter 18

Bit-shift instructions

Bit-shift instructions

LSR Left shift register

2
c
@)

=
o
S
S

s
0

£

o

LL

Description Shifts 1 bit of the specified data area (d_WR) to the left (to the higher bit position). When
programming the LSR instruction, be sure to program the data input (Datalnput), shift
(ShiftLeftTrigger) and reset triggers (Reset).

Part Il

LSR |
- Datalnput d WH
~shiftLeftTrigger {
- Heset

Datalnput: specifies the state of new shift-in data:
] new shift-in data 1: when the input is ON
" new shift-in data 0: when the input is OFF

ShiftLeftTrigger: shifts 1 bit to the left when the leading edge of the trigger is detected
Reset: turns all the bits of the data area to 0 if the trigger is in the ON-state

The area available for this instruction is only the word internal relay (WR).

PLC types Availability of LSR (see page 1328)

= Word internal relay (WR) number range, depends on the free area in the Extras
— Options — Compile Options — Address Ranges menu.

Data types Variable Data type | Function
Datalnput BOOL when ON, shift-in data = 1, when OFF, shift-in data =0
ShiftLeftTrigger BOOL shifts one bit to the left when ON
Reset BOOL resets data area to 0 when ON
d_WR ANY16 specified data area where data shift takes place
Operands For Relay T/C
Datalnput, X Y R L T C
ShiftLeftTrigger,
Reset
d_WR - - |wWrR| - - -
Example In this example the function has been programmed in ladder diagram (LD) and structured text (ST).

POU header All input and output variables used for programming this function have been declared in the POU

header.
Class Identifier | Type | Initial |
] VAR Outpuk INT 0
1 VAR Datalnput Bl F&LSE
2 VAR ShifkTrigger Bzl FALSE
3 VaR ResetTrigger BOOL FALSE

556

Bit-shift instructions

Body LR

Datalnput —— Datalnput d WH ——Output

shiftTrigger —— -ShiftLeft Trigger
ResetTrigger—— Reset

0
c
(@)
=
o
S
S
s
0
£
a
LL

ST When programming with structured text, enter the following:
Qut put : =LSR(Dat al nput, ShiftTri gger, ResetTrigger);

Part Il

557

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Bit-shift instructions

F100 SHR Right shift of 16-bit data in bit units

Description

PLC types

Data types

Operands

Example

POU header

Body

Shifts n bits of 16-bit data area specified by d to the right (to the lower bit position) if the trigger EN
is in the ON-state.

F100_SHR |
-EM ENO
_ al
T
JES LI
Bit positionfi5 . . 1211 . . 8|7 . . 43]. . 0
d
Bit positionfi5 - - 1211 . . 8|7 - . 4|3 . . 0
d 0000
@

When n bits are shifted to the right, the data in the nth bit @ s transferred to special internal relay
R9009 (carry-flag) and the higher n bits of the 16-bit data area @) specified by d are filled with Os.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Availability of F100_SHR (see page 1320)

Variable | Datatype Function
d ANY16 16-bit area to be shifted to the right
n INT number of bits to be shifted
For Relay T/IC Register Constant
d - WY WR WL SV EV DT LD | FL -
n WX wy WR WL SV EV DT LD | FL dec. or hex.

In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Twpe | Initial | Comment |
1] start BOOL FALSE ackivates the Funckion
1 WOR, data WORD 16#1234 |result after a 0-=1 leading edge
2 WAR From stark: 16#0123

When the variable start changes from FALSE to TRUE, the function is carried out.

558

Bit-shift instructions

n

c

)

S

LD J start F100_SHR | S
r EN ENO [~ =

| 4——n d ——data 8

o

LL

ST When programming with structured text, enter the following:
| F DF(start) THEN
F100_SHR(n:= 4 ,
d=> data);

=
@©
o

END_I F;

559

Bit-shift instructions

F101 SHL Left shift of 16-bit data in bit units

Description Shifts n bits of 16-bit data area specified by d to the left (to the higher bit position) if the trigger EN
is in the ON-state.

2
c
@)

=
o
S
S

—
0

£

o

LL

= F101_SHL |
o - EM ENG|-
-n dr
P U,
Bit position15 . (1211 . . 8[7 . . 4|3 . . 0
D \
Bit position[15 . .1211 . . 8|7 . . 4|3 . . 0
D 0000

@

When n bits are shifted to the left, the data in the nth bit @ is transferred to special internal relay
R9009 (carry-flag) and n bits @ starting with bit position 0 are filled with Os.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F101_SHL (see page 1320)

Data types Variable | Datatype Function
d ANY16 16-bit area to be shifted to the left
n INT number of bits to be shifted
Operands For Relay T/C Register Constant
d - wy WR WL SV EV DT | LD FL -
n WX | WY WR WL SV EV DT | LD FL dec. or hex.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Type | Initial | Comment |
0 skart BOOL FALSE activates the funckion
1 WAR data WORD 16#1234 |resulk after a 0-=1 leading edge
2 YR From start: 1642340

Body When the variable start changes from FALSE to TRUE, the function is carried out.

560

Bit-shift instructions

LD J Tanl F101_SHL |
P EN END
| d—n d rl,—'data

ST When programming with structured text, enter the following:

| F DF(start) THEN
F101_SHL(n: = 4,
d=> data);
END | F;

0
c
(@)
=
o
S
S
s
0
£
a
LL

561

Part Il

Bit-shift instructions

F102 DSHR Right shift of 32-bit data in bit units

Description The function shifts the value at output d to the right. The number of bits at output d to be shifted to
the right is specified by the value assigned at input n. This shift can lie between 0 and 255 (only the
lower value byte of n is effective). Bits cleared because of the shift become 0. When input n =0, no
shift takes place. A shifting distance larger than 32 does not make sense, since when n = 32 the
value at output d is already filled with zeros. The bit at position n - 1 (the last bit shifted out to the
right) is simultaneously stored in special internal relay R9009 (carry flag) so that it can be evaluated
accordingly. When n = 0 the content of the carry flag does not change.

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

F102_DSHR |
- EM ERO I
- N d I
Data
[n bits]
/—/%
31 16 15 0
I \ —~]
\ M
00000000 | | The data in the nth bit
v is transferred to R9009
The [n bits] are filled with 0s (carry flag)

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F102_DSHR (see page 1320)

Data types Variable | Datatype Function
n INT number of bits to be shifted (range: 16#0 to 16#FF)
d ANY32 32-bit area to be shifted to the right
Operands For Relay T/IC Register Constant
n WX | WY WR WL SV EV DT LD FL dec. or hex.
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address | Set If
R9009 %MX0.900.9 for an instant = the bit at position n - 1 has the value 1.
Example In this example, the same POU header is used for all programming languages. For an example

using IL (instruction list), please refer to the online help.

562

Bit-shift instructions

)
c
o
=
3]
POU header o
In the POU header, all input and output variables are declared that are used for programming this *u:)
function. c
| Class | 1dertifier | Twpe | Initial | Comment | &

1] start B FALSE ackivates the Funckion
1 AR data CWORD 164#1234A8BCD |resulk: after a =
Z WAR, 0-=1 leading edge from +
skart: 168012344BC Dc(-s

Body When the variable start changes from FALSE to TRUE, the function is carried out. It shifts out 4
bits (corresponds to one position in a hexadecimal representation) to the right. The 4 bits in data
resulting from the shift are filled with zeros. At input n the constant 4 is assigned directly to the
function. You may, however, declare an input variable in the POU header instead.

LD J start Fi0z_DSHR |
Irl EN END [~
| 4—n d ——data

ST When programming with structured text, enter the following:
| F DF(start) THEN
F102_DSHR(n:= 4
d=> data);
END | F;

563

Bit-shift instructions

F103 DSHL Left shift of 32-bit data in bit units

Description The function rotates the value at output d to the left. The number of bits at output d to be shifted to
the left is specified by the value assigned at input n. This shift can lie between 0 and 255 (only the
lower value byte of n is effective). Bits cleared because of the shift become 0. When input n =0, no
shift takes place. A shifting distance larger than 32 does not make sense, since when n = 32 the
value at output d is already filled with zeros. The bit at position 31 - n (the last bit shifted out to the
left) is simultaneously stored in special internal relay R9009 (carry flag) so that it can be evaluated
accordingly. When n = 0 the content of the carry flag does not change.

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

F103_DSHL |
- EN =] I
- N d I
Daten
[n bits]
/—/%
31 16 15 0
= \ |
CcYy / /
The data in the nth | \ 00000000|
bit is transferred to —
R9009 (carry flag). [n bits] starting from bit position 0

are filled with 0s.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F103_DSHL (see page 1320)

Data types Variable | Datatype Function
n INT number of bits to be shifted (range: 16#0 to 16#FF)
d ANY32 32-bit area to be shifted to the left
Operands For Relay T/IC Register Constant
n WX | WY WR WL SV EV DT LD FL dec. or hex.
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
Error flags No. IEC address Set If
R9009 %MX0.900.9 for an instant = the bit at position 31 - n has the value 1.

564

Bit-shift instructions

n
c
o
=
Example In this example, the same POU header is used for all programming languages. For an example "5’
using IL (instruction list), please refer to the online help. 403)
c
POU header All input and output variables used for programming this function have been declared in the POU E
header. L
| Class | Identifier | Type | Initial | Comment | —
1] skark BTl FaLSE ackivates the function et
1 W AR, data DWioRD 16#12344BCD |result after a 0-=1 leading edge 6_5
z VAR From start: 16#234ABC00

Body When the variable start changes from FALSE to TRUE, the function is carried out. It shifts out 4
bits (corresponds to one position in a hexadecimal representation) to the left. The 4 bits in data
resulting from the shift are filled with zeros. At input n the constant 4 is assigned directly to the
function. You may, however, declare an input variable in the POU header instead.

LD
J start FI03_DSHL |
Il EM END [~
| 4—n d ——data

ST When programming with structured text, enter the following:
| F DF(start) THEN
F103_DSHL(n:= 4,
d=> data);
END | F;

565

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Bit-shift instructions

F105 BSR Right shift of one hexadecimal digit (4 bits) of 16-bit data

Description Shifts one hexadecimal digit (4 bits) of the 16-bit area specified by d to the right (to the lower digit
position) if the trigger EN is in the ON-state.

F105_BSR |
-EN TENO |

. dr

Bit positionf{15 . . 12111 . . .
d |Hexadecimal| Digit4 | Digit3 | Digit2 | Digit 1

Bit positionfi5 . . 1211 . .
d |Hexadecimal 0 Digit 4

Digit 3 | Digit 2

This hexadecimal digit position becomes 0.

Bit position|i15 . .1211 . . 8|7 . . 4|3 . .0

DT9014/
DT90014]

Hexadecimal 0 0 0 Digit 1

When one hexadecimal digit (4 bits) is shifted to the right,

" hexadecimal digit position 0 (bit position 0 to 3) of the data specified by d is
shifted out and is transferred to the lower digit (bit position 0 to 3) of special data
register DT9014 (DT90014 for FP2/2SH and FP10/10S/10SH).

" hexadecimal digit position 3 (bit position 12 to 15) of the 16-bit area specified by
d becomes 0.
] This instruction is useful when the hexadecimal or BCD data is handled.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F105_BSR (see page 1320)

Data types Variable | Datatype Function
d ANY16 16-bit area to be shifted to the right
Operands For Relay T/IC Register Constant
d - WY | WR | WL | SV | EV | DT | LD | FL -
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Idenkifier | Type | Initial | Comment |
0 skart Bl FALSE ackivates the Function
1 WAR, data WORD 16#1234 |result after a 0-=1 leading edge
z WAR From skark: 1680123

566

Bit-shift instructions

d ———data

(2}

c

o

Body When the variable start changes from FALSE to TRUE, the function is carried out. g
LD &

J start Fi03_E5R -

Irl EH ~ ENO o

| o

ST When programming with structured text, enter the following:
| F DF(start) THEN
F105 BSR(dat a) ;
END | F;

=
@©
o

567

Bit-shift instructions

F106 BSL Left shift of one hexadecimal digit (4 bits) of 16-bit data

Description Shifts one hexadecimal digit (4 bits) of the 16-bit area specified by d to the left (to the higher digit
position) if the trigger EN is in the ON-state.

2
c
@)

=
o
S
S

—
0

£

o

LL

F105_BSL |
-EN TENO

. dr

Part Il

Bit positionfi5 . .1211 . . 8|7 - - 4|3 - . 0
d |Hexadecimal | Digit4 | Digit3 | Digit2 | Digit 1
/ /
Bit positionfi5 . .1211 . . 8|7 . . 4|3 . . 0
d Hexadecimal | Digit 3 | Digit 2 Digit 1 0

This hexadecimal digit
position becomes 0.

Bit position fi5 . . 1211 . . 8[7 . . 4[3 . . 0

DT9014/

i Digit 4
e Hexadecimal 0 0 0 g

t

= When one hexadecimal digit (4 bits) is shifted to the left,

" hexadecimal digit position 3 (bit position 12 to 15) of the data specified by d is
shifted out and is transferred to the lower digit (bit position 0 to 3) of special data
register DT9014 (DT90014 for FP2/2SH and FP10/10S/10SH).

" hexadecimal digit position 0 (bit position 0 to 3) of the 16-bit area specified by d
becomes 0.

This instruction is useful when the hexadecimal or BCD data is handled.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F106_BSL (see page 1320)

Data types Variable | Datatype Function
d ANY16 16-bit area to be shifted to the left
Operands For Relay T/C Register Constant
d - WY | WR | WL | SV | EV | DT | LD | FL -
Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.
POU header

568

Bit-shift instructions

All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
1] stark BOCL FALSE ackivates the Function
1 AR data WORD 16#1234 |result after a 0->1 leading edge
2 WAR From skark: 1642340

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD start F106_B35L

|pl———EN END

d (———data

L

ST When programming with structured text, enter the following:
| F DF(start) THEN
F106_BSL(data) ;
END | F;

0
c
(@)
=
o
S
S
s
0
£
a
LL

569

Part Il

Bit-shift instructions

F108 BITR Right shift of multiple bits of 16-bit data range

Description The function shifts the bits of a specified data range, whose beginning and end are specified by the
outputs d1 and d2 to the right. The number of bits by which the data range is to be shifted to the
right is specified by the value assigned at input n. The value may lie between 0 and 16. Bits
cleared because of the shift become 0. When input n = 0, no shift takes place. When input n = 16,
a shift of one WORD occurs, i.e. the same process takes place as with function F110_WHSL (see
page 573).

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

F108_BITR |
- EN ENO |
- n dl_ Start I

d2 End |

Specified data range

| D) |
n bits are

start: ON ‘ shifted out

000 | D) |

r—>‘ n bits

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F108_BITR (see page 1320)

Data types Variable | Datatype Function
dl starting 16-bit area
d2 ANY16 ending 16-bit area
n INT number of bits to be shifted
The addresses of the variables at inputs d1 and d2 have to have the same address type.
Operands For Relay T/IC Register Constant
di, d2 - wy WR WL SV EV DT LD FL -
n WX | WY WR WL SV EV DT LD FL dec. or hex.
Error flags No. IEC address | Set If
R9007 %MX0.900.7 permanently = the address of the variables at the
R9008 %MX0.900.8 for an instant outputs d1 > d2 or the value at inputis n
’ ' > 16.

570

Bit-shift instructions

n
c
o
5
Example In this example, the same POU header is used for all programming languages. For an example S
using IL (instruction list), please refer to the online help. 403)
k=
POU header All input and output variables used for programming this function have been declared in the POU o
header. L
| Class | Identifier | Tvpe | Iritial | Camment | —
] skart BOGL FALSE ackivates the Function +
1 WAR data_field BRRAY [0,.2] OF WORD [16#1234, 16#ABCD, 164#5675] | Arbitrarily large data field, result; after a <
2 WAR number_bits INT 4 0-1 leading edge of start [a
3 YaR data_field[0] = 1620123
data_field[1] = 16#8AEC
data_field[2] = 16#0567

In this example, the input variable number_bits is declared. However, you can write a constant
directly at the input contact of the function instead.

Body When the variable start changes from FALSE to TRUE, the function is carried out. It shifts out 4
bits (corresponds to one position in a hexadecimal representation) to the right. The 4 bits in
data_field[2] resulting from the shift are filled with zeros.

LD start Fi02_BITR |
lpl———EN ENO [~
number_bits — n d1_Start data_field[0]

d42_End |—dsta_field[2]

ST When programming with structured text, enter the following:
| F DF(start) THEN
F108 BI TR(n: =nunber _bits,
dl Start=> data field[O],
d2_End=> data field[2]);
END | F;

571

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Bit-shift instructions

F109 BITL Left shift of multiple bits of 16-bit data range

Description

PLC types

Data types

Operands

Error flags

The function shifts the bits of a specified data range, whose beginning and end are specified by the
outputs d1 and d2 to the left. The number of bits by which the data range is to be shifted to the left
is specified by the value assigned at input n. The value may lie between 0 and 16. Bits cleared
because of the shift become 0. When input n = 0, no shift takes place. When input n = 16, a shift of
one WORD occurs, i.e. the same process takes place as with function F111_WSHL (see page
575).

F109_BITL |

- EN ENO |
- n dl_ Start I
d2 End |

Specified data range

B

ending n bits are
shifted out

B

start: ON ‘

000’
n bits ﬁ

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Availability of F109_BITL (see page 1320)

Variable | Datatype Function
di starting 16-bit area
d2 ANY16 ending 16-bit area
n INT number of bits to be shifted

The addresses of the variables at inputs d1 and d2 have to have the same address type.

For Relay T/IC Register Constant
d1, d2 - wy WR WL SV EV DT LD FL -
n WX | WY WR WL SV EV DT LD FL dec. or hex.
No. IEC address | Set If
R9007 | %MX0.900.7 permanently = the address of the variables at the
RO008 | %MX0.900.8 | for an instant ‘:”fg“ts d1>d2orthe value at inputis n

572

Bit-shift instructions

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Type | Iniitial | Cormment |
] skart BO0OL FaLsSE ackivates the Function
1 WAR data field ARRAY [0..2] OF WORD [16#1234, 16#8BC0, 16#5675] | Arbitrarily large data field, result: after a
2 WAR 0-=1 lzading edge of start:

data_field[0] = 1642340
data_field[1] = 16#BCD1
data_field[Z] = 16#6754

Body When the variable start changes from FALSE to TRUE, the function is carried out. It shifts out 4
bits (corresponds to one position in a hexadecimal representation) to the left. The 4 bits in
data_field[0O] resulting from the shift are filled with zeros. At input n the constant 4 is assigned
directly to the function. You may, however, declare an input variable in the POU header instead.

LD start Fi0a_BITL |
lpl———EN ENO [~
4——n d1_Start data_field[0]

d42_End |—dsta_field[2]

ST When programming with structured text, enter the following:
| F DF(start) THEN
F109_BI TL(n: =4,
dl Start=> data field[O],
d2_End=> data field[2]);
END | F;

0
c
(@)

=
o
S
S

s
0

£

a
LL

573

Part Il

Bit-shift instructions

F110 WSHR Right shift of one word (16 bits) of 16-bit data range

Description Shifts one word (16 bits) of the data range specified by d1 (starting) and d2 (ending) to the right (to
the lower word address) if the trigger EN is in the ON-state.

2
c
@)

=
o
S
S

—
0

£

o

LL

= F110_WSHR |
o - EN ENO |
d1_Start |
d2 End |

When one word (16 bits) is shifted to the right, the starting word is shifted out and the data in the
ending word becomes 0.

Specified data range

] L

D2 7 D1
\ \ \

\ N
\ M The starting word is
shifted out
))

D2 \ 7 1\ \\D!
0 X L\ X X

%/—/ AR

The data in the ending

word becomes 0

d1 and d2 should be:

" the same type of operand

] dl<d2
This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears

under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F110 WSHR (see page 1320)

Data types Variable | Datatype Function
di starting 16-bit area
d2 ANY16 ending 16-bit area
The variables d1 and d2 have to be of the same data type.
Operands For Relay T/C Register Constant
d1, d2 - WY | WR | WL | Sv | EV | DT | LD | FL -
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

574

Bit-shift instructions

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Imitial | Comment |
1] skart BioioL FALSE ackivates the Funckion
1 WOR, souUrce_array ARRAY [0..3] OF INT [2,3,4,5] | resulk after a 0-+1 leading edge
z WaR From stark: [2,4,5,0]

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD
start F110_#WSHR |
lpl——€n END [~
d1_5tart source_arrap[1]

d2_End (——=ource_arrap[3]

ST When programming with structured text, enter the following:
| F DF(start) THEN
F110 WBHR(d1_Start=> source_array|[1],
d2_End=> source_array[3]);
END | F;

0
c
(@)
=
o
S
S
s
0
£
a
LL

575

Part Il

Bit-shift instructions

F111 WSHL Left shift of one word (16 bits) of 16-bit data range

Description Shifts one word (16 bits) of the data range specified by d1 (starting) and d2 (ending) to the left (to
the higher word address) if the trigger EN is in the ON-state.

2
c
@)

=
o
S
S

—
0

£

o

LL

= F111_WSHL |
o - EN ENO |
d1_Start |
d2 End |

When one word (16 bits) is shifted to the left, the ending word is shifted out and the data in the
starting word becomes 0.

Specified data range

J L

D2 7 D1

/. /.

The ending word - /)\\\
is shifted out *— / / /
)L
%;/ / Va / D1
\\ 0
AR ~— ——

The data in the starting
word becomes 0

d1 and d2 should be:

" the same type of operand

= dl<d2
This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears

under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F111_WSHL (see page 1320)

Data types Variable | Datatype Function
di starting 16-bit area
d2 ANY16 ending 16-bit area
The variables d1 and d2 have to be of the same data type.
Operands For Relay T/C Register Constant
d1, d2 - WY | WR | WL | sv | EV | DT |LD | FL -
Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.
POU header

576

Bit-shift instructions

All input and output variables used for programming this function have been declared in the POU

header.

| Class | Identifier | Tvpe | Initial | Comment |
1] skark BOOL FALSE activates the funckion
1 AR source_array ARRAY [0..3] OF INT [2,3,4,5] | result after a 0-=1 leading edge
2 VAR From skark: [2,0,3,4]

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD start F111_WSHL |
P l———EN END [~
d1_Start source_array[1]

d2_End ——=zource_arrap[3]

ST When programming with structured text, enter the following:
| F DF(start) THEN
F111 WBHL(d1_Start=> source_array[1],
d2_End=> source_array[3]);
END | F;

0
c
(@)
=
o
S
S
s
0
£
a
LL

577

Part Il

Bit-shift instructions

F112 WBSR Right shift of one hex. digit (4 bits) of 16-bit 5 datarange

Description Shifts one hexadecimal digit (4 bits) of the data range specified by d1 (starting) and d2 (ending) to
the right (to the lower digit position) if the trigger EN is in the ON-state.

2
c
@)

=
o
S
S

—
0

£

o

LL

= F112_WESR |
o - EN ENO |
d1_Start |
d2 End |

When one hexadecimal digit (4 bits) is shifted to the right:

" the data in the lower hexadecimal digit (bit position 0 to 3) of the 16-bit data
specified by d1 is shifted out.

" the data in the higher hexadecimal digit (bit position 12 to 15) of the 16-bit data
specified by d2 becomes 0.

Specified data range

A1, 43 .
N N .l. /.

PLC types

Data types

_> The data in the lower
\ hexadecimal digit (bit
3\ .0

5. 12[1}\ B\Ad24[\3\ 0fg. .). 1\ 12[1\\(‘.18[}\ 4] positions 0 to 3) is
: | l i’?/ l 1 1 shifted out

The higher hexadecimal
digit (bit positions 12 to
15) becomes 0

d1 and d2 should be:
= the same type of operand
] dl=<d2

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Availability of F112_ WBSR (see page 1320)
Variable | Datatype Function
di starting 16-bit area
ANY16
d2 ending 16-bit area

The variables d1 and d2 have to be of the same data type.

578

Bit-shift instructions

n

c

o

=

Operands For Relay T/IC Register Constant ‘5’
d1,d2 - WY | WR | WL [SV | EV | DT | LD | FL - *3;

£

Example In this example the function has been programmed in ladder diagram (LD) and structured text &

(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU *%
header. a
| Class | Identifier | Tyvpe | Initial | Comment |
] skark BOOL FaLsE ackivates the Function
1 AR source_array ARRAY [0..3] OF WORD [1643456, 1649012, 1645675, 16#1234] | result after a 0->1 leading edge
2 VAR From skart: [164#3456, 1648901,
1644567, 1640123]

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD
start F112_¥WESR

|pl———EN END [~
d1_5tart source_array[1]
d2_End ——zource_arrap[3]

ST When programming with structured text, enter the following:
| F DF(start) THEN
F112 WBSR(d1_Start=> source_array[1],
d2_End=> source_array[3]);
END | F;

579

Bit-shift instructions

F113 WBSL Left shift of one hex. digit (4 bits) of 16-bit data range

Description Shifts one hexadecimal digit (4 bits) of the data range specified by d1 (starting) and d2 (ending) to
the left (to the higher digit position) if the trigger EN is in the ON-state.

2
c
@)

=
o
S
S

—
0

£

o

LL

= F113_WESL |
o - EN ENO |
d1_Start |
d2 End |

When one hexadecimal digit (4 bits) is shifted to the left,

" the data in the higher hexadecimal digit (bit position 12 to 15) of the 16-bit data
specified by d2 is shifted out.

" the data in the lower hexadecimal digit (bit position 0 to 3) of the 16-bit data
specified by d1 becomes 0.

Specified data range

. [
Thedatainthehigher// / / / /
hexadecimal digit (bit v i\

positions 12 to 15) is / [d92 / [d1 [/

VA A
shifted out 1y12%11 87 {4%3 - Ol15. .)).‘ogm[ﬂ yf-8[7 .{4%3 5 0

The lower hexadecimal digit (bit
positions 0 to 3) becomes 0

d1 and d2 should be:

] the same type of operand

= dl<d2
This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears

under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F113_WBSL (see page 1320)

Data types Variable | Datatype Function
di starting 16-bit area
ANY16
d2 ending 16-bit area

The variables d1 and d2 have to be of the same data type.

580

Bit-shift instructions

n

c

o

=

Operands For Relay T/IC Register Constant ‘5’
d1,d2 - WY | WR | WL [SV | EV | DT | LD | FL - *3;

£

Example In this example, the same POU header is used for all programming languages. For an example &

using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU *%
header. a
| Class | Identifier | Tvpe | Initial | Comment |
] skark BO0OL F&LSE ackivates the Function
1 AR source_array ARRAY [0,.3] OF WORD [16#3456, 1649012, 1645678, 164#1234] | result after a 0-=1 leading edge
2 VAR From start: [16#43456, 16#0120,
L6#6789, 1642345]

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD start F113_WESL |
|p l———EN END
d1_5tart I—-s-:-urce_arra_l,l[ﬂ
d2_End ——szource_array [3]

ST When programming with structured text, enter the following:
| F DF(start) THEN
F112_WBSR(d1_Start=> source_array[1],
d2_End=> source_array[3]);
END | F;

581

Bit-shift instructions

F119 LRSR LEFT/RIGHT shift register

Description Shifts 1 bit of the 16-bit data range to the left or to the right.

2
c
@)

=
o
S
S

—
0

£

o

LL

F119_LRSK
- LeftDirection Carry
- Datalnput
~Shift Trigger
- Heset
- d1_Start
- d2 End

Part Il

Left/right shift is a shift register which shifts 1 bit of the specified data area to the left (to the higher
bit position) or to the right (to the lower bit position).

LeftDirection Left/right trigger; specifies the direction of the shift-out.

LeftDirection =TRUE shifting out to the left.

LeftDirection = FALSE shifting out to the right.

Datalnput Specifies the new shift-in data.
New shift-in data = TRUE: when the data input is in the TRUE-state.
New shift-in data = FALSE: when the data input is in the FALSE-state.

ShiftTrigger Shifts 1 bit to the left or right when the rising edge of the trigger is detected (FALSE —
TRUE).

Reset Turns all the bits of the data range specified by d1_Start and d2_End to 0 if this trigger
is in the TRUE-state.

d1_Start Start of 16-bit area.

d2_End End of 16-bit area.

Carry Shifted-out bit.

582

Bit-shift instructions

n
c
(@]
)
[3)
2
Left shift operation 4(7')
d1_Start \ k=
Bit position [15 - -12}11 - - 8|7 - -4[3 - -0o| [/ 5 1211 -8[7 - -4]3 - -0 T
Data 00010001000 10001)) 1000(1000(1000(1100
] / “
< +—
. . LeftDirection: ON =
Shifted-out bit is transferred to g .]
R9009 (carry flag) J ‘ ShiftTrigger: OFF, O o
AR
Bit position [15 . .1211 . . 8(7 . . 4|3 . .0 (/ 15 . .12/11 . .8|7 . .43 ..0
Data oo10/oo10/oo010[oo10])) Jooo1[Y9%0OTlooo01[1000
d1_End |

When Datalnput turns on, “1” is shifted into bit position 0.
When Datalnput turns off, “0” is shifted into bit position 0.

Right shift operation

d1_Start “
Bit position [15 . 12[11 . .8[7 - .4[3 ..0| (/ [15-12[11..8/7..4[3..0
Data 0001/0001/0001{000 1)) 1000/1000/{1000(1100
i L)
LeftDirection: OF
‘ShiftTrigger: OFF, ON
d1_End
AR
Bit position [15 . .12[11 . .8[7 . -4|3 ..0| [/ [15. 12[11..8]/7..4[3 ..0
Data 1000(1000({1000(1000)) 0100{0100{0100{0110
U
When Datalnput turns on, “1” is shifted into Shifted-out bit is
bit position 15. transferred to

When Datalnput turns off, “0” is shifted into bit R9009 (carry flag).

position 15.

PLC types Availability of F119_LRSR (see page 1320)
== * The variables 'd1 and d2' have to be of the same data type.

* This function does not require a variable at the output "Carry".

Data types Variable Data type Function
LeftDirection BOOL specifies direction of shift, TRUE = left, FALSE = right
Datalnput BOOL shift-in data, TRUE = 1, FALSE =0
ShiftTrigger BOOL activates shift
Reset BOOL resets data in area specified by d1 and d2 to 0
Carry BOOL bit shifted out
dl starting 16-bit area
ANY16
d2 ending 16-bit area

583

Bit-shift instructions

%)
c
)
=
o
S
= Operands For Relay TIC Register Constant
n
c
E LeftDirection, | X | Y R L T C - - - -
s Datalnput,
ShiftTrigger,

— Reset
E Carry -1y R L T C - - - -
CCLG d1,d2 - | WY |WR|WL|SV|EV|DT|LD]|FL -

Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Type | Iniitial | Comment |
0 data_arrav ARRAY [0..2] OF INT | [2#00000. .
1 WAR enable_|eftshift BOOL FaLsE " Function shifts left if TRUE,
2 WAR, resek BOCL FaLsE Fif TRUE, the whole array
3 WAR inpuk BOCL TRUE specifies the new shift-in data
4 WAR, shift_krigger Bl FalLsE ¥ activates the function at a 0-=1
5 WAR carry_ouk_value BOOL FalLsE Fresult after a 0->1 leading edge

Body When the variable enable_leftShift is set to TRUE, the function shifts left, else it shifts right.

584

Bit-shift instructions

LD
enable_lafshitt F119_LRSR
' [] LefDirection Camy
Datalnput
ShiffTrigger
reset Feseat
data_amayl] = dl_Simr
data_amay{2] =0 dZ_End

ST When programming with structured text, enter the following:
carry_out_value: =F119 LRSR(LeftDirection: = enable | eftShift,
Dat al nput : = i nput,
ShiftTrigger:= shift_trigger,
Reset : = reset,
dl Start:= data_array[0],
dl End: = data_array|[2]);

0
c
(@)

=
o
S
S

s
0
£
a
LL

585

Part Il

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Bit-shift instructions

F120 ROR 16-bit data right rotate

Description

PLC types

Data types

Operands

Example

POU header

Rotates n bits of the 16-bit data specified by d to the right if the trigger EN is in the ON-state.

F120_ROR |
-EN TENO |

-n dr

The following example rotates one bit to the right:

Bit positionfi5 . .12 11. . 8|7 . . 4|3 . .0

D 0101/0101/0101|0 1 0O}1
Bit positionfi5 . .1211 . . 8(7 . . 4(3 . .0

D 1010(1010(101 0[{1010
Special internal relay 1 ‘Data in bit position 0 J
R9009 (carry flag) -

When n bits are rotated to the right,

= the data in bit position n-1 (nth bit starting from bit position 0) is transferred to the
special internal relay R9009 (carry-flag).

" n bits starting from bit position 0 are shifted out to the right and into the higher bit
positions of the 16-bit data specified by d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Availability of F120_ROR (see page 1320)

Variable | Datatype Function
d ANY16 16-bit area
n INT number of bits to be rotated
For Relay T/C Register Constant
d - wy WR WL SV EV DT | LD | FL -
n WX | WY WR WL SV EV DT | LD | FL dec. or hex.

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

All input and output variables used for programming this function have been declared in the POU
header.

| Class | Identifier | Twpe | Initial | Comment
0 skart BOOL FALSE ackivates the function
1 WAR, rok_walue WORD 16#1234 |resulk after a 0-1 leading
? WAR edge from stark: 16#4123

586

Bit-shift instructions

0
c
o
I3}
Body When the variable start changes from FALSE to TRUE, the function is carried out. >
»
LD £
start F120_ROR | o
|P———EN END r T

d4——n d ——rot_walue

=
@©
o

ST When programming with structured text, enter the following:
| F DF(start) THEN
F120_ROR(n: = 4,
d=> rot _val ue);

END_I F;

587

2
c
@)
=
o
S
S
s
0
£
o
LL

Part Il

Bit-shift instructions

F121 ROL 16-bit data left rotate

Description

Rotates n bits of the 16-bit data specified by d to the left if the trigger EN is in the ON-state.

F121_ROL |
-EN TENO |

-n dr

The following example rotates one bit to the left:

Bit positionfi15 = 12{11 . . 8|7 . . 4|3 . .0
D 0ojto1{01010101/0101
Bit position (15 . .12(11 . . 8(7 . . 4[3 . .0
D 1010/1010(101 0[{1010
\ J
Special internal relay P .
R9009 (carry flag) 0 | Data in bit position 15
\ J

When n bits are rotated to the left,

PLC types

Data types

Operands

the data in bit position 16-n (nth bit starting from bit position 15) is transferred to special internal
relay R9009 (carry-flag).

n bits starting from bit position 15 are shifted out to the left and into the lower bit positions of the
16-bit data specified by d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Availability of F121_ROL (see page 1320)
Variable | Datatype Function
d ANY16 16-bit area
n INT number of bits to be rotated
For Relay T/C Register Constant
d - wy WR WL SV EV DT LD FL -
n WX | WY WR WL SV EV DT LD FL dec. or hex.

588

Bit-shift instructions

Example In this example the function has been programmed in ladder diagram (LD) and structured text
(ST).The same POU header is used for all programming languages.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Tvpe | Initial | Comment |
1] skart: BOOL FALSE ackivates the function
1 W AR rok_value WORD 16#1234 | result after a 0-=1 leading
Z WA, edige From stark:
le#235341

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD
start F121_ROL |
P l———EN “END r
4——n d ——rot_walue

ST When programming with structured text, enter the following:
| F DF(start) THEN
F121_ROL(n: = 4,
d=> rot _val ue);
END | F;

0
c
(@)

=
o
S
S

s
0
£
a
LL

589

Part Il

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Bit-shift instructions

F122 RCR 16-bit data right rotate with carry-flag data

Description

PLC types

Data types

Operands

Rotates n bits of the 16-bit data specified by d including the data of carry-flag to the right if the
trigger EN is in the ON-state.

F122_RCR |
-EN TENO |

-n dr

This example rotates one bit to the right:

Bit position[i5 . .1211 . . 8[7 . . 4[3 . .0
D 0101|{0101/0101|{0 10O}t
Bit positionft5 . . 1211 . . 8|7 . .43 . .0
D 0010/1010/101 0[/1010

Carry flag data “0”

Special internal relay 1

R9009 (carry flag) < /

When n bits with carry-flag data are rotated to the right,

" the data in bit position n-1 (nth bit starting from bit position 0) are transferred to
special internal relay R9009 (carry-flag).

" n bits starting from bit position 0 are shifted out to the right and carry-flag data
and n-1 bits starting from bit position O are subsequently shifted into the higher
bit positions of the 16-bit data specified by d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Availability of F122_RCR (see page 1320)

Variable | Datatype Function
d ANY16 16-bit area
n INT number of bits to be rotated
For Relay T/C Register Constant
d - wy WR WL SV EV DT | LD FL -
n WX | WY WR WL SV EV DT | LD FL dec. or hex.

590

Bit-shift instructions

Example In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.

| Class | 1dentifier | Type | Initial | Comment |
1] skart EOOL FALSE ackivates the Funckion
1 W AR rot_value WORD 16#1234 [result after a 0-+1 leading

edae from skark:
16#8123 (1 (carry flag)

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD
start Flzz_RCR |
|Pl———EN EHD r
4——n d ——rot_value

ST When programming with structured text, enter the following:
| F DF(start) THEN
F122_RCR(n: = 4,
d=> rot _val ue);
END | F;

0
c
(@)

=
o
S
S

s
0
£
a
LL

591

Part Il

Bit-shift instructions

F123 RCL 16-bit data left rotate with carry-flag data

Description Rotates n bits of the 16-bit data specified by d including the data of carry-flag to the left if the
trigger EN is in the ON-state.

2
c
@)

=
o
S
S

—
0

£

o

LL

F123_RCL |
-EN TENO |

-n dr

Part Il

This example rotates one bit to the left:

Bit positionf{5 . .1211 . . 8(7 . . 4|3 . .0
D 0j101/01010101/0101
Bit positionji5 . .1211 . . 8(7 . . 4|3 . .0
D 1010/(1010{101 0[{1010
— Carry flag data “0”
Special internal relay 0
R9009 (carry flag)

When n bits with carry-flag data are rotated to the left,

the data in bit position 16-n (nth bit starting from bit position 15) is transferred to special internal
relay R9009 (carry-flag).

n bits starting from bit position 15 are shifted out to the left and carry-flag data and n-1 bits starting
from bit position 15 are shifted into lower bit positions of the 16-bit data specified by d.

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

PLC types Availability of F123_RCL (see page 1320)

Data types Variable | Datatype Function
d ANY16 16-bit area
n INT number of bits to be rotated
Operands For Relay T/IC Register Constant
d - WY | WR | WL [SV |EV | DT | LD | FL -
n WX | WY | WR | WL [SV |EV | DT | LD | FL | dec.or hex.
Example In this example the function has been programmed in ladder diagram (LD) and structured text

(ST).The same POU header is used for all programming languages.

592

Bit-shift instructions

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Identifier | Type | Inikial | Comment |
1] skark BOOL FALSE activates the funckion
1 AR rot_value WORD 16#1234 | resulk after a 0->1 leading
2 VAR edge from start:
1642340 (1) {carry flag)

Body When the variable start changes from FALSE to TRUE, the function is carried out.

LD
start F123_RCL |
P l———EN EHD r
4——n d ——rot_value

ST When programming with structured text, enter the following:
| F DF(start) THEN
F123_RCL(n: = 4,
d=> rot _val ue);
END | F;

0
c
(@)
=
o
S
S
s
0
£
a
LL

593

Part Il

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

Bit-shift instructions

F125 DROR 32-bit data right rotate

Description

PLC types

Data types

Operands

Error flags

Example

The function rotates the value at output d to the right. The number of bits at output d to be rotated
to the right is specified by the value assigned at input n. This shift can lie between 0 and 255 (only
the lower value byte of n is effective). Right rotate means that the bits shifted out of bit position 0
(LSB) are shifted via bit position 31 (MSB) into the value at output d. When input n = 0, no rotation
takes place. When at input n > 32, the same result is achieved as with a numbern < 32: e.g.n =
32 produces the same result as when n = 0; n = 33 the same as n = 1. The bit at position n - 1 (the
last bit shifted out to the right) is simultaneously stored in special internal relay R9009 (carry flag)
so that it can be evaluated accordingly.

F125_DROR |
- EN ENO |
- N d I

31 2827 *,, - 87 43 0
data |1o1o\ '\\ ‘1100‘1011|

start:ON‘\ \ \ \ ﬁg:g;fy

data |1o11\1010\\\ ‘1100|

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse, the instruction then appears
under "Recently used" in the pop-up menu. Press <Ctrl>+<Shift>+<v> within the programming
area to open the list of recently used elements.

Availability of F125_DROR (see page 1320)

Variable | Datatype Function
n INT number of bits to be rotated (range: 0 to 255)
d ANY32 32-bit area
For Relay T/IC Register Constant
n WX | WY WR WL sV EV DT LD FL | dec. or hex.
d - DWY | DWR | DWL | DSV | DEV | DDT | DLD | DFL -
No. IEC address | Set If
R9009 %MX0.900.9 for an instant = the bit at position n - 1 of d has the value
1.

In this example, the same POU header is used for all programming languages. For an example
using IL (instruction list), please refer to the online help.

POU header All input and output variables used for programming this function have been declared in the POU

header.
| Class | Idenkifier | Type | Initial | Comment |
1] skart BiooL FalLSE ackivates the function
1 WaR data DWORD 16#1234ABCD | result: after a
Z VAR, 0-=1 leading edge of
start: 16D1234ABC

594

Bit-shift instructions

Body When the variable start changes from FALSE to TRUE, the function is carried out. It rotates 4 bits
(corresponds to one position in a hexadecimal representation) to the right. At input n the constant 4
is assigned directly to the function. You may, however, declare an input variable in the POU header
instead.

LD
start F125_DROR |
lpl———En END
4—n d ——data

ST When programming with structured text, enter the following:
| F DF(start) THEN
F125 DROR(n:= 4,
d=> data);
END | F;

0
c
(@)

=
o
S
S

s
0
£
a
LL

595

Part Il

Bit-shift instructions

F126 DROL 32-bit data left rotate

Description The function rotates the value at output d to the left. The number of bits at output d to be rotated to
the left is specified by the value assigned at input n. This shift can lie between 0 and 255 (only the
lower value byte of n is effective).Left rotate means that the bits shifted out of bit position 31 (MSB)
are shifted via bit position 0 (LSB) into the value at output d.

2
c
@)

=
o
S
S

—
0

£

o

LL

Part Il

F125_DROL |
- EN ENO |
- N d I

When input n = 0, no rotation takes place.

When at input n > 32, the same result is achieved as with a number n < 32: e.g. n = 33 produces
the same result as when n = 0; n = 34 the same as n = 1.

The bit at position 32 - n (the last bit shifted out to the right) is simultaneously stored in special
internal relay R9009 (carry flag) so that it can be evaluated accordingly.

31 28 27 2423 - - - 43 0
data |1o10\1100\ '\\ \1011|

start: ON
Carry flag
¥ o

data 1100 | '\ [1011[1010|

This instruction also exists as a P instruction (for FP2/2SH, FP3/5, FP10/10SH PLC types), which
is only executed at the rising edge of the EN trigger. Select [Insert P instruction] from the
"Instructions" pane if you require a P instruction. To facilitate reuse,